< AI대학원 최재식 교수 >
< (왼쪽부터) 한지연 박사과정, 최환일 박사과정, 정해동 박사과정, 알리 투씨(Ali Tousi) 박사과정 >
우리 대학 AI대학원 최재식 교수(설명가능 인공지능연구센터장) 연구팀이 심층 학습(이하 딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.
최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성모델의 발전에도 불구하고 최근 개발된 생성모델도 여전히 결함이 있는 결과를 만드는 경우가 많아, 국방, 의료, 제조 등 중요한 작업 및 학습에 생성모델을 활용하기는 어려운 점이 있었다.
최 교수 연구팀은 딥러닝 내부를 해석하는 설명가능 인공지능 기법을 활용해, 생성모델 내부에서 이미지 생성과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적어, 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다. 또한, 고안된 기술은 딥러닝 생성모델의 신뢰도를 향상해 생성모델이 중요 작업에도 적용될 수 있을 것으로 기대된다.
AI대학원의 알리 투씨(Ali Tousi), 정해동 연구원이 공동 제1 저자로 참여한 이번 연구는 `국제 컴퓨터 비전 및 패턴인식 학술대회 (IEEE Conference on Computer Vision and Pattern Recognition, CVPR)'에서 6월 23일 발표됐다. (논문명: Automatic Correction of Internal Units in Generative Neural Networks, CVPR 2021).
적대적 생성 신경망은 생성기와 구분기의 적대적 관계를 이용한 모델로서, 생성 이미지의 품질이 높고 다양성이 높아, 이미지 생성뿐만 아니라 다양한 분야(예, 시계열 데이터 생성)에서 주목받고 있다.
딥러닝 생성모델의 성능을 향상하기 위해서 적대적 생성기법 및 생성기의 새로운 구조 설계 혹은 학습 전략의 세분화와 같은 연구가 활발히 진행되고 있다. 그러나 최신 적대적 생성 신경망 모델은 여전히 시각적 결함이 포함된 이미지를 생성하고 있으며, 재학습을 통해서 이를 해결하기에는 오류 수리를 보장할 수 없으며, 많은 학습 시간과 비용을 요구하게 된다. 이렇게 규모가 큰 최신 적대적 생성 신경망 모델의 일부 오류를 해결하기 위해 모델 전체를 재학습하는 것은 적합하지 않다.
연구팀은 문제 해결을 위해 생성 오류를 유도하는 딥러닝 내부의 유닛(뉴런)을 찾아 제거하는 알고리즘을 개발했다. 알고리즘은 딥러닝 모델의 시각적 결함의 위치를 파악하고, 딥러닝 모델 내 여러 계층에 존재하는 오류를 유발한 유닛을 찾아서 활성화하지 못하도록 하여 결함이 발생하지 않도록 했다.
연구팀은 설명가능 인공지능 기술을 활용해 시각적 결함이 생성된 이미지의 어느 부분에 분포하는지, 또 딥러닝 내부의 어떤 유닛이 결함의 생성에 관여하는지 찾을 수 있었다. 개발된 기술은 딥러닝 생성모델의 오류를 수리할 수 있고, 생성모델의 구조에 상관없이 적용할 수 있다.
< 그림 1. 오류를 유발하는 내부 유닛과 계층별 유닛 제거에 대한 모식도 >
< 그림 2. 시각적 결함이 포함된 생성 이미지에 대한 수리 결과 >
연구팀은 전통적인 구조를 가지는 `진행형 생성모델(Progressive GAN, PGGAN)'에서 개발 기술이 효과적으로 생성 오류를 수리할 수 있음을 확인했다. 수리 성능은 매사추세츠 공과대학(MIT)이 보유한 수리 기술 대비 FID 점수가 10점 정도 감소했으며, 사용자 평가에서 시험 이미지 그룹의 약 50%가 결함이 제거됐고, 약 90%에서 품질이 개선됐다는 결과를 얻었다. 나아가 특이 구조를 가지는 `StyleGAN2'와 `U-net GAN'에서도 생성 오류 수리가 가능함을 보임으로써 개발 기술의 일반성과 확장 가능성을 보였다.
연구팀이 개발한 생성모델의 오류 제거 기술은 다양한 이미지 외에도 다양한 생성모델에 적용돼 모델의 결과물에 대한 신뢰성을 높일 것으로 기대된다.
공동 제1 저자인 알리 투씨와 정해동 연구원은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다ˮ라며 이는 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과다ˮ라고 말했다.
한편 이번 연구는 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받은 혁신성장동력프로젝트 설명가능인공지능 및 한국과학기술원 인공지능 대학원 프로그램과제를 통해서 수행됐다.
원자력 에너지 활용에 있어 방사성 폐기물 관리는 핵심적인 과제 중 하나다. 특히 방사성 ‘아이오딘(요오드)’는 반감기가 길고(I-129의 경우 1,570만 년), 이동성 및 생체 유독성이 높아 환경 및 인체에 심각한 위험을 초래할 수 있다. 한국 연구진이 인공지능을 활용해 아이오딘을 제거할 원자력 환경 정화용 신소재 발굴에 성공했다. 연구팀은 향후 방사성 오염 흡착용 분말부터 오염수 처리 필터까지 다양한 산학협력을 통해 상용화를 추진할 예정이다. 우리 대학 원자력및양자공학과 류호진 교수 연구팀이 한국화학연구원 디지털화학연구센터 노주환 박사가 협력하여, 인공지능을 활용해 방사성 오염 물질이 될 수 있는 아이오딘을 효과적으로 제거하는 신소재를 발굴하는 기술을 개발했다고 2일 밝혔다. 최근 보고에 따르면 방사능 오염 물질인 아이오딘이 수용액 환경에서 아이오딘산염(IO3-) 형태로 존재하는 것으로 밝혀졌으나, 기존의 은 기반 흡착제는 이에 대해 낮은 화학적
2025-07-02우리 대학 기계공학과 윤국진 교수 연구팀의 논문 12편이 세계 최고 권위 컴퓨터비전 국제 학술 대회 중 하나인 IEEE/CVF International Conference on Computer Vision 2025(ICCV 2025)에 채택되어, 연구팀의 독보적인 연구 역량을 다시 한번 국제적으로 인정받았다. ICCV는 CVPR, ECCV와 함께 컴퓨터비전 및 인공지능 분야에서 가장 영향력 있는 국제 학술대회 중 하나로, 1987년부터 격년으로 개최되어 왔다. 이번 ICCV 2025에는 총 11,152편의 논문이 제출되었고, 이 중 2,698편이 채택되어 약 24.19%의 낮은 채택률을 기록하였다. 학술대회에 제출할 수 있는 논문 편수에 대한 제한이 있음에도 불구하고 단일 연구실에서 12편의 논문이 동시 채택되는 것은 매우 드문 성과다. 윤국진 교수 연구팀은 학습 기반의 시각 지능 구현을 목표로 연구를 진행하고 있으며, 이번에 발표된 12편의 논문들은 3D 객체 탐지 및
2025-06-30기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해
2025-06-30새 정부 출범과 함께 AI 및 과학기술 분야에 대한 사회적 관심이 크게 높아진 가운데, 우리 대학은 과학기술을 기반으로 국가 혁신을 주도하고 인류의 문제 해결에 앞장서는‘AI 중심 가치 창출형 과학기술특성화대학’으로 거듭날 계획임을 24일 밝혔다. 대한민국이 기술 주도형 사회로 대전환을 맞이하는 시점에서 KAIST는 지난 반세기 동안 국가 발전사의 '스타터킷(Starter Kit)' 역할을 수행해온 경험을 토대로, 단순한 교육·연구기관을 넘어 새로운 사회적 가치를 창출하는 글로벌 혁신 허브로의 도약을 준비하고 있다. 특히 우리 대학은 대한민국이 인공지능 주요 3개국(G3)에 도약할 수 있도록 전 국민이 소외 없이 AI를 활용할 수 있는 'AI 기본사회' 실현을 비전으로 제시했다. 이를 위해 KAIST가 주관하는 대한민국을 대표하는 ‘국가AI연구거점’사업(책임자 김기응)을 통해 AI 기술을 기반으로 산업 경쟁력을 제고하고 사회
2025-06-24최근 텍스트 기반 이미지 생성 모델은 자연어로 제공된 설명만으로도 고해상도·고품질 이미지를 자동 생성할 수 있다. 하지만, 대표적인 예인 스테이블 디퓨전(Stable Diffusion) 모델에서 ‘창의적인’이라는 텍스트를 입력했을 경우, 창의적인 이미지 생성은 아직은 제한적인 수준이다. KAIST 연구진이 스테이블 디퓨전(Stable Diffusion) 등 텍스트 기반 이미지 생성 모델에 별도 학습 없이 창의성을 강화할 수 있는 기술을 개발해, 예컨대 뻔하지 않은 창의적인 의자 디자인도 인공지능이 스스로 그려낼 수 있게 됐다. 우리 대학 김재철AI대학원 최재식 교수 연구팀이 네이버(NAVER) AI Lab과 공동 연구를 통해, 추가적 학습 없이 인공지능(AI) 생성 모델의 창의적 생성을 강화하는 기술을 개발했다. 최 교수 연구팀은 텍스트 기반 이미지 생성 모델의 내부 특징 맵을 증폭해 창의적 생성을 강화하는 기술을 개발했다. 또한, 모
2025-06-19