-
조광현 교수, 간암 표적 치료제 내성 극복 위한 최적 약물조합 발견
〈 조 광 현 교수 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 간암 약물 치료의 효과를 높이는 새로운 방법을 찾아냈다. 특히 이번 연구는 바이오분야의 4차 산업혁명을 견인하고 있는 IT와 BT의 융합연구인 시스템생물학(Systems Biology) 연구로 이뤄졌다.
서울대병원 내과 윤정환 교수팀과 공동연구를 통해 이루어낸 이번 연구 결과는 국제 간 전문지인 헤파톨로지(Hepatology)에 게재됐다.
이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 바이오의료기술개발사업과 중견연구자지원사업의 지원을 받아 수행됐다.
간암은 전 세계적으로 남성에게는 다섯 번째, 여성에게는 일곱 번째로 발생률이 높은 암이며 암 사망원인의 두 번째를 차지한다. 특히 우리나라의 간암 사망률은 인구 10만 명 당 28.4명으로 경제협력개발기구(OECD) 국가 중 압도적인 1위이며 2위인 일본의 2배에 이르고 있다.
우리나라에서만 간암 환자가 매년 평균 1만 6000명이 새로 발생하고 있지만 5년 생존율이 12%에 미치지 못한다. 국가암정보센터에 따르면 지난해 암으로 사망한 사람 가운데 폐암이 1만 7399명으로 가장 많았고 간암은 1만 1311명으로 그 뒤를 이었다.
간암은 우리나라의 암 가운데 사회적 비용이 1위인 암이다. 그 이유는 다른 암에 비해 사망자가 많고 더 젊은 나이(40, 50대)에 사망하기 때문이다. 이에 부작용이 적고 생존율을 높여줄 수 있는 새로운 치료법 개발이 시급한 실정이다.
간암의 치료로는 수술 및 색전술, 약물 치료가 있지만 수술이 어려운 진행성 간암에서는 치료 방법이 극히 제한적이다.
진행성 간암의 표적 항암제로 소라페닙(Sorafenib)이 유일하게 승인돼 임상에서 쓰이고 있는데 국내에서만 매년 200억 원 이상 처방되고 있지만 일부 환자에서만 효능을 나타내며 또한 대부분의 경우 약제 내성이 발생한다.
소라페닙은 말기 간암 환자의 생존 기간을 약 3개월 정도 밖에 늘리지 못하지만 다국적 제약회사에 의해 개발된 많은 후발주자 약물들이 그 효과를 뛰어 넘는데 실패했다.
소라페닙은 다중타겟을 치료표적으로 하여 그 작용 기전이 모호하고 따라서 약제의 내성기전 또한 아직 잘 알려져 있지 않다.
조광현 교수가 이끈 융합 연구팀은 소라페닙 작용 및 내성 기전을 규명하기 위해 소라페닙을 간암 세포에 처리하였을 때 세포내 분자 발현이 변화하는 것을 분석했다.
이를 통해 암세포가 소라페닙에 대항하는 기전을 알아냈고 시스템생물학적 분석을 실시하여 암세포내 단백질 이황화 이성질화 효소(protein disulfide isomerase, PDI)가 암세포가 소라페닙에 대항하는데 핵심적 역할을 하는 것을 발견했으며 이 효소를 차단했을 때 소라페닙의 효능이 훨씬 증가함을 관찰했다.
공동연구를 수행한 서울대병원 내과 윤정환 교수 연구팀은 쥐를 이용한 동물실험에서 소라페닙과 단백질 이황화 이성질화 효소 차단제를 같이 처리하면 간암 증식 억제에 시너지가 있음을 관찰하였고 소라페닙에 저항성을 가진 간암 환자의 조직에서 이 효소가 증가되어 있음을 관찰하여, 향후 임상 적용을 위한 가능성을 확인하였다.
조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 IT와 BT의 융합연구인 시스템생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암에 대한 표적 치료제 작용을 네트워크 차원에서 분석하여 내성을 극복할 수 있는 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 말했다.
□ 사진 설명
사진1. 간암세포를 이용한 세포실험을 이용해 시뮬레이션 결과를 확인
사진2. 구축된 ER stress 네트워크를 이용한 네트워크 분석 및 컴퓨터 시뮬레이션 결과
사진3. 간암 세포가 소라페닙에 반응할 때 전사체 변화를 분석하여 ER stress 반응이 주요하게 나타남을 발견하게 된 ER stress 네트워크 모델
2017.08.24
조회수 17018
-
이의진 교수, 스마트폰으로 문서 촬영 시 발생하는 회전 오류 문제 해결
〈 이의진 교수(좌)와 오정민 박사과정(우) 〉
우리 대학 산업및시스템공학과 이의진 교수 연구팀이 스마트폰 카메라로 문서를 촬영할 때 자동으로 발생하는 불규칙적인 회전 오류 현상의 원인을 밝히고 해결책을 개발했다.
연구팀은 스마트폰의 방위 추적 알고리즘의 한계가 회전 오류의 원인임을 규명했다.
이번 연구 결과는 인간-컴퓨터 상호작용 학회의 국제 학술지인 ‘인터내셔널 저널 오브 휴먼 컴퓨터 스터디(International Journal of Human-Computer Studies)’ 4월 4일자 온라인 판에 게재됐고 8월호 저널에 게재될 예정이다.
스마트폰을 통해 책자, 문서 등을 촬영해 업무에 활용하는 것은 자연스러운 일상이 됐다. 하지만 촬영한 문서가 자동으로 90도 회전하는 현상으로 인해 불편을 겪는 사람들이 많다.
특히 여러 장의 사진을 찍었을 때 각기 다른 방향으로 회전돼 일일이 스마트폰을 돌리거나 파일을 편집해야 하는 현상이 발생한다.
스마트폰으로 문서를 촬영할 때는 대부분 스마트폰과 책상 위 문서가 평행 상태이다.
이 때 스마트폰을 회전시키면 스마트폰의 방위 추적 알고리즘이 작동하지 않는다. 방위 추적 알고리즘은 기본적으로 사용자가 스마트폰을 세워서 사용한다는 가정 하에 한 방향으로 가해지는 중력가속도를 측정해 현재 방위를 추정하는 방식으로 설계됐기 때문이다.
연구팀은 실험을 통해 오류 발생 수치를 측정했다. 실험 결과 문서를 가로로 촬영 시 방위 추적 오류가 93%의 높은 확률로 발생함을 확인했다.
일반 사용자는 오류의 원인을 파악하기 어렵다. 대부분의 카메라 앱은 셔터 버튼에 있는 카메라 모양의 아이콘 방향을 통해 실시간 방위를 표시하고 있지만 이러한 기능에 대해서도 사용자들은 인지하지 못한 것으로 파악됐다.
연구팀은 스마트폰의 모션센서 데이터를 활용해 문서 촬영 중에 방위를 정확하게 추적해 문제를 해결했다.
모션센서 데이터의 핵심 기술은 두 가지로 구분할 수 있다. 일반적으로 스마트폰으로 문서를 촬영할 때는 스마트폰이 지면과 평행을 이루기 때문에 스마트폰에 장착된 중력 가속도 센서를 관측해 이러한 문서 촬영 의도를 쉽게 알 수 있다.
두 번째로 문서 촬영 중에 발생하는 스마트폰 회전은 회전 각속도를 측정하는 센서를 활용해 추적할 수 있다. 카메라 앱 실행 후에 문서 촬영을 위해 스마트폰을 회전시키기 때문에 이를 측정해 회전각이 일정 임계치를 넘으면 방위를 변경하는 것으로 파악할 수 있고 이를 통해 방향을 알 수 있는 것이다.
또한 연구팀은 문서 촬영 시 촬영자 쪽으로 스마트폰이 미세하게 기울어지는 마이크로 틸트(micro-tilt) 현상을 발견했다.
이 현상으로 인해 스마트폰으로 가해지는 중력가속도가 스마트폰 측면으로 분산된다. 눈에는 잘 보이지 않을 정도로 작은 기울기지만 모션센서 데이터를 활용해 마이크로 틸트 행동 패턴의 기계학습 알고리즘을 훈련시킬 수 있다. 이를 통해 정확한 방위 추적이 가능하다.
연구 팀의 실험 결과에 따르면 모션센서 데이터를 활용한 방위 추적 방식의 정확도는 93%로 매우 높아 안드로이드 및 iOS등 상용 스마트폰에도 적용 가능하다.
이 기술들은 기존 방위 추적 알고리즘의 사각지대였던 수평 촬영 상황에서 작동하기 때문에 기존 방위 추적 알고리즘과 겹치는 부분 없이 상호 보완적으로 작동할 수 있다.
이 교수는 “스마트폰을 활용한 문서 촬영은 필수가 됐지만 회전 오류의 원인 규명과 해결책이 어려워 불편함이 많았다”며 “모션센서 데이터를 통해 촬영의 의도를 파악하고 자동으로 오류를 바로잡는 기술은 사용자의 불편을 해결하고 문서 촬영에 특화된 다양한 응용서비스 개발의 기초가 될 것이다”고 말했다.
미래창조과학부의 지원을 통해 수행된 이번 기술 중 국내 특허 2건이 등록이 완료됐고 미국 특허가 3월 1일에 수락됐다.
□ 그림 설명
그림1. 방위 오류 발생으로 인해 생기는 불편함
그림2. 평면촬영시 발생하는 방위 오류 상태
그림3. 자이로스코프를 활용한 스마트폰 회전 추적 모식도
그림4. 마이크로틸트현상
2017.06.27
조회수 12644
-
한동수 교수, 크라우드소싱 기반 실내 위치인식 시스템 개발
〈 한 동 수 교수 〉
우리 대학 전산학부 한동수 교수 연구팀(지능형 서비스통합 연구실)이 실내 공간에서 획득한 와이파이 신호의 수집 위치정보를 자동으로 파악할 수 있는 기술을 개발했다.
이 기술은 글로벌 실내 위치인식 시스템 구축에 필요한 핵심 기술로 다수의 스마트폰에서 수집된 무선랜 핑거프린트의 수집 위치를 자동으로 라벨링하는 인공지능 기법이다. 비용을 절감하면서 높은 정확도를 가질 수 있고 무선랜 핑거프린트 수집이 가능한 건물이라면 어느 곳에도 적용 가능하다.
여러 글로벌 기업들이 실내 GPS를 실현하기 위해 전 세계 주요도시에서 수만 건의 실내 지도를 수집했다. 실내 지도와 함께 신호 지도 수집도 시도했지만 높은 정확도를 갖지 못했고 그 결과 실내에서의 위치 인식 서비스 질이 떨어진다.
연구팀은 문제 해결을 위해 실내를 이동 공간과 체류 공간으로 구분하고 각각의 공간에 최적화된 수집 위치 라벨링을 자동화하는 기술을 개발했다.
연구팀이 개발한 기술은 복도, 로비, 계단과 같은 이동 공간에서도 수집된 신호의 위치정보를 별도의 외부 정도 없이도 자동으로 라벨링하는 새로운 자율학습(Unsupervised Learning) 인공지능 기술이다.
이 기술을 토대로 기초실험연구동(N5)과 김병호-김삼열IT융합빌딩(N1)에서 실험을 실시했고, 충분한 양의 학습 데이터가 주어진다는 가정 하에 오차범위 3~4미터 수준의 정확도를 보였다.
이는 수작업을 통해 수집 위치를 라벨링한 결과와 비슷한 정확도로 연구팀이 함께 개발한 지자기 신호, 3축 가속기, 자이로스코프 기반의 딥러닝을 활용한 새로운 센서 퓨전 기법을 통하면 정확도가 더욱 상승하는 결과를 보였다.
그 동안 스마트폰을 통해 수집된 핑거프린트는 활용되지 못하고 버려졌지만 개발된 기술을 통해 무선랜 핑거프린트 빅데이터 영역이 새롭게 열릴 것으로 기대된다.
개발된 GPS 구축 기술은 글로벌 기업이나 국내 위치정보 서비스 기업 등이 전국 범위에서 위치정보 서비스를 제공할 때 도입해 효과적으로 사용할 수 있을 것으로 예상된다.
GPS 신호가 도달하지 않는 실내 환경에서 위치인식 정확도가 높아짐에 따라 포켓몬고 등의 O2O(online to offline) 위치기반 게임도 실내에서 실행 가능할 것으로 기대된다.
또한 다양한 위치기반 SNS, 사물인터넷 등 서비스가 활성화되고 위급한 상황에서 112나 119에 구조요청을 할 시 정확한 위치 파악이 가능할 것으로 보인다.
한 교수는 “개발된 글로벌 실내 위치인식 시스템 구축 기술을 KAIST 실내 위치인식 시스템인 카이로스(KAILOS)에 탑재해 서비스 할 예정이다”며 “전 세계 어느 건물에서든 정확도 높은 실내 위치인식 시스템을 손쉽게 구축할 수 있고 장래에 대부분 실내 공간에서도 위치인식 서비스가 제공 가능할 것이다”고 말했다.
카이로스는 2014년 KAIST에서 출시한 개방형 실내 위치인식 서비스 플랫폼이다. 자신이 원하는 건물의 실내지도를 카이로스에 등록하고 해당 건물의 핑거프린트를 수집해 실내 위치인식 시스템을 구축하도록 지원 중이다.
□ 그림 설명
그림1. 핑거프린트를 수집하여 신호지도를 구축한 뒤, 구축된 신호지도를 기반으로 위치를 추정하는 과정
그림2. KAILOS가 여러 가지 신호와 센서를 복합적으로 사용하였을 때 예상되는 정확도
2017.04.12
조회수 14868
-
우운택 교수, 증강현실 속 캐릭터 실시간 조작기술 개발
〈 우 운 택 교수 〉
우리 대학 KI IT융합연구소 증강현실 연구센터의 우운택 교수(문화기술대학원) 연구팀이 증강현실 안경을 통해 현실공간에 존재하는 가상 객체의 이동경로를 간편하고 자유롭게 설정할 수 있는 기술을 개발했다.
이 기술은 홀로렌즈와 같은 투과형 증강현실 안경을 착용한 사용자가 스마트폰을 이용해 현실공간에서 직관적으로 동물, 식물 등의 가상 객체를 조작하면서 이동경로를 실시간으로 설정 및 변경할 수 있다.
유정민 연구교수가 1저자로 참여한 이번 연구 결과는 한국 인간-컴퓨터 상호작용 학회(HCI)에서 지난 8일에 시연됐고, 관련 논문은 2017년도 국제 인간-컴퓨터 상호작용 학회(HCI International 2017)에서 발표될 예정이다.
기존의 증강현실을 저작하는 과정은 피시(PC) 환경에 특화된 저작 프로그램을 이용하거나 전문적인 프로그래밍 언어로 가상의 객체를 선택하고 조작해야 한다. 따라서 과정이 복잡하고 비용이 상대적으로 많이 소요되는 한계가 있었다.
연구팀은 특수한 입력장치를 사용하는 대신 자체 개발한 앱을 스마트폰에서 구동시켜 홀로렌즈가 부착된 안경형 디스플레이 장치와 연동했다.
이를 통해 3차원 마우스와 같은 입력장치로 사용할 수 있고 증강현실 속 가상 객체를 컴퓨터의 아이콘 옮기듯 쉽게 조정하고 이동할 수 있게 된다.
이 기술은 사용자가 스마트폰의 입력 정보와 내장된 3축 기울기 센서로부터 획득한 스마트폰의 자세 정보를 이용해 가상 객체를 선택 혹은 취소하거나 크기를 조절할 수 있다. 또한 가상 객체의 이동경로를 현실 공간에 바로 설정하거나 수정할 수 있다.
이러한 기능은 현실 공간에서 가상 객체의 이동을 직관적으로 설정할 수 있기 때문에 다양한 동적인 증강현실 환경을 현장에서 즉각적으로 구성할 수 있다.
누구나 쉽게 사용할 수 있는 저작도구는 다양한 증강현실 콘텐츠의 즉각적인 생산과 체험을 가능하게 하고 새로운 증강체험 관련 산업의 형성 및 생태계 구축에 기여할 수 있을 것으로 기대된다.
우 교수는 “이 기술은 스마트 폰만 있으면 누구나 콘텐츠를 현장에서 직관적으로 저작할 수 있다”며 “추가 개발될 증강현실 저작도구를 통해 누구나 포켓몬go 같이 가상 캐릭터와 현실공간이 상호작용하는 환경을 만들 수 있을 것으로 기대한다”고 말했다.
□ 그림 설명
그림1. 증강현실 체험 위한 안경형 디스플레이기반 이동경로 저작 기술의 개념도
그림2. 기술을 활용하여 증강현실 환경을 구성하는 실제 화면
2017.02.16
조회수 12778
-
박용근 교수, 성능 수천배 향상된 3차원 홀로그래픽 디스플레이 기술 개발
우리 대학 물리학과 박용근 교수 연구팀(KI 헬스사이언스 연구소)이 성능이 2천 배 이상 향상된 3차원 홀로그래픽 디스플레이 기술을 개발했다.
이번 연구를 통해 기존 무 안경 홀로그래픽 기술의 큰 문제점이었던 제한적인 영상 크기와 시야각을 향상시킬 수 있을 것으로 기대된다.
유현승 박사과정이 1저자로 참여한 이번 연구는 광학 분야 국제 학술지인 ‘네이처 포토닉스(Nature Photonics)’ 1월 24일자 온라인 판에 게재됐다.
공상과학 영화에 자주 등장하는 3차원 홀로그램은 대중에게 친숙한 기술이지만, 영화 속 홀로그램은 컴퓨터 그래픽 효과로 만들어낸 것이다. 실제 기술로 구현하기에는 한계가 많기 때문이다.
이 때문에 디스플레이 산업계는 2차원 영상 두 개로 착시 효과를 활용하는 가상현실(VR)과 증강현실(AR)에 집중하고 있다. 이 기술들은 3차원 이미지 대신 두 개의 서로 다른 2차원 이미지를 눈에 투사하는 방식을 채택한다.
3D안경 등 특수 장비 없이도 볼 수 있는 3차원 홀로그램을 만들기 위해선 공간광파면 조절기(빛이 퍼져나가는 방향을 정밀하게 조절할 수 있는 광학제어장치)를 이용해 빛의 방향을 변경해야 한다.
그러나 이와 같은 공간광파면 조절기를 3차원 디스플레이로 사용하지 못하는 가장 큰 걸림돌은 픽셀의 개수이다. 최근 각광받는 고해상도 모니터의 많은 픽셀 개수조차도 2차원 이미지에만 적합할 뿐 3차원 이미지를 만들기에는 정보량이 매우 부족하다.
이 때문에 기존의 기술로 만들 수 있는 3차원 영상은 크기 1센티미터, 시청 가능 각도 3도 이내 수준으로서 실용성과는 거리가 멀다.
연구팀은 문제 해결을 위해 공간광파면 조절기만 사용하는 대신 간유리를 추가적으로 활용해 빛을 무작위로 산란시켰다. 무작위로 산란된 빛은 여러 방향으로 퍼지기 때문에 넓은 각도에서 시청 가능하고 영상 크기도 확대된다.
하지만 무작위한 패턴을 갖기 때문에 특별한 제어 없이는 3차원 이미지를 볼 수 없다. 연구팀은 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적인 상관관계를 활용해 빛을 적절히 제어해 문제를 해결했다.
연구팀은 실험을 통해 가로, 세로, 높이 2센티미터 영역에 약 35도의 시청각을 갖는 3차원 이미지를 제작하는 데 성공했다. 이는 기존의 공간대역폭보다 약 2천 600배 이상 향상된 결과이다.
연구팀의 홀로그래픽 디스플레이는 기존의 공간광파면 조절기에 간유리를 추가하는 것만으로 제작이 가능해 일반적인 디스플레이 장치와 결합해 상용화가 가능할 것으로 기대된다.
1저자인 유현승 학생은 “물체의 인식을 방해한다고 여겨진 빛의 산란을 적절히 이용해 기존 3차원 디스플레이보다 향상된 이미지를 만들 수 있음을 선보였다”며 “특수 안경 없이 볼 수 있는 실용적인 디스플레이의 기반이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단의 시간역행반사 창의연구단 사업과 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 3차원 홀로그래픽 디스플레이의 모식도
그림2. 2 cm × 2 cm × 2 cm 영역에 만들어진 3차원 이미지
그림3. 3차원 홀로그래픽 디스플레이의 원리
2017.01.24
조회수 16841
-
이건재, 최성율 교수, 고체 상분리 현상에 의한 그래핀 생성원리 발견
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 최성율 교수 연구팀이 초단시간의 레이저를 조사해 단결정 탄화규소(SiC)의 고체 상분리 현상을 발견하고 이를 활용한 그래핀 생성원리를 밝혔다.
기존에 활용되고 있는 화학기상증착(Chemical Vapor Deposition, CVD) 기반의 그래핀 합성법이 상당시간의 고온 공정을 필요로 하는 것과 달리 새로운 레이저 열처리법은 상온환경에서 단시간의 공정으로 그래핀을 합성할 수 있어 향후 그래핀 활용의 폭을 넓힐 수 있을 전망이다.
연구진은 단결정 탄화규소 소재 표면에 나노초(10억분의 1초) 단위의 극히 짧은 시간 동안 레이저를 쪼여 표면을 순간적으로 녹였다가 다시 응고시켰다. 그러자 탄화규소 표면이 두께 2.5나노미터의 탄소(C) 초박막층과 그 아래 두께 5나노미터의 규소(Si, 실리콘)층으로 분리되는 상분리 현상이 나타났다. 여기에 레이저를 다시 쪼이자 안쪽 실리콘층은 증발하고, 탄소층은 그래핀이 됨을 확인했다.
특히 탄화규소와 같은 이종원소 화합물과 레이저의 상호작용에 대한 연구는 아주 짧은 시간에 일어나는 복잡한 상전이 현상으로 지금까지 그 규명이 쉽지 않았다. 그러나 연구진은 레이저에 의해 순간적으로 유도된 탄소 및 실리콘의 초박막층을 고해상도 전자현미경으로 촬영하고, 실리콘과 같은 반도체 물질이 고체와 액체 상태일 때 나타나는 광학 반사율이 다르다는 점에 착안해 탄화규소의 고체 상분리 현상을 성공적으로 규명해낼 수 있었다.
연구에 활용된 레이저 열처리기술은 AMOLED(능동형 유기발광다이오드) 등 상용 디스플레이 생산공정에 널리 활용되고 있는 방법으로, CVD 공정과 달리 레이저로 소재 표면만 순간적으로 가열하기 때문에 열에 약한 플라스틱 기판 등에도 활용이 가능하여, 향후 플렉시블 전자 분야로 응용의 폭을 넓힐 수 있을 것으로 기대된다.
이 교수는 "이번 연구 결과를 통해 레이저 기술이 그래핀과 같은 2차원 나노소재에 보다 폭넓게 응용될 수 있을 것이다”고 말했다.
최 교수는 "앞으로 다양한 고체 화합물과 레이저의 상호작용을 규명해 이들의 상분리 현상을 활용하면 새로운 나노소재 개발을 기대할 수 있을 것이다”고 말했다.
이번 연구결과는 자연과학 및 응용과학 분야 학술지 '네이처 커뮤니케이션즈(Nature Communications)' 최신호에 게재됐다.
□ 그림 설명
그림1. 단결정 탄화규소의 용융을 통한 상분리 현상의 원리를 밝혀내는 분자동역학 시뮬레이션의 모식도
그림2. 레이저에 의해 순간적으로 유도된 단결정 탄화규소의 용융 및 응고 현상을 증명하는 실시간 시간 분해능 반사율 (In-situ time-resolved reflectance) 측정 스펙트럼
그림3. 레이저가 조사된 탄화규소 표면의 전체적인 전자현미경 사진(a) 및 이로 의한 탄소와 실리콘으로의 상분리 현상을 촬영한 고해상도 전자현미경 사진(b)
2016.12.05
조회수 18797
-
박용근 교수, 홀로그래픽 촬영 카메라 개발
우리 대학 물리학과 박용근 교수 연구팀이 간유리(optical diffuser, 광 디퓨저)를 이용한 홀로그래픽 카메라를 개발했다.
연구팀의 홀로그래픽 카메라는 어떠한 가정도 필요 없이 일반적인 홀로그램을 측정하는 기술로 사진 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래피에 근접한 기술이다.
이번 연구 결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 28일자 온라인 판에 게재됐다.
사진은 실제 눈으로 보는 것과 같은 원근감과 볼륨감을 표현할 수 없다. 그 이유는 현존하는 전자기기의 대역폭(~100 GHz)이 가시광의 진동수(~100 THz)에 훨씬 미치지 못하기 때문이다.
따라서 사진 기술로는 빛의 세기만 측정 가능하고, 원근감과 입체감 정보를 담은 빛의 파면 정보는 직접적으로 측정할 수 없다.
위상 문제(phase problem)라고 불리는 이 현상은 가시광 뿐 아니라 적외선, 자외선, 엑스레이 등 전자기파를 다루는 방대한 분야 전반에 큰 걸림돌로 남아 있었다.
이러한 위상 문제를 피해 간접적으로 빛의 파면을 측정하는 기술을 홀로그래피라고 한다. 그러나 이 홀로그래피 기술은 추가적인 참조 빛을 필요로 해 사진기술처럼 빠르게 전파되지 못했다.
수 세기동안 과학자들은 사진 찍듯 홀로그램을 찍기 위해 연구했으나 제안된 기술들은 대부분 특수한 입사 빛을 가정한 상황에서만 작동해 일반적인 상황에서 널리 사용되지 못했다.
연구팀은 입사 빛의 특수한 상황을 가정하는 대신 간유리를 활용해 입사 빛을 무작위로 산란시켰다. 무작위로 산란된 빛의 결맞음(파동이 간섭 현상을 보이는 성질) 정도에 대한 수학적 상관관계를 활용해 입사한 빛의 파면을 온전히 측정할 수 있음을 이론적으로 제안했다.
연구팀은 이론에 따라 렌즈 대신 간유리를 삽입한 홀로그래픽 카메라를 제작했고 실험을 통해 성공적으로 작동하는 것을 확인했다. 일상에서 쉽게 볼 수 있는 물체를 홀로그램으로 측정했고, 초점 위치를 자유자재로 바꿈으로써 이 기술이 일반적인 경우에도 작동함을 증명했다.
연구팀의 홀로그래피 카메라는 그 형태와 구성이 간단해 렌즈 대신 간유리를 카메라 센서 앞에 대는 것만으로 홀로그램의 측정이 가능해진다. 핸드폰 카메라 등에 적용해 상용화가 가능할 것으로 기대된다.
같은 원리를 활용해 다른 대역의 위상 문제도 해결할 수 있다. 특히 엑스레이 영역의 문제를 해결한다면 초고해상도 엑스레이 현미경의 구현이 가능해져 과학계 전반에 큰 발전을 가져올 수 있을 것으로 예상된다.
논문의 1저자인 이겨레 학생은 “이번 기술은 사진을 찍듯 홀로그램을 측정할 수 있는 이상적인 홀로그래픽 카메라에 가장 근접한 기술이다”며 “핸드폰 카메라 등에 쉽게 적용해 홀로그래피의 대중화가 가능할 것으로 기대된다”고 말했다.
□ 그림 설명
그림1. 제안된 홀로그래픽 카메라. 일반적인 광 디퓨저를 홀로그래픽 렌즈로서 활용
그림2. 입사한 빛의 파면 (왼쪽, incident field)과 제안된 기술로 측정된 파면 (오른쪽, retrieved field)
그림3. 일반적인 물체의 (주사위) 홀로그램
2016.11.01
조회수 14131
-
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다.
이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다.
유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다.
진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다.
유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다.
이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다.
결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다.
연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다.
이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다.
연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다.
유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다.
또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다.
특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다.
또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다.
신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다.
신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진
그림2. 수학분야의 공간채움구조
2016.09.06
조회수 15639
-
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉
우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다.
세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다.
그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다.
우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다.
또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다.
연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다.
그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다.
이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다.
또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다.
이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다.
본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다.
허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다.
이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다.
□ 그림 설명
그림1. 세포내 PLEKHG3의 위치분석
그림2. 세포이동시 PLEKHG3의 세포내 위치추적
그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 10997
-
신의철, 박수형 교수, 네이처 리뷰 면역학에 초청 리뷰논문 게재
우리 대학 의과학대학원 신의철, 박수형 교수와 카톨릭의대 서울성모병원의 성필수 박사가 국내 과학자로는 최초로 ‘네이처 리뷰 면역학(Nature Reviews Immunology)’8월호에 초청 리뷰논문을 게재했다.
‘네이처 리뷰’저널은 네이처 리뷰로부터 초청받은 세계적 석학들이 해당 분야의 전반적인 내용을 총정리 하는 저널이다. 그 중 ‘네이처 리뷰 면역학’은 면역학 분야의 최고 학술지 중 하나로 불린다.
신 교수와 박 교수는 간염 바이러스 면역에 대한 리뷰논문을 작성했다. 사람에게 간염을 일으키는 A형 및 B형, C형 간염 바이러스에 대한 면역반응의 유사점과 차이점을 총체적으로 고찰하고 미래 연구의 방향을 제시했다.
전 세계에서 3억 5천만 명이 B형 간염 바이러스에, 1억 7천만 명이 C형 간염 바이러스에 감염돼 있다. 그러나 B형 간염 바이러스는 체내에서 바이러스를 완전히 제거하는 치료제가 개발되지 않았고 C형 간염은 예방 백신이 개발되지 않았다.
반면 A형 간염은 간 손상을 일으키는 경우가 있긴 하지만 B, C형과 달리 저절로 완치되는 경우가 많다.
신 교수, 박 교수, 성 박사는 이에 주목해 이번 논문에서 A형 간염 바이러스에 대한 면역반응의 특성을 기반으로 B형 간염 바이러스 완치 치료제 및 C형 간염 바이러스 예방 백신을 개발할 수 있음을 논리적으로 제시했다.
신 교수와 박 교수는 지난 15년간 C형 간염 바이러스에 대한 인체 면역반응 연구에 매진했다. 최근에는 국내에서도 유행했던 A형 간염 바이러스 면역에 대한 새 연구 결과들을 발표했고 공로를 인정받아 초청 리뷰논문을 게재했다.
신 교수는 “이번 초청 리뷰는 KAIST 의과학대학원의 면역학 연구가 세계적 수준으로 도약하고 있음을 증명한 것이다” 며 “면역학 연구에 정진해 인간 질병 해결에 도움이 되겠다”고 말했다.
이번 연구의 C형 간염 관련 연구는 한국연구재단의 지원으로 이뤄졌고, 신 교수는 삼성미래기술육성재단의 지원을 통해 A형 간염 바이러스까지 연구를 확장했다.
2016.08.10
조회수 11551
-
스마트폰으로 시공간 뛰어넘는 문화유산 관람한다
〈 우 운 택 교수 〉
우리 대학 문화기술대학원 김정화, 우운택 교수 공동연구팀이 문화체육관광부의 지원을 받아 스마트 관광 지원을 위한 모바일 증강현실 플랫폼 ‘K-컬쳐 타임머신(K-Culture Time Machine)’을 개발했다.
이 기술은 1월 27일부터 3일간 강원도 하이원리조트에서 열리는 한국 HCI(인간-컴퓨터 상호작용) 학회에서 발표될 예정이다.
이번에 개발한 플랫폼은 증강현실을 통해 문화유산이나 유적지의 과거를 체험하고 엿볼 수 있는 기능을 제공한다.
위치 혹은 객체를 인식한 후 단순한 부가정보만을 제공했던 기존 모바일 증강현실을 넘어 향후 모바일 증강현실 응용 생태계를 구축하는 초석이 될 것으로 기대된다.
연구팀의 핵심 기술은 문화유산 데이터베이스를 연계하는 메타데이터 모델을 구축하고, 이를 기반으로 문화유산 공간의 현재와 과거 정보를 체험할 수 있는 기술이다.
스마트폰에 설치된 플랫폼을 실행한 후 유적지나 문화유산을 스마트폰에 비추면 관련 문화재에 대한 설명이 제공된다. 데이터베이스가 연계됐기 때문에 문화재청, 박물관포탈의 E-뮤지엄, 한국민족문화대백과사전 등의 정보를 한 눈에 볼 수 있다.
연구팀은 또한 문화유산과 관련된 인물, 유물, 장소, 사건 등을 정의하고 연관관계를 분석해 온톨로지를 설계하고 구현했다. 창덕궁 인정전을 예로 들면 유물 카테고리에서 ‘인정전을 구성하는 이화문 장식’을, 사건 카테고리에서 ‘인정전에서 발생한 왕세자탄강진하례’등을 검색할 수 있다.
이를 통해 각자 독립적으로 구축된 정보 간의 연계가 가능하고, 개발 후 소비되는 기존 시스템과 달리 지속적인 서비스를 제공할 수 있다.
K-컬쳐 타임머신은 이름처럼 문화유산의 과거와 현재를 오가며 시공간을 넘나드는 체험을 할 수 있다. 각 시대에 있었던 사건, 사진, 연관성을 지닌 정보를 확인할 수 있고, 증강현실을 통해 현재 문화유산의 모습에서 과거 모습을 투영하는 것이 가능하다.
이 증강현실 플랫폼의 기반인 데이터모델 및 메타데이터 표준은 작년 12월 한국정보통신기술협회로부터 정식 인준됐다.
박물관, 도서관 등 각기 다양한 문화유산을 다루는 기관을 통합하는 유럽의 유로피아나 프로젝트(Europeana Data Model : EDM)처럼 국내의 다양한 문화유산 데이터베이스를 연계하고 활용할 수 있는 온톨로지 데이터 모델 KCHDM(Korean Cultural Heritage Data Motel)을 개발해 표준화했다.
우 교수는 “증강현실 콘텐츠의 메타데이터 체계를 개발하고 표준화해 다양한 증강현실 콘텐츠의 재사용 및 개별 플랫폼과 독립적으로 콘텐츠 공유가 가능케 할 것이다”며 “향후 우리나라의 문화유산 정보시스템과 소셜미디어 기반의 신뢰성 높은 추천 정보, 사용자 프로파일을 증강현실 콘텐츠로 연계 활용해 지속 가능한 증강현실 생태계를 구축하고 일상에 확산할 수 있을 것이다”고 말했다.
이번 기술 개발은 ㈜포스트미디어(대표 홍승모)와의 공동연구를 통해 진행됐다.
연구팀의 모바일 기반 스마트 투어지원 플랫폼과 관련된 기술 논문은 인간-컴퓨터 상호작용 관련 국제학술대회인 HCI International 2015에서 발표될 예정이다.
□ 그림 설명
그림 1. 스마트 유적지 투어 지원 플랫폼 ‘K-Culture Time Machine’의 개념도
그림2. 본 플랫폼을 활용한 모바일 증강현실 어플리케이션에서의 서비스 구동 실제 화면
2016.01.29
조회수 14853
-
수학 통해 생체시계 유지 원리 60여년 만에 밝혀
김 재 경 교수
우리 대학 수리과학과 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 생체시계의 속도를 유지하는 원리를 발견했다.
이번 연구는 저명 학술지 셀(Cell) 자매지 몰라큘러 셀(Molecular Cell) 10월 1일자에 게재됐다.
우리 뇌에 위치한 생체시계는 밤 9시 경이 되면 멜라토닌 분비가 시작되게 하고 아침 7시 경에 멈추게 한다. 그로 인해 우리는 매일 일정한 시간에 잠을 자고 기상할 수 있다.
생체시계는 온도가 변화해도 빨라지거나 느려지지 않고 일정한 속도가 유지된다. 따라서 우리의 체온이 변화해도 규칙적인 삶을 살 수 있고, 이는 환경에 따라 체온이 변하는 변온 동물에게도 적용된다.
이러한 생체시계의 성질은 1954년에 발견됐지만 그 원리는 밝혀지지 않아 지난 60여 년간 생체시계 분야의 가장 큰 미스테리로 남아 있었다.
김 교수는 수학 모델링을 통해 이 원리를 밝혀냈고 모델링 결과는 듀크-싱가폴 국립 의과대학 데이빗 벌쉽(David Virshup) 교수 연구팀의 실험을 통해 검증돼 60년의 난제가 풀렸다.
생체시계에는 Period2라는 핵심 단백질이 존재한다. 이 단백질은 12시간 동안 증가하고 나머지 12시간 동안 분해되는 리듬을 평생 반복한다.
김 교수는 이 Period2 분해가 두 가지 방법으로 발생하는 것을 밝혔다. 하나는 매우 빠른 속도로 분해가 일어나는 것이고 나머지 하나는 매우 느린 속도로 분해가 이뤄지는 것이다. 그리고 두 가지 방법의 비율을 조절하는 것이 Period2에 존재하는 인산화 스위치(Phosphoryltion switch)이다.
인산화 스위치의 역할은 온도가 올라갔을 때 느리게 분해되는 Period2의 양을 늘림으로써 전체적인 분해 속도가 천천히 이뤄지게 만든다. 반대로 온도가 내려갔을 때는 빠르게 분해되는 비율을 늘려 생체시계의 속도를 조절하는 것이다.
결국 생체시계 속도 유지의 핵심은 인산화 스위치이고, 다른 생화학 반응이 빨라져도 생체시계의 속도 유지를 가능하게 만드는 요소인 것이다.
이번 연구에서 밝혀진 인산화 스위치는 생체시계의 속도를 조절할 수 있는 핵심 요소가 될 전망이다. 이 인산화 스위치를 조절할 수 있는 약을 개발한다면 잦은 해외 출장으로 인한 시차, 주야 교대 근무 등에 의한 생체 시계 고장 예방 등에 기여할 수 있을 것으로 기대된다.
김 교수는 “이번 성과를 통해 우리나라에선 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”며 “수학이 생물학의 난제들을 해결하는데 기여할 수 있음을 알리고 싶다”고 말했다.
이번 연구는 듀크-국립 싱가폴 의과 대학 데이빗 벌쉽 (David Virshup) 교수 연구팀, 미국 미시간 대학 (University of Michigan, Ann Arbor) 데니 폴저 (Daniel Forger) 교수와의 공동연구로 진행됐다.
□ 그림 설명
그림 1 . 이번 연구에서 밝혀진 인산화 스위치와 그 과정에서 사용된 수학 방정식의 일부
그림 2. Period2 단백질이 인산화 스위치에 의해 낮은 온도(30도) 에서 분해되는 속도가 더 빨라진다는 것을 보여주는 실험
2015.10.05
조회수 15306