-
나노미터 크기의 우담바라 꽃 모양 제작
〈윤 동 기 교수〉
우리 대학 나노과학기술대학원 윤동기 교수 연구팀이 액정의 승화현상을 이용해 정교한 3차원 액정나노구조를 제작할 수 있는 기술을 개발했다.
이는 액정이 승화할 때 열처리 조건에 따라 여러 모습의 3차원 나노구조가 형성되는 특성을 이용한 기술이다. 간단한 온도조절만으로도 다양한 3차원 나노패터닝이 가능해 차세대 소자 개발에 기여할 것으로 기대된다.
특히 연구팀은 우담바라 꽃, 찐빵 모양 등을 나노미터 크기 수준에서 정교하게 제작하는 데 성공했다.
이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 1월 4일자 온라인 판에 게재됐다.
나노 및 마이크로 패터닝을 위해 가장 많이 쓰이는 기술은 빛을 이용한 광 식각 기술이다. 하지만 이 방식은 2차원 식각공정에 특화돼 있고 비싼 공정설비, 복잡한 과정 등의 한계를 갖는다.
특히 3차원 구조 제작을 위해서는 2차원 구조를 계속 적층해야 하는 과정이 포함되기 때문에 정교한 구현이 어려웠다.
연구팀은 문제 해결을 위해 액정의 온도를 높여 분자들을 기체로 승화시켰다.
기체로 승화된 액정분자들은 공기 중으로 날아가게 되는데 그 중 일부는 무게, 분자수준에서의 친화도 등의 원인으로 다시 되돌아와 남아있던 액정 상 구조와 다시 재결합하게 된다.
이는 동굴의 종유석, 석순의 생성 원리나 유황온천에서 승화돼 날아가던 유황 성분이 바위나 돌에 붙어 유황 바위가 되는 것과 비슷한 원리이다.
연구팀은 승화 및 재결합 현상을 통해 온도 및 시간 조절로 수 나노미터 수준의 액정 판상구조를 정교하게 한 겹씩 벗겨낸 뒤, 다양한 3차원 나노 구조체를 제작하는 데 성공했다.
온도나 시간을 조절함으로써 나노 구조체는 다양해진다. 온도를 조금만 상승시킬 때는 우담바라 꽃 모양이 되고, 온도를 매우 높일 때는 액정 분자가 순식간에 날아가 찐빵과 같은 모양이 되기도 한다.
이 기술을 이용하면 차세대 기술로 불리는 수직 트랜지스터 등을 기존 2차원 식각 공정에 비해 약 1천 배 저렴하고 간단하게 제작할 수 있다. 일일이 적층할 필요 없이 3차원으로 패터닝이 순식간에 가능해지기 때문이다.
윤 교수는 “전자기장에 민감하게 반응하는 액정의 고유 성질과 이번 승화 및 재결합 현상을 융합할 수 있다”며 “이를 통해 고효율의 광전자 소자 개발에 많은 도움이 될 것이다”고 말했다.
나노과학기술대학원 김대석 박사과정 학생이 주도하고 美 켄트 주립대학 올레그 라브렌토비치(Oleg D. Lavrentovich) 교수가 참여한 이번 연구는 미래창조과학부의 미래유망기술 융합파이오니아 사업을 통해 수행됐다.
□ 그림 설명
그림1. 우담바라 나노구조체
그림2. 우담바라 나노구조체(확대)
그림3. 다양한 조건의 승화-재조합 공정 후의 초분자 액정 구조체의 모양
2016.01.11
조회수 12633
-
그래핀 이용한 인공근육형 작동장치(actuator) 개발
〈 오 일 권 교수〉
우리 대학 기계공학과 오일권(43) 교수 연구팀이 화학적 도핑된 그래핀을 이용해 고성능의 인공근육형 작동장치(actuator)를 개발했다.
이번에 개발된 인공근육 작동장치는 기존 기술보다 3배 이상의 굽힘 변형을 보이고, 5시간 이상 구동해도 성능을 유지할 수 있다.
이번 연구는 어드밴스드 머터리얼스(Advanced Materials) 12월 15일자 온라인 판에 게재됐다.
최근 플렉서블, 웨어러블 소자에 대한 연구가 활발해지며 인간과 기계 사이의 햅틱(촉각 효과) 기능을 위한 능동형 유연 작동기(soft actuator)가 핵심 부품으로 각광받고 있다.
특히 유연성이 떨어져 첨단 전자제품에 적용이 어려운 기존의 기계식 작동기를 대신해 인간의 근육을 모방한 전기에 반응하는 인공근육형 작동기가 관심을 받고 있다.
그러나 기존의 백금이나 금을 기반으로 제작한 인공근육형 작동기는 제작 기간이 일주일 가까이 소요되고 실용성이 떨어지는 한계를 갖는다.
연구팀은 문제 해결을 위해 그래핀과 화학물질, 전도성 고분자를 이용했다. 황과 질소를 그래핑에 도핑하고 전도성 고분자와 함께 섞어 부드럽고 전도성이 탁월한 유연 전극을 제작했다. 그리고 이를 바탕으로 고성능 인공근육형 작동기를 개발했다.
기존의 금속 기반 작동기가 일주일 이상의 제작 기간이 소요되는데 반해 연구팀이 개발한 그래핀-전도성 고분자 전극 적층 방식의 유연 작동기는 2시간 이내 제작할 수 있는 장점을 갖는다.
또한 황과 질소 등 화학물질을 도핑하는 작업으로 기존 그래핀에 비해 1.5~2배 이상 전기화학 성능이 향상됨을 삼전극 전기화학 테스트를 통해 확인했다.
연구팀은 이번에 개발한 작동기는 0.5V와 1V의 낮은 인가전압에서도 대 변형 구동이 가능하고, 기존 대비 3배 이상의 변형을 보이면서도 장시간 성능 지속이 가능하다고 밝혔다.
이 원천기술은 향후 ▲소프트 로보틱스(soft robotics)▲3D 프린팅 된 작동기▲부드러운 햅틱 디바이스▲웨어러블 전자소자▲유연 디스플레이전자소자▲생체 의료기기 등 각광받는 차세대 기전소자로 응용될 것으로 기대된다.
오 교수는 “고성능 인공근육형 작동기 기술은 향후 첨단 기전소자의 핵심 요소가 될 것이다”며 “특히 3D프린팅 기술과 함께 발전하면 차세대 웨어러블 소자로 상용화 가능성이 높을 것이다”고 말했다.
이번 연구는 미래창조과학부 리더연구자지원사업의 지원을 받아 KAIST 김재환 박사과정, Kotal 박사가 공동 1저자로 참여했고, 네바다 주립대학 라스베가스(UNLV) 기계공학과 김광진 교수팀과의 공동연구를 통해 진행됐다.
□ 그림 설명
그림1. 도핑된 그래핀 기반 인공근육형 작동기의 단면 이미지
그림2. 인공근육형 작동기 구동 사진
그림3. 황과 질소가 동시에 도핑된 그래핀의 원소 매핑 이미지
그림4. (a) 도핑된 그래핀의 굽힘 성능 및 (b) 성능 지속성 평가
2016.01.07
조회수 11931
-
수학 통해 생체시계 유지 원리 60여년 만에 밝혀
김 재 경 교수
우리 대학 수리과학과 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 생체시계의 속도를 유지하는 원리를 발견했다.
이번 연구는 저명 학술지 셀(Cell) 자매지 몰라큘러 셀(Molecular Cell) 10월 1일자에 게재됐다.
우리 뇌에 위치한 생체시계는 밤 9시 경이 되면 멜라토닌 분비가 시작되게 하고 아침 7시 경에 멈추게 한다. 그로 인해 우리는 매일 일정한 시간에 잠을 자고 기상할 수 있다.
생체시계는 온도가 변화해도 빨라지거나 느려지지 않고 일정한 속도가 유지된다. 따라서 우리의 체온이 변화해도 규칙적인 삶을 살 수 있고, 이는 환경에 따라 체온이 변하는 변온 동물에게도 적용된다.
이러한 생체시계의 성질은 1954년에 발견됐지만 그 원리는 밝혀지지 않아 지난 60여 년간 생체시계 분야의 가장 큰 미스테리로 남아 있었다.
김 교수는 수학 모델링을 통해 이 원리를 밝혀냈고 모델링 결과는 듀크-싱가폴 국립 의과대학 데이빗 벌쉽(David Virshup) 교수 연구팀의 실험을 통해 검증돼 60년의 난제가 풀렸다.
생체시계에는 Period2라는 핵심 단백질이 존재한다. 이 단백질은 12시간 동안 증가하고 나머지 12시간 동안 분해되는 리듬을 평생 반복한다.
김 교수는 이 Period2 분해가 두 가지 방법으로 발생하는 것을 밝혔다. 하나는 매우 빠른 속도로 분해가 일어나는 것이고 나머지 하나는 매우 느린 속도로 분해가 이뤄지는 것이다. 그리고 두 가지 방법의 비율을 조절하는 것이 Period2에 존재하는 인산화 스위치(Phosphoryltion switch)이다.
인산화 스위치의 역할은 온도가 올라갔을 때 느리게 분해되는 Period2의 양을 늘림으로써 전체적인 분해 속도가 천천히 이뤄지게 만든다. 반대로 온도가 내려갔을 때는 빠르게 분해되는 비율을 늘려 생체시계의 속도를 조절하는 것이다.
결국 생체시계 속도 유지의 핵심은 인산화 스위치이고, 다른 생화학 반응이 빨라져도 생체시계의 속도 유지를 가능하게 만드는 요소인 것이다.
이번 연구에서 밝혀진 인산화 스위치는 생체시계의 속도를 조절할 수 있는 핵심 요소가 될 전망이다. 이 인산화 스위치를 조절할 수 있는 약을 개발한다면 잦은 해외 출장으로 인한 시차, 주야 교대 근무 등에 의한 생체 시계 고장 예방 등에 기여할 수 있을 것으로 기대된다.
김 교수는 “이번 성과를 통해 우리나라에선 아직은 부족한 생물학과 수학의 교류가 활발해지길 기대한다”며 “수학이 생물학의 난제들을 해결하는데 기여할 수 있음을 알리고 싶다”고 말했다.
이번 연구는 듀크-국립 싱가폴 의과 대학 데이빗 벌쉽 (David Virshup) 교수 연구팀, 미국 미시간 대학 (University of Michigan, Ann Arbor) 데니 폴저 (Daniel Forger) 교수와의 공동연구로 진행됐다.
□ 그림 설명
그림 1 . 이번 연구에서 밝혀진 인산화 스위치와 그 과정에서 사용된 수학 방정식의 일부
그림 2. Period2 단백질이 인산화 스위치에 의해 낮은 온도(30도) 에서 분해되는 속도가 더 빨라진다는 것을 보여주는 실험
2015.10.05
조회수 15308
-
단백질 나노튜브의 자기조립 분자스위치 발견
- 한국, 미국, 이스라엘 국제 공동 연구 성과 -
- 암 치료와 뇌 질환 메커니즘 단서 -
우리 학교 바이오및뇌공학과 최명철 교수와 송채연 연구교수는 미국
산타바바라 캘리포니아대학교, 이스라엘 히브리대학교와 공동으로 세포분열과 세포간 물질수송에 열쇠가 되는 단백질 나노튜브의 자기조립
구조를 제어하는 분자스위치를 발견했다.
연구 결과는 세계적 학술지 ‘네이처 머티리얼즈(Nature Materials, IF=35.7)’ 19일자에 게재됐다.
마이크로튜불(microtubule, 미세소관)은 사람의 몸속에서 세포분열·세포골격·세포간 물질수송 도구로 사용되는 튜브 형태의 단백질로 굵기가 25나노미터(1나노미터는 머리카락 굵기의 10만분의 1)에 불과하다.
대부분의 암 치료 약물은 마이크로튜불의 형성을 교란해 암세포 분열을
억제하는 것으로 작용 메커니즘이 알려져 있다. 알츠하이머병은 세포간 물질수송을 담당하는 마이크로튜불의 구조적 안정성이 떨어지면서
신경세포에서의 신호전달이 제대로 이루어지지 않아 생기는 대표적 뇌질환이다.
연구팀은 싱크로트론 X선 산란장치(synchrotron x-ray
scattering: 전자를 빛의 속도에 가깝게 가속시켜 강력한 X선을 발생시키는 장치)와 투과전자현미경을 이용해 단백질
나노튜브의 자기조립 구조를 서브나노미터(1나노미터 미만)의 정확도로 측정했다.
연구팀은 이번 연구를 분자 레벨에서 레고 블록을 쌓아 올리는 것에 비유해
가로×세로×폭이 각각 4×5×8 나노미터인 단백질 블록을 쌓아 올려 25나노미터 굵기의 튜브를 형성하는 메커니즘을 추적했다. 이
과정에서 연구팀은 레고 블록의 형태를 제어하는 분자스위치를 발견했다. 또 지금까지 보고된 바 없는 전혀 새로운 크기와 형태의
단백질 튜브 구조를 만들어 내는데 성공했다.
최명철 교수는 “인간의 생명 시스템은 고도의 자기조립 구조체를 형성해 복잡한 생물학적 기능을 하고 있지만 한편으로는 극히 단순한 물리학적 원리에 의해 제어가 가능하다는 새로운 패러다임을 제시했다”고 이 연구의 의의를 밝혔다.
또 “이번 연구는 암 치료와 뇌질환 메커니즘을 규명하고자하는 작은 발걸음이며 앞으로 바이오 나노튜브를 이용한 공학적 응용이 무궁무진할 것으로 기대한다”고 말했다.
이번 연구는 한국연구재단의 국제협력사업, 신진연구자지원사업, 학문후속세대양성사업, KAIST 고위험 고수익 프로젝트(High Risk High Return Project)의 지원으로 수행됐다.
2014.01.21
조회수 21541
-
멀티프로젝션 상영관 기술 세계 첫 개발
- KAIST, CJ CGV와 공동개발해 전국 40개 상영관에서 상용화 완료 -- “3D 입체영상 기술 대체해 창조경제 이바지 할 것” -
영화 시장에서 멀티프로젝션을 상영관에 도입하는 연구가 진행되고 있다.
우리 학교 문화기술(CT)대학원 노준용(42) 교수 연구팀이 CJ CGV와 공동으로 몰입감을 제공하는 멀티프로젝션 기술 ‘CGV 스크린X(이하 CGV ScreenX)’를 개발했다.
‘CGV ScreenX’는 극장 화면의 경계를 넘어 전면 스크린은 물론 좌우 벽면에 확장된 영상을 투사해 관객들의 시야를 꽉 채우기 때문에 마치 영화 속에 들어온 것과 같은 미래형 상영관이다.
이 기술은 기존 3D 입체영화와 비교하면 △전용 안경이 필요 없고 △어지러움 증을 유발하지 않으며 △옆면을 스크린으로 활용해 영화 몰입감을 극대화하는 것이 특징이다.
특히, 세계 최초로 개발한 이 기술은 할리우드를 비롯한 전 세계 극장에 역수출 할 수 있다는 장점이 있으며, 기존의 극장 구조를 그대로 이용하면서 프로젝터만 추가하면 되기 때문에 높은 투자비 없이 도입할 수 있다.
노 교수팀과 CJ CGV는 몰입형 영상 기술을 구현하기 위해 멀티프로젝션 기술, 컨텐츠 재구성 기술, 시스템관리 기술 등 핵심적인 기술을 개발했다. 멀티프로젝션 기술은 기존의 극장 옆면을 스크린으로 활용해 자연스러운 영상을 표현할 수 있도록 최적화됐으며, 기존의 광고나 영화 상영 시스템과 동기화 되도록 설계됐다.
이와 함께 서로 다른 구조를 가진 다양한 극장 환경에서 동일한 컨텐츠를 효과적으로 재생할 수 있는 컨텐츠 재구성 기술, 복잡한 시스템을 적은 인력으로도 효율적으로 다수의 극장에 설치·운영하는 시스템 관리 기술을 개발했다.
노준용 교수는 “컨텐츠의 제작, 시스템 설치, 상영 등 전 과정에서 상영 환경의 영향을 많이 받는 멀티프로젝션을 극장 환경 내에서 일반화 시킬 수 있는 기술을 개발한 것이 핵심”이라며 “기존에 한정된 환경에서만 선보여지던 값비싼 멀티프로젝션 기술의 플랫폼화, 대중화를 실현함으로써 이 분야 기술적 우위를 선점한 점에서 의미가 크다”고 이번 기술에 대한 의미를 설명했다.
최근에는 CGV ScreenX 기술을 바탕으로 국내 최고의 비주얼리스트로 불리는 김지운 감독이 영화 를 제작해 화제를 모으고 있다. 는 제18회 부산국제영화제 갈라 프레젠테이션 섹션에 공식 초청되어 뜨거운 관심을 모았으며, 영화제 기간 내내 영화업계 관계자들로부터 영화의 새로운 가능성을 보여준다는 평가를 받았다.
참고로 CGV ScreenX는 현재 CGV여의도 9개관 전관 포함, 전국 22개 극장의 40개 상영관에서 지난 1월부터 선보이고 있으며 연내 50개 상영관으로 확대될 예정이다.
1. CGV ScreenX 기술 요약
그림1. CGV ScreenX 기술 요약- 하드웨어(상영시스템), 소프트웨어(콘텐츠), 관리 기술을 포함한 기술 개발로 다양한 상영관에서의 동시운용을 실질적으로 가능하게 함
2. CGV ScreenX 주요 기술
① 표준 콘텐츠 제작
- 상영관의 통계적인 분석을 통하여 다수의 상영관을 커버할 수 있는 적절한 형태의 콘텐츠 템플릿 제공
② 상영관 특화영상 재구성
- 각 상영관의 구조를 고려하여 상영관에 적합한 형태로 표준 콘텐츠를 자동으로 재구성하여 배포하는 기술
③ 프로젝터별 보정 영상 생성
- 데이터베이스로부터 각 상영관에 설치된 다수의 프로젝터별 보정정보를 입력 받아 재구성 된 특화영상을 실시간으로 보정하여 재생하는 기술
- 상영관의 특성에 기반 한 설계를 통해 보정 과정의 많은 부분이 자동화
되어있어 기존의 방법에 비해 매우 간편함
④ 동기화 재생- 각각의 옆면 보조 프로젝터 뿐만 아니라, 중앙 프로젝터 및 광고, 영화 재생 서버와 실시간 동기화하여 재생하는 기술
2013.10.21
조회수 13756
-
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 -
서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다.
우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다.
연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다.
‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다.
연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다.
그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다.
연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다.
촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다.
개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다.
연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다.
김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다.
한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다.
그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도
그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지
그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 18345
-
호흡 분석해 질병 진단한다!
- 나노섬유 형상 120ppb급 당뇨병 진단센서 개발 -- 음주 측정하듯 후~ 불면 질병 진단할 수 있어 -
우리 학교 신소재공학과 김일두 교수 연구팀이 인간이 호흡하면서 배출하는 아세톤 가스를 분석해 당뇨병 여부를 파악할 수 있는 날숨진단센서를 개발했다.
연구 결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)’ 5월 20일자 표지논문으로 게재됐다.
인간이 숨을 쉬면서 내뿜는 아세톤, 톨루엔, 일산화질소 및 암모니아와 같은 휘발성 유기화합물 가스는 각각 당뇨병, 폐암, 천식 및 신장병의 생체표식인자(바이오마커)로 알려져 있다.
당뇨병의 경우 일반적으로 정상인은 900ppb(parts per billion), 당뇨환자는 1800ppb의 아세톤 가스를 날숨으로 내뿜는다. 따라서 날숨 속 아세톤 가스의 농도 차이를 정밀하게 분석하면 당뇨병을 조기에 진단할 수 있고 발병 후 관리를 쉽게 할 수 있다.
연구팀은 얇은 껍질이 겹겹이 둘러싸인 다공성 산화주석(SnO2) 센서소재에 백금 나노입자 촉매가 균일하게 도포된 1차원 나노섬유를 대량 제조하는 기술을 개발했다. 이 소재의 표면에 아세톤 가스가 흡착될 때 전기저항 값이 변화하는 120ppb급 아세톤 농도 검출용 센서에 적용해 날숨진단센서를 개발했다. 개발한 나노섬유 센서는 1000ppb급 아세톤 농도에서 소재의 저항 값이 최대 6배 증가해 당뇨병을 진단할 수 있음이 입증됐다.
이와 함께 7.6초의 매우 빠른 아세톤 센서 반응속도를 나타내 실시간 모니터링이 가능해져 상용화에 대한 기대를 높였으며, 전기방사 기술로 제조해 나노섬유형상을 쉽게 빠르게 대량생산할 수 있는 게 큰 장점이다.
연구팀이 개발한 날숨진단센서는 사람의 호흡가스 속에 포함된 다양한 휘발성 유기화합물의 농도를 정밀하게 분석할 수 있다. 따라서 당뇨병은 물론 향후 폐암, 신장병 등의 질병을 조기에 진단하는데 활용될 수 있을 것으로 기대된다.
김일두 교수는 이번 연구에 대해 “ppb급 농도의 날숨 휘발성 유기화합물 가스를 실시간으로 정밀하게 진단하는 나노섬유 센서를 당뇨병 또는 폐암 진단용 감지소재로 이용하면 다양한 질병을 조기에 검출하고 관리하는 일이 가능해질 것”이라고 말했다.
김 교수는 향후 다양한 촉매와 금속산화물 나노섬유의 조합을 통해 많은 종류의 날숨가스를 동시에 정확하게 진단하는 센서 어레이(array)를 개발해 상용화를 앞당길 계획이다.
미래창조과학부 글로벌프린티어사업 스마트 IT 융합시스템 연구단의 지원을 받은 이번 연구는 KAIST 신소재공학과 신정우 학부생(2월 졸업), 최선진 박사과정 학생, 박종욱 교수, 고려대학교 신소재공학과 이종흔 교수가 참여했다.
그림1. 날숨진단센서 어레이(우측)와 날숨진단센서 크기 비교(좌측 상단)
그림2. 나노섬유 센서들이 어레이로 구성된 당뇨진단 센서 이미지
그림3. 날숨 가스들을 분석하는 질병진단 분석기의 소형화 및 실시간 분석
그림4. 주석산화물 나노섬유를 이용한 당뇨진단 센서 이미지
2013.05.30
조회수 20667
-
그래핀 반도체 개발 난제 풀었다!
- 톱니모양 게이트 전극 이용해 그래핀 트랜지스터 스위칭 효율 극대화 -- 그래핀의 높은 전하 이동도 기반한 매우 빠른 논리 소자 구현 가능 -
그래핀을 이용해 속도가 매우 빠른 반도체 만들 수 있는 가능성이 높아졌다.
우리 학교 EEWS대학원 김형준 교수와 윌리엄 고다드 교수가 공동으로 그래핀을 이용한 트랜지스터의 온오프 스위칭 효율을 극대화 할 수 있는 방법을 제시했다.
연구 결과는 자연과학분야의 권위 있는 학술지 ‘미국립과학원회보(PNAS)’ 5월 13일자 온라인판으로 게재됐다.
그래핀은 전자 이동속도가 실리콘에 비해 100배 높기 때문에 반도체 소자로 응용했을 경우 컴퓨터의 속도가 매우 빨라질 수 있다. 이러한 장점 덕분에 그래핀은 기존의 실리콘을 대체할 차세대 반도체 소재로써 각광을 받고 있다.
그러나 그래핀의 원자구조 특성으로 인해 온오프 스위칭 효율이 매우 낮아 반도체 소재로 적용이 불가능했다.
최근 그래핀의 스위칭 특성을 높이기 위해 원자 구조를 변형시켜 밴드갭을 확보하는 방법이 제시됐지만 동시에 그래핀의 가장 큰 장점인 높은 전자 이동 속도가 급격히 낮아지는 문제점이 발생한다.
연구팀은 그래핀의 전자 이동 메커니즘이 빛의 전파 과정과 유사함에 착안했다.
김 교수 연구팀은 빛을 반사시키는 원리를 그래핀 전자에 적용, 게이트 전극을 톱니 모양으로 디자인했다. 이를 이용해 트랜지스터를 제작할 경우 스위칭 효율을 최대 100배 정도 높일 수 있음을 이론적으로 입증했다.
이 기술은 그래핀의 원자 구조를 변형시키지 않기 때문에 그래핀의 높은 전자이동 특성을 그대로 사용할 수 있다는 게 큰 특징이다.
이와 함께 기존 실리콘 기반 반도체와 유사한 구조를 갖고 있기 때문에 현재의 반도체 제작 공정을 그대로 응용할 수 있을 것으로 학계는 예상하고 있다.
김형준 교수는 이번 연구에 대해 “이론적으로 제안된 메커니즘을 실현한다면 그래핀을 활용한 연산 속도가 매우 빠른 차세대 컴퓨터 개발에 커다란 기여를 할 수 있을 것”이라고 말했다.
한편, 이번 연구는 KAIST EEWS 대학원 김형준 교수 및 윌리엄 고다드 교수와 고등과학원(KIAS) 손영우 교수, 그리고 미국 캘리포니아 공과대학(Caltech) 장민석 박사, 해리 애트워터 교수가 공동으로 연구를 수행했다.
그림1. 이번 연구에서 제안된 톱니 모양 게이트 구조를 가진 그래핀 트랜지스터 구조.
2013.05.22
조회수 16275
-
고효율 유기박막태양전지 개발
- 플라즈모닉 현상 이용해 유기박막태양전지 광효율 20% 향상 -- 효율 증가원인 규명해 응용분야 발전 기대 -
금속나노입자의 플라즈모닉 효과를 이용해 유기박막태양전지의 효율을 크게 높일 수 있는 기술이 개발됐다.
우리 학교 EEWS 대학원 이정용 교수 연구팀이 유기박막태양전지의 효율을 20% 증가시킬 수 있는 기술을 개발하고, 플라즈모닉 현상으로 인한 효율 증가의 원인을 처음으로 규명했다.
이 기술은 유기박막태양전지 제작 방법에 상관없이 추가로 효율을 20% 높일 수 있어 유기박막태양전지의 상용화를 크게 앞당길 수 있을 것으로 기대된다.
현재 양산중인 실리콘 반도체 기반 태양전지는 아직까지는 경제성이 낮다. 이에 따라 이를 대체하기위해 보다 저렴하게 제작할 수 있다고 알려진 유기박막태양전지의 효율을 높이기 위한 연구가 전 세계적으로 많이 수행되고 있다.
유기박막태양전지는 고분자 유기물 기반으로 제작된 태양전지로 가볍고, 유연하며, 저렴한 비용으로 제작이 가능해 차세대 태양전지로써 각광받고 있다. 그러나 빛을 흡수할 수 있는 층이 수십 나노미터(nm) 수준으로 매우 얇기 때문에 낮은 광변환 효율을 나타내 상용화에 어려움을 겪고 있었다.
이 교수 연구팀은 기존 유기박막태양전지에 10~100nm로 다양한 크기의 금속나노입자를 적용해 유기박막태양전지의 광흡수율을 증가시킴으로써 광변환 효율이 6.4%에서 7.6%로 약 20% 향상되는 결과를 얻었다. 또 7.9% 태양전지는 8.6%로 향상된 결과를 나타냈다.
금속나노입자를 유기박막태양전지에 적용해 효율이 증가하는 것을 규명한 연구가 이전에 수행된 적은 있지만 효율증가의 원인은 정확하게 밝혀지지 않았다.
연구팀은 유기박막태양전지에 도입된 금속나노입자의 플라즈모닉 빛 전방 산란 특성으로 인해 크기가 커질수록 효율이 증가하다가 약 70nm 크기에서 가장 큰 효율 향상을 보이는 것을 이론 및 실험적으로 증명했다.
이정용 교수는 이번 연구에 대해 “금속나노입자의 플라즈모닉 산란 특성을 조절한 광공학 설계의 가능성을 확인했다”며 “저렴한 용액 공정으로 나노입자를 합성 및 적용했기 때문에 대면적 태양전지 모듈 제작에도 쉽게 적용이 가능하다”고 말했다.
이 교수는 또한 “이번 연구로 밝혀낸 기술을 이용하면 유기박막태양전지의 상용화를 앞당기는데 큰 기여를 할 수 있을 것”이라고 밝혔다.
이정용 교수가 주도하고 백세웅 박사과정 학생이 참여한 이번 연구 성과는 세계적 학술지 네이처의 자매지인 ‘사이언티픽 리포트(Scientific Reports)’의 4월 25일자 온라인판에 게재됐다.
그림1. 기존 유기박막태양전지(검은 사각형)과 금속나노입자를 도입한 유기박막태양전지(빨강 원)의 전류밀도–전압 특성 곡선. 광변환 효율이 6.4% -> 7.6%, 7.8% -> 8.6%로 증가한 것을 알 수 있다.
그림2. 유기박막태양전지의 구조 및 도입된 약 70나노미터 수준의 은 나노입자의 전자현미경 사진.
2013.04.29
조회수 15268
-
단백질의 생체분자 인식 메커니즘 규명
- “단백질이 생체분자를 인식하고 결합하는 기작을 규명해 50년 동안의 수수께끼 풀었다” - - 생명현상의 이해와 효능이 높은 치료제 개발에 활용 가능성 기대 -
우리 학교 생명과학과 김학성 교수가 서울대학교 물리학과 홍성철 교수와 공동으로 단백질이 생체 내 분자를 인식하고 결합하는 메커니즘을 규명했다.
연구 결과는 생명과학분야의 권위지인 ‘네이처 케미컬 바이올로지(Nature Chemical Biology)’ 3월 18일자 온라인 판에 발표됐다.
단백질이 생체분자를 인식하고 결합하는 메카니즘을 밝혀낸 이번 연구로 인해 단백질의 조절기능을 보다 정확하게 파악할 수 있게 돼 앞으로 복잡한 생명현상을 이해하는데 핵심적인 역할을 할 것으로 기대된다.
이와 함께 단백질의 생체분자 인식은 각종 질병의 발생과도 밀접하게 연관돼 있어 향후 효능이 높은 치료제 개발에도 기여할 것으로 전망된다.
핵산, 단백질 등으로 알려진 생체분자는 생물체를 구성하거나 생물의 구조, 기능, 정보전달 등에도 꼭 필요한 물질이다.
특히, 단백질은 생체분자를 특이적으로 인지하고 결합하면서 모든 생명현상을 조절해 생명현상을 유지하는데 가장 중요한 역할을 한다. 단백질의 생체분자 인식에 오류가 발생하면 비정상적 현상으로 각종 질병이 유발되기도 한다.
연구팀은 단백질이 다양한 구조를 갖는데 구조적으로 가장 안정한 ‘열린 구조’와 상대적으로 불안정한 ‘부분 닫힘 구조’를 반복한다는 점에 주목했다.김 교수 연구팀은 단백질의 생체분자 인식 메커니즘을 설명하기 위해 생체분자가 결합하면서 단백질의 구조가 변하는 현상을 단 분자 수준에서 실시간으로 분석했다.
연구결과 생체분자는 가장 안정된 구조의 단백질을 주로 선호하며 결합과 동시에 단백질을 가장 에너지 수준이 낮은 안정된 구조로 변화시킨다는 사실을 세계 최초로 규명했다.
이와 함께 생체분자는 불안정한 ‘부분 닫힘 구조’에도 결합해 단백질 구조를 변화시킨다는 사실도 밝혀냈다.
연구팀의 이번 결과는 단백질의 생체분자 인식 메커니즘을 설명하기 위해 현재까지 제안된 모델인 단백질이 생체분자와 결합하면서 구조가 변한다는 ‘유도형 맞춤 모델’과 단백질의 다양한 구조 중에서 최적의 하나만을 선택적으로 인지한다는 ‘구조 선택 모델’에 대해 처음으로 실험을 통해 완벽히 입증해 낸 것으로 학계는 평가하고 있다.
김학성 교수는 이번 연구에 대해 “생체분자가 존재하는 경우 단백질의 구조 전환 속도가 변하는 현상을 단 분자 수준에서 분석해 단백질의 생체분자 인식 메카니즘을 처음으로 직접 증명한 것”이라며 “생물 교과서에 50년 동안 가설로만 인식되어지던 것을 세계 최초로 실험으로 증명해 풀리지 않을 것만 같았던 수수께끼를 풀어냈다”고 의의를 밝혔다.
그림1. 열린 구조와 부분적으로 열린 구조를 갖고 있는 단백질이 생체분자를 인지하고 결합하는 양상
그림2. 단백질의 다양한 구조 중에서 가장 안정한 상태인 열린 구조(open form)에 생체분자(ligand) 가우선적으로 결합해 더욱 안정한 완전히 닫힌 구조(closed form)로 변함. 또한 단백질의 불안정한 구조(partially closed form)에도 생체분자가 결합해 완전히 닫힌 구조로 변하게 함.
2013.03.21
조회수 14733
-
노화를 억제하면서 건강히 장수할 수 있도록 돕는 新물질 발견
김대수 교수
- PLoS One 발표,“암, 치매 및 파킨슨병 예방․치료에 한걸음 다가가”-
노화를 억제하면서 건강히 오래살 수 있도록 돕는 새로운 물질이 국내 연구진에 의해 발견됨에 따라, 건강한 삶을 오래 유지하고 싶은 인류의 꿈에 한걸음 다가서게 되었다.
우리 학교 생명과학과 김대수 교수(43세) 연구팀과 충남대 의과대학 및 산업체와의 공동연구로 진행된 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(전략연구)의 지원으로 수행되었고, 생물학 분야의 권위 있는 학술지인 ‘플로스 원(PLoS One)’ 최신호(10월 11일자)에 게재되었다.(논문명: Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice)
사람이 건강하게 오래 살 수 있는 효과적인 방법은 식사량을 줄이거나(小食) 달리기와 같은 유산소운동을 하는 것이다.
김대수 교수 연구팀은 우선 소식이나 유산소운동이 보조효소(NAD+*)를 증가시켜 세포의 노화를 억제한다는 점에 착안하였다. 연구팀은 천연화합물(베타-라파촌)로 효소(NQO1)를 활성화시키면, 적게 먹거나 별도의 운동을 하지 않아도 NAD+의 양이 증가됨을 규명하였다.
*) NAD+(니코틴아미드 디욱시뉴클레오타이드) : 이 보조효소가 세포내에서 증가하면 노화방지 효과가 있는 것으로 알려져 있음
**) 베타-라파촌(beta-lapachon) : 라파초 나무, 단삼 등 식물에 고농도로 함유된 천연화합물
또한 이미 노화가 진행된 생쥐들에게 베타-라파촌을 사료에 섞여 먹인 결과, 3개월이 경과되면 운동기능과 뇌기능이 모두 향상되어 건강하게 오래살 수 있음을 확인하였다. 특히 베타-라파촌은 동․서양에서 오랜 기간 사용해 온 약초의 주성분으로 만들어져, 머지않아 쉽게 상용화할 수 있는 것이 특징이다.
김대수 교수는 “지금까지 노화를 억제하는 약물들이 다수 개발되었지만, 사람에게 적용하는데 한계가 있었다. 우리 연구팀이 찾아낸 새로운 물질은 소식이나 운동으로 나타나는 효과를 그대로 모방하여 밝혀낸 것으로서, 향후 암, 치매 및 파킨슨병과 같은 노인성 질환을 예방하고 치료하는데 크게 기여할 것으로 기대한다”고 연구의의를 밝혔다.
2012.10.24
조회수 18057
-
그래핀의 기계적 특성 세계 최초로 규명
- KAIST 박정영·김용현 교수 연구팀, 그래핀의 마찰력 제어기술 개발과 나노수준 마찰력이론 정립 -
- 나노분야 권위지 나노 레터스 6월 21일자 온라인판 게재 -
우리 대학 연구진이 차세대 ‘꿈의 신소재’로 불리는 그래핀의 기계적 특성을 밝히고 제어하는 데 성공했다.
우리 학교 EEWS대학원 박정영 교수가 나노과학기술대학원 김용현 교수와 공동으로 하나의 원자층으로 이루어진 그래핀을 불소화해 마찰력과 접착력을 제어하는 데 성공했다고 2일 밝혔다.
원자단위에서 그래핀에 대한 마찰력의 원리를 규명하고 제어하는 데 성공한 것은 이번 연구가 세계에서 처음인데 앞으로 나노 크기의 로봇 구동부 등 아주 미세한 부분의 윤활에 응용될 수 있을 것으로 기대된다.
그래핀은 구리보다 100배 이상 전기가 잘 통하면서도 구부려도 전기전도성이 유지돼 실리콘 반도체를 대체할 차세대 전자소자는 물론 휘어지는 디스플레이, 입는 컴퓨터 등 다양한 분야에 활용될 수 있어 ‘꿈의 신소재’로 불린다.
또 강철보다 200배 이상 강한 물성을 갖고 있어 기계 분야에도 응용가능성이 매우 높은 반면 마찰력과 접착력 등과 같은 기계적 성질에 대해서는 몇 가지 미해결 과제로 남아있었는데 이번 연구를 통해 상당부분 해소될 수 있을 것으로 전망된다.
박 교수 연구팀은 그래핀을 플루오르화크세논(XeF₂) 가스에 넣고 열을 가해 하나의 원자층에 불소 결함을 갖고 있는 불소화된 개질 그래핀을 얻어냈다.
개질된 그래핀은 초고진공 원자력현미경에 넣고 마이크로 탐침을 사용, 시료의 표면을 스캔해 마찰력과 접착력 등의 역학적 특성을 측정했다.
연구팀은 실험 결과를 바탕으로 불소화된 그래핀은 기존보다 6배의 마찰력과 0.7배의 접착력을 나타내는 것을 밝혀냈다.
이와 함께 전기적인 측정을 통해 불소화를 확인하고 마찰력과 접착력의 원리를 분석해내 그래핀의 마찰력 변화에 대한 이론을 정립했다.
박정영 교수는 “꿈의 소재로 알려진 그래핀은 나노 스케일 기기의 구동부 윤활에 쓰일 수가 있어 이번 연구는 그래핀 기반의 작은 역학구동소자의 코팅 등의 응용을 가질 수 있다”고 말했다.
한편, 이번 연구 성과는 나노과학분야 권위 있는 학술지 ‘나노레터스(Nano Letters)" 6월 21일자 온라인판에 게재됐으며 교육과학기술부와 한국연구재단이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견 연구자지원사업의 지원을 받았다.
2012.07.02
조회수 16587