-
백세범 교수팀, 고등 인지 기능의 자발적 발생 원리 규명
우리 대학 바이오및뇌공학과 백세범 교수 연구팀이 학습 과정을 전혀 거치지 않은 신경망에서 고등 시각 인지 기능이 자발적으로 발생할 수 있음을 보였다고 4일 밝혔다.
이번 연구 결과는 신경망에서 상위 인지 기능을 발생시키기 위해서는 반드시 충분한 데이터 학습이 필요하다는 기존의 상식과 완전히 상반되는 것으로, 현재 통용되고 있는 인공지능의 구현 방식에 대한 근본적인 의문을 던진다.
또한 연구팀의 결과는 다양한 생물 종의 뇌에서 관측되는 선천적인 인지 기능의 발생에 대한 설명 가능한 이론을 제시할 뿐만 아니라, 뇌신경과학 연구의 가장 근본적인 질문 중 하나인 `인지 지능의 발생 및 진화'의 원리에 대한 기존과는 전혀 다른 새로운 시각을 제시한다.
연구팀은 뇌의 시각 신경망을 모사한 인공신경망 시뮬레이션을 통해, 모든 연결 가중치가 무작위로 정해지도록 초기화된 신경망이 전혀 학습을 거치지 않은 상태에서도 특정 숫자에 선택적으로 반응하는 `수량 선택성'을 자발적으로 생성함을 발견했다. 또한 이렇게 자발적으로 발생한 수량 선택적 유닛은 실제 동물의 뇌에서 발견되는 수량 선택적 뉴런들이 보이는 *`베버-페히너 법칙' 등의 주요 특성을 동일하게 따름을 확인했다.
☞ 베버-페히너 법칙(Webber-Fechner law): 자극과 감각 사이의 상대적 관계를 나타내는 심리물리학적 법칙. 인지 가능한 자극 강도 변화량은 현재 강도에 지수적으로 비례한다는 것으로 이는 인지생물학에서 기본적인 원리로 알려져 있다.
우리 대학 물리학과 김광수 석박사통합과정, 바이오및뇌공학과 장재선 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스(Science)'의 온라인 자매지 `사이언스 어드밴시스(Science Advances)' 1월 1일 字에 게재됐다. (논문명 : Visual number sense in untrained deep neural networks)
신경망에서 인지 지능의 발생에 관한 연구는 뇌인지과학과 인공지능 분야 모두에서 핵심적인 연구 주제 중 하나다. 흥미롭게도 인지 기능을 발생시키기 위해서 일반적으로 많은 양의 데이터 입력을 통한 학습 과정을 거쳐야 하는 인공신경망과 달리 동물의 뇌는 태어난 직후부터 다양한 인지 기능을 수행하는 `선천적' 인지 지능을 가지고 있는 것이 관찰돼왔다.
이러한 차이점은 생물학적 지능의 발생과 진화의 원리를 이해하는 데 결정적인 역할을 하고, 현재 개발된 인공지능과의 차이점을 보여주는 핵심적인 단서를 제공할 것으로 기대되고 있으나 이러한 인지 기능이 어떻게 자발적으로 발생하는지는 아직 명확하게 알려진 바가 없었다.
이에 연구팀은 학습을 거치지 않은 신경망의 초기 상태에서 나타나는 단순한 물리적 구조 특성이 다양한 인지 기능을 발생시킬 수 있을 것이라 예상했다. 이를 확인하기 위해 수행한 심층신경망 시뮬레이션 연구를 통해 모든 연결 가중치가 무작위로 초기화된 신경망에서도 `계층 구조'와 무작위적 피드 포워드 연결만 형성된다면 특정 수량에 선택적으로 강한 반응을 보이는 신경망 유닛들이 자발적으로 생성됨을 확인했다.
이러한 신경망 유닛들은 실제 뇌에서 발견되는 수량 선택적 신경세포의 주요한 성질들과 유사한 특성을 보였다. 이 결과는 생물학적 뇌에서 생애 초기에 발견되는 선천적인 숫자 선택성 역시 동일한 원리에 의해 발생할 가능성을 시사한다.
이러한 결과는 기초적인 인지 기능이 신경망의 초기 구조가 갖춰진 시점에 이미 존재하고 이후 다양한 학습을 통해 조절될 수 있음을 보여주며, 뇌신경과학의 중요한 화두 중 하나인 `지능의 선천적 혹은 후천적(nature vs. nurture) 형성'에 관해 매우 중요한 단서를 제공하는 발견으로 평가된다.
연구팀의 결과는 학습과 훈련에 의존해 대부분의 뇌 기능이 발생한다는 기존의 시각을 탈피해, 선천적이고 자발적으로 발생하는 뇌 기능에 대한 보다 심도 있는 연구가 필요하다는 사실을 시사한다. 한편으로 현재의 인공지능 구현 기법들과 완전히 다른 인공지능 구현 원리를 제시할 수 있는 생물학적 뇌 기반 이론을 제시한다.
백세범 교수는 "뇌 신경망 연구를 통해 얻은 아이디어를 인공신경망 연구에 적용하고, 그 결과를 다시 뇌과학적 원리를 발견하는 데 사용해 중요한 통찰을 가능하게 한 의미있는 연구ˮ라며 "뇌신경과학과 뇌공학 분야 모두에서 가장 중요한 질문 중 하나라고 할 수 있는 인지 지능의 기원에 대한 이해의 전환점을 가져올 것으로 기대된다ˮ라고 언급했다.
한편 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2021.01.04
조회수 62196
-
인공지능 기술을 이용한 유전자 전사인자 예측 시스템 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 미국 캘리포니아대학교 샌디에이고캠퍼스(UCSD) 생명공학과 버나드 팔슨(Bernhard Palsson) 교수 공동연구팀이 인공지능을 이용해 단백질 서열로부터 *전사인자를 예측하는 시스템인 '딥티팩터(DeepTFactor)'를 개발했다고 29일 밝혔다. 이번 연구는 국제학술지인 '미국국립과학원회보(PNAS)'에 12월 28일 字 게재됐다. (논문명: DeepTFactor: A deep learning-based tool for the prediction of transcription factors)
※ 전사인자 (transcription factor) : 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질. 특정 DNA 서열에 특이적으로 결합해 유전자의 전사를 조절한다.
※ 저자 정보 : 김기배(한국과학기술원, 제1 저자), 예 가오(Ye Gao) (UCSD, 제2 저자), 버나드 팔슨(Bernhard Palsson) (UCSD, 제3 저자), 이상엽(교신저자) 포함 총 4명
전사인자는 특정한 DNA 서열에 특이적으로 결합해 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질이다. 전사인자로 인한 유전자 전사를 분석함으로써 유기체가 유전적 또는 환경적 변화에 어떻게 반응해 유전자의 발현을 제어하는지 이해할 수 있다. 이러한 점에서 유기체의 전사인자를 찾는 것은 유기체의 전사 조절 시스템 분석을 위한 첫 단계라고 할 수 있다.
지금까지 새로운 전사인자를 찾기 위해서는 이미 알려진 전사인자와의 상동성(유사한 성질)을 분석하거나, 기계학습(머신러닝)과 같은 데이터 기반의 접근 방식을 이용했다. 기존의 기계학습 모델을 이용하기 위해서는 분자의 물리 화학적 특성을 계산하거나, 생물학적 서열의 상동성을 분석하는 등, 해결하고자 하는 문제에 대한 전문 지식에 의존해 모델의 입력값으로 사용할 특징을 찾아내는 과정이 필요하다.
한편, 심층 학습(딥러닝)은 문제 해결을 위한 잠재적인 특징을 내재적으로 학습할 수 있기에 최근 다양한 생물학 분야에서 활용되고 있다. 하지만, 심층 학습을 이용한 예측 시스템의 경우 시스템 내부의 복잡한 연산 때문에 추론 과정을 직접 확인할 수 없는 `블랙박스(black box)'라는 특징을 가지고 있다.
공동연구팀은 심층 학습 기법을 이용해 주어진 단백질 서열이 전사인자인지 예측할 수 있는 시스템인 딥티팩터(DeepTFactor)를 개발했다. 딥티팩터는 단백질 서열로부터 전사인자를 예측하기 위해 세 개의 병렬적인 합성곱 신경망(convolutional neural network)을 이용한다. 공동연구팀은 딥티팩터를 이용해 대장균(Escherichia coli K-12 MG1655)의 전사인자 332개를 예측했으며, 그중 3개의 전사인자의 게놈 전체 결합 위치(genome-wide binding site)를 실험으로 확인함으로써 딥티팩터의 성능을 검증했다.
공동연구팀은 나아가 딥티팩터의 추론 과정을 이해하기 위해 특징 지도 (saliency map) 기반의 심층 학습 모델 해석 방법론을 사용했다. 이를 통해 딥티팩터의 학습 과정에서 전사인자의 DNA의 결합 영역에 대한 정보가 명시적으로 주어지지 않았지만, 내재적으로 이를 학습해 예측에 활용한다는 사실을 확인했다.
연구팀 관계자에 따르면, 특정 생물군의 단백질 서열만을 위해 개발됐던 이전 예측 방법론들과 달리, 딥티팩터는 모든 생물군의 단백질 서열에서 우수한 성능을 보여 다양한 유기체의 전사 시스템 분석에 활용 가능할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구에서 개발한 딥티팩터를 이용해서 새롭게 발견되는 단백질 서열과 아직 특성화되지 않은 수많은 단백질 서열을 높은 처리 능력으로 분석할 수 있게 됐다”며 “이는 유기체의 전자 조절 네트워크 분석을 위한 기초 기술로써 활용 가능할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 지원을 받아 수행됐다.
2020.12.30
조회수 56340
-
세계 최대 규모의 3차원 암 게놈 지도 구축
우리 대학 생명과학과 정인경 교수가 한국생명공학연구원 국가생명연구자원정보센터(KOBIC) 이병욱 박사 연구팀과 공동연구를 통해 전 세계 최대 규모의 3차원 암 게놈 지도 데이터베이스를 구축해 공개했다고 28일 밝혔다. (데이터베이스 주소: 3div.kr)
공동연구팀은 인체 정상 조직과 암 조직, 그리고 다양한 세포주 대상 3차원 게놈 지도를 분석 및 데이터베이스화 해, 약 400여 종 이상의 3차원 인간 게놈 지도를 구축했으며, 이를 통해 암세포에서 빈번하게 발생하는 대규모 유전체 구조 변이(structural variation)의 기능을 해독할 수 있는 신규 전략을 제시했다.
정인경 교수, 이병욱 박사가 공동 교신 저자로 참여한 이번 연구 결과는 국제 학술지 `핵산 연구(Nucleic Acid Research)' 저널 11월 27일 字 온라인판에 게재됐다. (논문명 : 3DIV update for 2021: a comprehensive resource of 3D genome and 3D cancer genome)
현재까지 많은 연구를 통해 암세포 유전체에서 발생하는 돌연변이를 규명해 암의 발병 기전을 이해하려는 시도가 있었다. 최근에는 유전자에서 발생하는 점 돌연변이뿐 아니라 대규모 구조 변이에 관한 연구가 활발하게 이루어지고 있으며, 이들을 활용한 신규 암세포의 특이적 유전자 발현 조절 기전 규명의 중요성이 제시되고 있다.
하지만, 대다수의 구조 변이는 DNA가 단백질을 생성하지 않는 비 전사 지역에 존재해, 1차원적 게놈 서열 분석만으로 이들의 기능을 규명하는 데는 한계가 있었다.
한편 지난 10년간 비약적으로 발전한 3차원 게놈 구조 연구는 비 전사 지역에 존재하는 대규모 구조 변이로 인해 생성되거나 소실되는 염색질 고리 구조(chromatin loop)를 3차원 게놈 구조 해독을 통해 규명하면 유전자 조절 기능을 해독할 수 있다는 모델을 제시하고 있다.
이에 정인경 교수 연구팀은 지금까지 공개된 모든 암 유전체의 3차원 게놈 지도를 확보해 전 세계 최대 규모의 3차원 암 유전체 지도를 작성했다. 그리고 대규모 구조 변이와 3차원 게놈 지도를 연결할 수 있는 분석 도구들을 개발했다. 그 결과 연구팀은 대규모 암 유전체 구조 변이에 따른 3차원 게놈 구조의 변화 그리고 이들의 표적 유전자를 규명할 수 있었다.
공동 교신 저자 이병욱 박사는 "최근 세포 내 3차원 게놈 구조 변화가 다양한 질병, 특히 암의 원인이 된다는 것이 밝혀지고 있는데, 이번 연구를 통해 이를 연구할 수 있는 도구들을 세계 최초로 개발했다ˮ라며 "이번 연구 결과를 활용하면 암의 발병 원리를 이해하고 더 나아가 항암제 개발에도 중요한 정보를 제공할 것으로 기대된다ˮ라고 말했다.
정인경 교수는 "암에서 빈번하게 발생하는 대규모 구조 변이의 기능을 3차원 게놈 구조 해독을 통해 정밀하게 규명 가능함을 보여줬다ˮ라며 "이번 연구 결과는 아직 해독이 완벽하게 이루어지고 있지 않은 암 유전체를 정밀하게 해독하는 기술을 한 단계 더 발전시키는 계기가 될 것이다”라고 말했다.
이번 연구는 한국연구재단 기반산업화 인프라 그리고 서경배과학재단의 지원을 통해 수행됐다.
2020.12.28
조회수 51197
-
물과 고온·고습 환경에서도 안정적인 페로브스카이트 나노 입자 수지 개발
우리 대학 신소재공학과 배병수 교수 연구팀이 서울대학교 재료공학부 이태우 교수팀과 공동연구를 통해 물과 고온‧고습 환경 및 각종 화학물질에서도 매우 안정된 차세대 디스플레이용 색 변환 소재인 *페로브스카이트 나노 입자 발광 수지를 개발했다고 24일 밝혔다.
☞ 페로브스카이트(perovskite): 1839년 러시아 우랄산맥에서 새로 발견된 광물로 차세대 태양전지의 소재로 꼽히나 수분에 취약한 구조로 알려져 있음.
공동연구팀은 이번 연구를 통해 그동안 페로브스카이트 나노 입자의 가장 큰 난제였던 수분, 고온 및 다양한 화학적 환경에서 안정성을 담보할 수 없었던 기존 약점을 크게 개선했다. 따라서 배 교수팀의 연구는 페로브스카이트 나노 입자를 차세대 초고화질 디스플레이의 색 변환 소재로 활용할 수 있는 길을 연 것으로 학계는 평가하고 있다.
이번 연구 결과는 재료 분야 국제학술지 어드밴스드 머터리얼즈(Advanced Materials)에 12월 4일 字 온라인으로 게재됐으며 연구의 우수성을 인정받아 내부 표지논문(Inside Cover Article)으로도 선정됐다.(논문명: Extremely Stable Luminescent Crosslinked Perovskite Nanoparticles under Harsh Environments over 1.5 Years)
페로브스카이트는 유기 원소, 금속 그리고 할로겐원소로 구성돼있는 특별한 구조를 지닌 소재로 다양한 광전자소자와 태양전지 등에 사용되고 있다. 또 원료의 값이 싸며, 발광 효율이 높은 게 특징이다.
특히 매우 좁은 발광 파장 폭 때문에 현재 디스플레이에 사용되고 있는 퀀텀닷이나 유기 발광체와 대비해 폭넓은 색 재현율을 구현할 수 있어 기존 퀀텀닷을 대체하는 차세대 디스플레이의 색 변환 소재로 주목받고 있다. 이와 함께 페로브스카이트 발광체는 현존하는 발광체 중에서 유일하게 새로운 디스플레이의 색 표준인 REC. 2020을 만족하는 소재다.
다만 빛이나 수분 및 고온에 취약해서 대기 중에서 짧은 시간 내에 성능이 급격히 떨어지는 문제 때문에 실제 사용은 거의 불가능하다. 이런 문제해결을 위해 그동안 학계나 기업들은 페로브스카이트 물질을 유기 결합체가 둘러싸고 있는 나노 단위의 입자의 형태로(1 나노미터는 10억분의 1 미터) 제조해 수분이나 산소의 침투를 막거나, 나노 입자에 무기물 코팅, 복합구조 제작 및 고분자 수지로 제작하는 등 다양한 연구를 진행해왔다.
하지만 대부분 외부로부터 수분을 물리적으로 막는 방법들이며 제조공정이 매우 복잡하고 대기에서 매우 제한적인 안정성을 나타낸다. 게다가 강산, 강염기, 극성용매 및 고온 고습 환경에서 안정성을 담보하는 페로브스카이트 나노 입자 색 변환 소재는 지금까지 개발된 적이 없다.
공동연구팀은 우선 자체 개발한 솔-젤(Sol-Gel) 합성공정을 이용해 실록산(실리콘 기반의 고분자) 분자구조와 페로브스카이트 나노 입자를 한꺼번에 둘러싸는 캡슐화된 복합체 수지를 개발했다.
연구팀은 이 기술로 열에 강한 실록산 분자구조에 의해 페로브스카이트 나노 입자를 화학적으로 보호하고 별도의 차단층 없이도 페로브스카이트 나노 입자의 발광 안정성을 크게 향상하는 데 성공했다. 연구팀은 새로운 기술을 퀀텀닷에도 똑같이 적용하는 한편 고온‧고습 환경에도 안정된 실록산 캡슐화 퀀텀닷 수지를 개발하는 데 성공했다.
실록산으로 캡슐화된 페로브스카이트 나노 입자 수지는 제조과정 중 자외선 경화에 의해 발광 효율이 낮게 나타났지만 이후 다양한 화학적 환경 과 고온‧고습 환경(85℃/85%)에서도 원래의 높은 값(> 70%)으로 회복되는 특이한 현상을 보였다. 또 물속에서도 600일 이상 유지되는 등 매우 우수한 발광 안정성을 보였다. 연구팀은 화학적 캡슐화 작업과 함께 페로브스카이트 나노 입자 복합체가 물에 의해 안정화되는 현상을 광‧물리학적으로 분석했으며, 이론적으로 그 메커니즘을 규명했다.
공동연구팀은 마지막으로 디스플레이의 색 변환 층으로 성능을 확인한 결과 양자효율 및 색 재현율이 기존 퀀텀닷 대비 향상됐음을 밝혔다. 또한, 실록산 캡슐화를 통해 페로브스카이트 나노 입자 내의 납 (Pb)의 독성을 막아줌으로써 생체친화적인 특성도 나타내 상용화를 추진하는데도 문제가 없음을 확인했다.
이번 연구를 주도한 신소재공학과 배병수 교수는 "페로브스카이트 나노 입자가 차세대 디스플레이 색 표준을 맞출 수 있는 유일한 발광체이자 가격도 싼 편이지만 수분에 취약하다는 약점 때문에 대기 중에서 사용할 수 없어 디스플레이 색 변환 소재로 상용화하는 데는 매우 회의적이었다ˮ고 말했다.
배 교수는 이어 "연구팀이 개발한 신기술은 페로브스카이트 나노 입자가 기존 퀀텀닷을 대체하는 새로운 디스플레이 색 변환 소재로 활용하는 연구개발을 촉진하는 계기가 될 것이며 결과적으로 조기 상용화도 기대된다ˮ고 말했다.
한편 이번 연구는 한국연구재단의 선도연구센터 웨어러블 플랫폼 소재 기술센터와 리더연구과제 (창의연구) 지원사업의 지원을 받아 수행됐다.
2020.12.28
조회수 52835
-
초소형·저전력·저잡음 브릴루앙 레이저 구현 성공
우리 대학 물리학과 이한석, 이용희 교수 공동연구팀(초세대협업연구실)이 경북대학교 최무한 교수, 호주국립대학교 최덕용 교수 연구팀과 공동연구를 통해 초소형·저전력·저잡음 *브릴루앙 레이저를 구현하는 데 성공했다고 23일 밝혔다. 주파수의 흔들림이 거의 없는 초소형·저전력·저잡음 광원은 차세대 초정밀 광센서 구성에 필요한 핵심 소자다.
☞ 브릴루앙 레이저(Brillouin laser): *브릴루앙 산란에 기반해 레이저 빛을 생성 증폭하며, 따라서 레이저의 매질이 브릴루앙 산란을 쉽게 일으킬수록 더 작은 에너지로도 작동할 수 있다. 출력 레이저 빛은 입력된 펌프 빛보다 주파수의 흔들림이 작고 매우 낮은 잡음을 갖는다.
☞ 브릴루앙 산란(Brillouin scattering): 빛이 매질과 상호작용을 통해 음파(acoustic phonon)를 생성하고 산란되는 현상. 산란된 빛은 음파의 에너지에 대응되는 주파수 감소를 겪으며, 유도 방출(stimulated emission) 즉 동일한 특성의 빛을 복제하는 것이 가능해 레이저 구성에 이용될 수 있다.
공동연구팀은 기존에 주로 사용돼온 물질보다 브릴루앙 산란 현상이 수백 배 잘 일어나는 칼코겐화합물 유리를 기반으로 브릴루앙 레이저를 개발함으로써 성능을 극대화했다. 칼코겐화합물 유리는 화학적 불안정성으로 인해 칩 상에서 식각을 통한 성형이 어렵다는 근본적인 약점이 있지만 연구팀은 증착 과정에서 자발적으로 광소자가 구성되는 새로운 제작 기법을 개발해 이런 문제를 해결했다.
연구팀이 개발한 제작 기법은 겨울철 지붕 위에 쌓인 눈의 형태가 지붕의 형태에 의해 정해지므로 눈을 직접 만지지 않고서도 지붕의 형태만을 조절해 원하는 눈의 형태를 얻는 것에 비유할 수 있다. 즉, 현재 반도체 공정 기술로 가공하기 쉬운 산화규소를 이용해 바닥구조를 적절히 형성하면, 그 위에 칼코겐화합물 유리를 증착하는 것만으로도 우수한 성능의 광소자가 자발적으로 형성되는 현상을 최초로 입증한 것이다.
공동연구팀은 자체 개발한 이 제작 기법을 활용해서 칼코겐화합물 유리 기반 고성능 브릴루앙 레이저를 반도체 칩 상에 초소형 광소자의 형태로 구현하는 데 성공했다. 또 기존 기록보다 100배 이상 낮은 펌프 에너지로도 레이저 구동이 가능함을 밝혔다.
공동연구팀 관계자는 "소형화 및 저전력 구동은 상용화를 위한 필수적인 요소ˮ라면서 "공동연구팀의 브릴루앙 레이저 광원 개발은 자율주행에 필요한 거리뿐만 아니라 회전관성 센서의 감도를 획기적으로 개선하는 등 차세대 광센서 개발에 널리 활용될 것으로 기대가 크다ˮ고 말했다.
그는 또 "연구 과정에서 개발한 신공정 기법은 지금껏 활용할 수 없었던 다양한 물질을 미세 광학소자 분야에 도입, 가능케 했다는 점에서 매우 의미가 클 뿐 아니라 향후 널리 활용될 가능성이 큰 원천기술이다ˮ라고 의미를 부여했다.
이번 연구를 주도한 교신저자 이한석 교수는 "칼코겐화합물 유리는 다양한 분자의 흡수선이 존재하는 중적외선 대역에도 적용 가능해 분자 분광에 기반한 환경감시 및 헬스케어 분야까지 그 응용범위를 넓힐 수 있을 것ˮ이라고 내다봤다. 또 다른 교신저자인 최덕용 교수는 "연구 과정에서 개발된 공정기법은 다양한 물질의 이종 결합(hybrid integration)을 가능하게 해 미래 양자 인터넷의 핵심 소자인 고효율 양자 광원 및 양자 메모리 분야에도 응용될 수 있다ˮ고 강조했다.
우리 대학 물리학과 김대곤 박사과정 학생과 한상윤 박사후연구원(現 대구경북과학기술원 교수)이 공동 제1 저자로 참여한 공동연구팀의 이번 논문은 국제학술지 `네이쳐 커뮤니케이션스(Nature Communications)' 11월 23일 字에 실렸다. (논문명: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor)
한편 이번 연구는 2018년 삼성미래기술육성사업에 선정돼 지속적인 지원을 받아 수행됐다.
2020.12.23
조회수 53599
-
딥러닝으로 소재 합성 가능성 예측 기술 개발
우리 대학 생명화학공학과 정유성 교수 연구팀이 딥러닝을 활용해 소재의 합성 가능성을 높은 정확도로 예측하는 기술을 개발했다고 22일 밝혔다.
신소재 설계의 궁극적인 목표는 소재를 설계하고 그것을 실험적으로 합성하는 것이지만 현실적으로는 새롭게 설계된 대부분의 소재가 실제 합성 단계에서 성공하지 못하고 버려지는 경우가 많다. 이는 불필요한 시간과 자원의 낭비를 초래한다. 소재의 합성 여부는 반응 조건, 열역학, 반응 속도, 소재 구조 등 다양한 요인에 의해서 결정되기 때문에, 소재의 합성 가능성을 예측하는 것은 매우 도전적인 과제로 여겨져 왔다.
이런 문제 해결을 위한 방안으로 간단한 열역학적 안정성만을 고려해 고체 소재의 합성 가능성을 추정하지만 정확도는 매우 떨어지는 편이다. 일례로 에너지적으로 안정된 물질이라 하더라도 합성이 안 되는 경우가 아주 빈번하고, 또 반대로 *준안정 상태의 물질들도 합성되는 경우가 많기 때문이다. 따라서, 합성 가능성에 대한 예측 정확도를 획기적으로 높일 수 있는 방법론의 개발이 시급한 과제로 여겨져 왔다.
☞ 준안정(metastable) 상태 : 어떤 물질이 열역학적으로 안정된 ‘바닥 상태’가 아닌 상태
정유성 교수 연구팀이 개발한 소재 합성 가능성 예측기술은, 기존 합성이 보고된 고체 소재들의 구조적 유사성을 그래프 합성 곱 신경망(GCN, Graph Convolutional Neural Network)으로 학습해 새로운 소재의 합성 가능성을 예측할 수 있다. 특히, 현재까지 합성이 안 된 물질이라 하더라도 합성이 성공할 가능성은 여전히 존재하기 때문에 참값(레이블)을 이미 알고 학습을 진행하는 일반적인 지도학습과는 달리 양의 레이블(+)을 가진 데이터와 레이블이 없는 데이터(Positive-Unlabeled, P-U)를 이용한 분류 모델 기반의 준 지도학습을 사용했다.
정 교수팀은 5만여 종에 달하는 이미 합성이 보고된 물질과 8만여 종의 *가상 물질로 이뤄진 `머터리얼스 프로젝트(Materials Project, MP)'라는 소재 관련 데이터베이스를 이용해 모델을 구축했다. 연구팀 관계자는 이 신기술을 활용한 결과, 소재들의 합성 가능성을 약 87% 정확하게 예측할 수 있다고 설명했다. 정 교수팀은 또 이미 합성된 소재들의 열역학적 특성을 분석한 결과, 열역학적 안정성만으로는 실제 소재의 합성 가능성을 예측할 수 없다는 사실도 알아냈다.
☞ 가상 물질(hypothetical materials) : 기존에 합성되어 보고된 물질들을 원소 치환해서 얻어지는 가상의 물질들로 아직 실험적으로 합성 보고가 이루어지지 않은 물질
이와 함께 머터리얼스 프로젝트(MP) 데이터베이스 내에 합성 가능성 점수가 가장 높은 100개의 가상 물질에 대해 문헌조사를 실시한 결과, 이들 중 머터리얼스 프로젝트(MP) 데이터베이스에는 합성 여부가 아직 알려지지 않았지만 실제로 합성돼 논문에 보고된 소재만도 71개에 달하는 것을 확인했고 이를 통해 모델의 높은 정확도를 추가로 입증했다.
정유성 교수는 "빠른 신소재 발견을 위해 다양한 소재 설계 프레임워크가 존재하지만 정작 설계된 소재의 합성 가능성에 관한 판단은 전문가 직관의 영역으로 남아 있다ˮ면서 "이번에 개발한 합성 가능성 예측 모델은 새로운 소재를 설계할 때 실제로 합성 가능성을 실험 전에 미리 판단할 수 있어 새로운 소재의 개발시간을 단축하는 데 큰 도움이 될 것ˮ이라고 말했다.
생명화학공학과 장지돈 박사과정과 구근호 박사후연구원이 공동 제1 저자로 참여한 이번 연구결과는 미국화학회가 발행하는 국제학술지 미국화학회지(Journal of the American Chemical Society) 온라인 10월 26일 자에 실렸다. (논문명: Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learing)
한편 이번 연구는 과학기술정보통신부 산하 한국연구재단의 기초연구사업(중견연구)과 미래소재 디스커버리 사업 지원을 받아 수행됐고, 연구에 KISTI의 슈퍼컴퓨터를 활용했다.
2020.12.22
조회수 52597
-
암 진단에 필요한 새로운 형광 증폭 기술 개발
우리 대학 신소재공학과 장재범 교수 연구팀이 암 진단에 필요한 새로운 형광 신호 증폭 기술을 개발했다고 17일 밝혔다. 연구 결과는 국제 학술지인 영국왕립화학회(Royal Society of Chemistry)의 `나노스케일(Nanoscale)'誌 11월 13일 字에 게재됐다. (논문명: FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules)
※ 저자 정보: 조예린(신소재공학과 학사과정 학생, 제1 저자), 서준영(신소재공학과 박사과정 학생, 제2 저자), 장재범 교수(교신저자) 등 총 8명
최근 3D 전체 조직 영상화(이미징)를 가능하게 하는 생체조직 *팽창 기술(ExM) 및 투명화 기술(CLARITY, 3DISCO, CUBIC)은 복잡한 세포 간 상호작용 및 역할을 밝혀내는 핵심적인 역할을 하고 있다. 하지만 큰 부피 내부의 세포 변화를 관찰하기 위해서는 약한 형광 신호를 증폭해 높은 이미지 처리량을 갖는 기술이 필요하다.
※ 팽창 현미경 (Expansion Microscopy): 조직을 팽창시켜 일반 현미경으로 초고해상도를 얻을 수 있는 기술
※ 조직 투명화 기술 (Tissue Clearing System): 빛의 산란을 최소화하고 투과도를 극대화하여 3D 전체 조직을 이미징하는 기술
지금까지 신호 증폭 기술은 다양한 화학 반응으로 개발돼왔는데, 이들 중 많은 기술은 단일 화학 반응을 이용하기 때문에 다중 표지 신호 증폭 영상화를 위해서는 단일 신호 증폭과 비활성화 과정을 채널별로 반복해야 하는 단점이 있고, 유전자(DNA) 기반의 신호 증폭 기법은 서로 다른 항체에 대한 유전 물질 분자 결합의 최적화 과정이 필요하므로 일반적인 생물 실험실에서 사용이 어렵다.
장재범 교수 연구팀은 이러한 문제점 개선을 위해 현재 상용화돼 있는 형광 분자가 표지된 항체를 사용해, 추가적인 최적화 과정이 필요 없는 신호 증폭 기술에 주목했다.
결과적으로 연구팀은 `프랙탈(FRACTAL, Fluorescence signal amplification via repetitive labeling of target molecules)'이라는 새로운 신호 증폭 기술을 개발했다. 프랙탈 기술은 항체 기반의 염색 방법으로, 신호 증폭 과정이 매우 간단하다는 특징이 있다. 이 기술은 신호 증폭을 위해 특수한 화학 물질을 필요로 하지 않으며, 형광 분자가 표지된 2차 항체의 반복적인 염색을 통해 형광 신호를 증폭시킨다.
이 기술은 한 종류의 1차 항체, 두 종류의 2차 항체, 총 세 종류의 항체를 이용하는 아주 간단한 기술이다. 신호 증폭 과정은 표적 단백질에 대한 1차 항체 및 첫 번째 2차 항체 염색으로 시작되며, 그다음으로 첫 번째 2차 항체에 결합하는 두 번째 2차 항체의 염색이 이뤄진다. 두 번째 2차 항체의 숙주(host)와 1차 항체의 숙주(host)는 같으며, 그다음 염색은 다시 두 번째 2차 항체에 결합하는 첫 번째 2차 항체의 염색으로 이어진다.
예를 들어 토끼의 1차 항체를 사용하고 당나귀의 항-토끼 2차 항체를 첫 번째 2차 항체로 사용했다면 토끼의 항-당나귀 2차 항체를 두 번째 2차 항체로 사용하게 된다. 그러면 두 번째 2차 항체에는 첫 번째 2차 항체가 결합하게 되고 그 반대의 경우로도 결합해 염색을 이어나가게 된다.
이 과정의 반복을 통해 연구팀은 기존 형광 신호를 9배 이상 증폭시켰으며, 이는 같은 밝기를 얻는 데 필요한 영상화 시간을 9배 이상 줄일 수 있다는 결과를 얻었다. 연구팀은 초고해상도 현미경(STORM) 분석을 통해 염색 횟수에 따라 항체가 균일한 결합 층을 형성하며 형광 신호를 증폭시키는 현상을 확인했다.
연구팀은 이 기술을 서로 다른 종으로부터 유래된 직교적인(orthogonal) 항체 쌍에 적용해, 동시 다중 표지 신호 증폭 영상화를 구현했으며, 팽창 현미경에도 적용해 팽창 후에도 높은 형광의 강도를 갖는 형광 신호 증폭 기술을 구현했다.
이 기술은 간단한 항체-항원 반응에 기반해 형광 신호를 증폭시키는 기술로, 영상을 통한 생체조직의 분석 및 치료기술 개발, 다지표 검사, 의료 및 신약 개발 분야에 이바지할 것으로 연구진은 기대하고 있다.
제1 저자인 조예린 학생은 "높은 이미지 처리량을 가진 이 기술은 디지털 병리 분야의 발전에 중추적인 영향을 미칠 것ˮ이며, "생체 내 다중지표에 대한 정보를 정밀하게 제공해 현대 의약 분야의 의약품 분석 및 치료 시스템에 직접적으로 응용될 수 있다ˮ라고 말했다.
장재범 교수도“이 기술은 환자 생체 검사 조직 내부에서 매우 중요하지만 낮은 수준으로 발현되는 바이오마커들을 정확하게 이미징 할 수 있게 해주기 때문에, 암 진단 및 면역 항암제 반응률 예측 등에 큰 도움이 될 것으로 기대된다.”라고 강조했다
한편 이번 연구는 과학기술정보통신부가 지원하는 뇌과학원천기술개발 과제와 KAIST 학부연구생프로그램(URP)의 지원을 받아 수행됐다.
2020.12.18
조회수 51243
-
입자의 흐름을 실시간으로 제어해 박막 특성을 조절한다
액체가 증발해 박막 형태로 결정화되는 과정이 포착됐다.
한국연구재단은 우리 대학 신소재공학과 스티브 박 교수와 서울대학교 남재욱 교수 공동연구팀이 유기반도체 입자를 포함한 액체 재료가 고체박막으로 변하는 과정을 실시간으로 관찰할 수 있는 분석 시스템을 개발했다고 밝혔다.
액체상태의 재료를 코팅하는 용액공정은 진공·고온·고압에서 고체재료를 기화시키는 증착공정에 비해 경제적이지만, 결정화 과정에 대한 이해가 부족해 다양한 박막 기반 산업분야에 적용되지 못했다.
예측하기 어렵고 빠르게 형상이 변하는 *유체의 거동을 정밀하게 통제하는 것이 어렵기 때문이다.
※ 유체 : 액체와 기체처럼 형상이 정해져 있지 않아 변형이 쉽고 흐르는 성질을 지닌 물체
이에 연구팀은 사선모양이나 헤링본 무늬 같은 다양한 미세패턴이 새겨진 3차원 *미세유체 칩을 제작, 패턴에 따라 유체가 흐르는 양상을 정밀하게 제어하는 방식으로 마이크로미터 단위에서 유체의 환경을 자유자재로 조절하는 데 성공했다.
※ 미세유체 칩(microfluidic chip) : 직경이 매우 작은 유로로 액체의 흐름을 통제할 수 있다. 유로의 디자인에 따라 간결하게 다양한 흐름을 구현, 유체에 대한 빠른 분석이 가능하다.
3차원 시뮬레이션과 유체의 움직임을 ‘슬로우모션’으로 초고속 촬영하는 기술을 이용해, 분자가 유체의 움직임에 따라 이동하고 고체로 변하는 과정을 실시간으로 관찰했다.
특히 이 과정에서 헤링본 무늬의 미세패턴에서 작은 크기의 소용돌이가 동시다발적으로 나타나는 카오스 이류를 관찰하였다.
※ 카오스 이류 : 유체가 구조물에 부딪히는 등 외부요인으로 변형되어 형성되는 복잡한 형태의 흐름. 방향이 특정되지 않고 불규칙한 형태로 이동한다. 해안가 방파제에 해수가 부딪히며 형성되는 흐름 등에서 관찰할 수 있다.
흐름이 무작위적인 카오스 이류는 모든 방향으로 고체 입자가 빠르게 전달될 수 있어 입자들이 빈 공간 없이 정렬, 공정의 균일성을 높이는 실마리가 될 수 있다.
반면 층류나 나선형 형태의 유동은 방향이 규칙적이고 고정되어 있어 흐름이 약한 방향으로는 유기반도체 입자가 원활하게 공급되지 못한다.
실제 이렇게 제작된 트랜지스터는 층류나 나선형 형태의 유동을 기반으로 제작된 트랜지스터에 비해 박막의 결함(정렬 불량, 빈 공간, 덴드라이트)을 억제해 높은 트랜지스터 성능과 균일성을 보였다.
이정찬 박사과정이 1저자, 이호준 석사과정 졸업생이 공동 저자로 참여한 이 연구성과는 과학기술정보통신부·한국연구재단이 추진하는 중견연구사업 등의 지원으로 수행되었으며, 재료분야 국제학술지 어드밴스드 머티리얼스(Advanced Materials) 12월 3일자 표지논문으로 게재됐다.
2020.12.15
조회수 43887
-
차세대 양자광원을 위한 반도체 양자점 대칭성 제어기술 개발
우리 대학 물리학과 조용훈 교수 연구팀이 LED에 널리 사용되는 질소화합물 반도체를 이용해 대칭성이 매우 높은 삼각형 형태의 양자점(퀀텀닷)을 형성하고 제어하는 데 성공, 광자들 사이에 얽힘을 발생시키는 차세대 양자광원 개발에 핵심적인 양자점 제어 기술을 갖추게 됐다고 13일 밝혔다.
‘얽힘(entanglement)’은 입자들이 쌍으로 상관관계를 가져 거리에 상관없이 얽혀 있는 쌍의 한쪽 특성을 측정하면 나머지 한쪽의 특성을 즉시 알게 되는 현상으로, 전문가들은 얽힘이라는 양자역학적인 현상을 활용하면 양자통신과 양자컴퓨팅과 같은 양자정보에 필요한 기술 개발과 함께 물리학적으로 새로운 주제들이 개척될 것으로 기대하고 있다.
반도체 양자점(Quantum Dot)은 원하는 순간에 광자를 한 개씩 방출하는 대표적인 고체 기반의 양자광 방출 소자로써 널리 연구되고 있다. 특히, 반도체 양자점의 대칭성을 제어해 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있다면, 두 개의 광자를 양자얽힘 상태로 만드는 편광얽힘 광자쌍 방출이 원리적으로 가능하므로 이를 이용한 양자통신 및 양자컴퓨팅 분야에서 주목받고 있다.
격자구조를 갖는 반도체는 일반적으로 원자들을 한 층씩 천천히 쌓아 올리는 박막 증착기술을 통해 제작된다. 이때 발광층을 형성하기 위해 격자크기가 다른 층을 쌓게 돼 반도체 내부에 응력이 발생하게 되는데, 발광층이 갖는 응력을 에너지로 사용해 양자점이 무작위적으로 형성되므로 양자점의 크기의 균질성과 대칭성이 떨어지고 근본적으로 양자점의 위치와 모양을 제어할 수 없는 한계를 가진다. 따라서 얽힘 광자쌍 방출소자를 제작하기 위해서는 제작단계에서 위치와 대칭성을 제어할 수 있는 기술이 필수적이다.
한편, 청⦁녹색 LED에 사용되는 물질로 잘 알려진 질소화합물 반도체는 상온에서도 양자적인 특성을 유지할 수 있어 상온에서 안정적으로 구현할 수 있는 양자광원 소자의 후보 물질로도 주목받고 있다. 그러나, 이 물질계는 양자점의 대칭성이 조금만 무너져도 양자역학적 얽힘 특성을 쉽게 잃어버리게 되므로 높은 수준의 대칭성 제어 기술을 확보하지 않고는 실질적으로 구현이 쉽지 않은 한계가 있었다.
조용훈 교수 연구팀은 양자점의 위치와 대칭성을 높은 수준으로 제어하기 위해, 삼각형 형태의 나노 배열 패턴을 갖는 기판 위에 삼각 피라미드 형태를 갖는 질소화합물 반도체 나노 구조를 우선 제작했다. 이후 양자점을 성장하는 단계에서 나노 피라미드 꼭지점 부분의 기하학적 형태를 조절하면서, 열역학적 안정성에 의해 자체적으로 성장 방식이 조절되는 자기제한적 성장메커니즘을 적용했다.
그 결과 육각형 결정구조를 갖는 질소화합물 반도체에서 일반적으로 나타나는 육각 대칭성을 갖는 비균일한 양자점 대신, 삼각 대칭성을 갖는 고품위의 양자점을 최초로 구현함으로써 질소화합물 반도체 양자점의 대칭성을 정교하게 제어하는 데 성공했다.
연구팀은 제작된 나노 구조체의 발광을 분석하기 위해 공간분해능이 수 나노미터 수준으로 좋은 주사전자현미경을 이용해 발광을 측정, 삼각 피라미드의 꼭지점에 양자점이 안정적으로 형성되었음을 확인했고, 시간에 따른 광자 간 상관관계 측정을 통해 양자광이 방출되는 것을 실험적으로 관측했다.
또한, 성장된 양자점의 비대칭성 정도를 가늠할 수 있는 양자광의 편광도와 미세구조 분리 정도를 측정해 높은 대칭성을 갖는 삼각 양자점이 형성되었음을 실험적으로 확인했으며, 이를 이론적 계산 결과와 비교함으로써 측정 결과의 타당성을 확보했다.
이번 연구에서는 기존에 질화물 반도체 양자점의 비대칭성과 높은 편광도를 이용해 상온 단일광자 방출기 제작에 집중해 오던 방식에서 벗어나, 양자점의 대칭성을 정밀하게 조절해 편광얽힘 광자쌍 방출기로도 응용 가능함을 제안했다. 또한 범용 반도체 박막 증착장비와 미세 패턴 기술을 사용했기 때문에 산업적인 측면에서 확장성이 높을 것으로 기대된다.
연구를 주도한 조용훈 교수는 "반도체 양자점을 제작하는 과정에서 발생하는 양자점의 비대칭성을 효과적으로 제어하여 양자점 내부의 미세 에너지 구조를 정교하게 조절할 수 있음을 보여준 결과”라며, “상온에서도 동작이 가능한 질소화합물 반도체 양자점을 이용해 편광얽힘 광자쌍 방출소자와 같은 차세대 양자광원 개발에 활용될 수 있을 것”이라고 의미를 말했다.
우리 대학 물리학과 여환섭 박사가 제1 저자로 참여한 이번 연구 결과는 삼성미래기술육성사업 등의 지원을 받아 수행됐으며, 나노분야 국제 학술지인 `나노 레터스(Nano Letters)' 12월 9일 字에 보충 표지와 함께 정식 출간됐다. (논문명: Control of 3-fold symmetric shape of group III-nitride quantum dots: Suppression of fine structure splitting / 질소화합물 반도체 양자점의 삼각 대칭적 모양 제어: 미세구조 분리현상의 완화)
2020.12.14
조회수 49421
-
난치성 악성 위암의 분자병태생리 기전 최초 규명
우리 대학 바이오및뇌공학과 김필남 교수, 최정균 교수 연구팀은 연세대학교 세브란스 병원 정재호 교수 연구팀과 공동연구를 통해 종양 미세환경의 물리적 인자[세포기질의 강성도 증가]가 암세포의 악성화를 촉진하는 분자후성유전학적 원인을 최초로 규명함으로써 향후 새로운 항암치료전략 수립에 중요한 통찰과 방향을 제시했다.
지금까지 종양연구가 대부분 암세포 자체의 돌연변이나 내부 신호전달 경로에 집중되어 진행되었다면 이번 연구는 암세포가 위치한 종양의 미세환경적 요인이 악성화에 어떤 영향을 주는지를 규명해 종양학 연구의 새로운 패러다임을 제공하고 있다. 최근에 암면역치료의 임상적 성공에 힘입어 *종양미세환경의 면역세포에 대한 관심과 연구가 증가하고 있으나 종양미세환경의 물리적 요인이 암세포의 악성화 및 치료반응에 어떤 영향을 주는지에 대한 연구는 거의 없었다.
연구팀은 생체재료를 활용해 인간의 종양미세환경과 유사한 위암실험모델을 개발하고, 이를 이용하여 단단해진 미세환경에 의한 위암세포의 악성화 메커니즘을 규명했다. 암을 유발하는 단백질로 잘 알려진 YAP (Yes-associated protein)의 DNA 가 단단해진 조직내에서 후성유전학적 변화인 DNA 탈메틸화가 유도되어 악성화가 촉진됨을 밝혔다. 이와 더불어, 본 연구팀은 단단하게 변성된 미세환경을 다시 물렁한 조직으로 변화할 경우, 악성화된 위암 세포에서 역전현상이 일어나 악성화가 약화되고 항암제에 반응하는 세포로 변화함을 확인했다.
이번 연구 결과는 치료가 어려운 난치성 *미만형 위암의 악성화를 촉진하는 원인을 규명함으로써 임상적으로 가장 어려운 scirrhous cancer 의 새로운 치료 가능성을 제시하고, 위암 뿐만 아니라 다양한 암종의 유사한 표현형의 암에 대한 치료 확장성에 기여할 것으로 기대한다.
*종양미세환경: 종양내에 존재하는 암세포, 암의 형성 및 진행에 직/간접적으로 영향을 미치는 주변 조직세포 (면역세포, 섬유아세포, 혈관세포 등) 및 이를 구성하고 있는 *세포외기질물질(Extracellular Matrix) 를 총칭해서 종양미세환경이라고 한다.
*세포외기질: 세포와 세포사이를 연결하고 지탱해주는 지지체의 역할을 하는 물질로 콜라겐과 같은 단백질이 이에 속한다. 세포외기질은 단순한 지지체가 아니라, 이것의 물리적, 화학적 특성이 세포의 운명, 특성 등에 직접적으로 영향을 미친다. 특히, 병적요인으로 인해서 조직 섬유화와 같은 변성이 일어나고 이러한 변성이 암과 같은 질병의 악화의 원인이 된다고 알려져 있다.
*미만성 위암: 위암은 조직학적으로 크게 장형암과 미만 위암으로 분류된다. 장형암의 경우 헬리코박터 감염이나 만성 위축성 위염에 속발하는 위암으로 일반적으로 미만성에 비해 양호한 예후를 보인다. 미만성 위암은 장형암에 비해 암 덩어리를 잘 형성하지 않으며 작은 악성 세포들이 위벽에 퍼져서 침윤과 전이를 잘하며 조기 발견도 어렵다. 40세 미만에서 호발하며 악성도가 매우 높아 치료가 어려운 암으로 알려져 있다.
바이오및뇌공학과 장민정 박사가 제1 저자로 참여한 이번 연구는 국제학술지인 `네이처 바이오메디컬엔지니어링’ 12월 7일 字 온라인 판에 실렸다. (논문명: Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer)
이번 연구성과는 한국연구재단 과학기술 분야 기초연구사업인 중견연구자지원사업 및 보건복지부 연구중심병원 R&D 사업의 지원을 통해 수행됐다.
2020.12.10
조회수 43570
-
도파민의 성질로 박테리아 생장의 실시간 탐지 기술 개발
우리 몸의 신경전달물질인 도파민의 성질을 이용해 박테리아(병원균)를 쉽게 검출할 수 있는 기술이 우리 대학 연구진에 의해 개발됐다.
생명과학과 정현정 교수, 화학과 이해신 교수 공동연구팀이 도파민의 반응을 이용해 병원균의 생장과 항생제 내성을 광학적으로 측정하고 맨눈으로 실시간 검출하는 기술을 개발했다고 7일 밝혔다.
박테리아의 항생제 내성 문제는 현대인의 건강을 위협하는 위험요인으로 꼽히고 있다. 항생제 내성에 대한 적절한 대처가 없다면 30년 이내에 항생제 내성균에 의한 피해가 암보다 더 현대인의 수명을 줄일 수 있다는 보고서가 발표되기도 했다. 항생제 내성균의 종류가 점차 늘어나면서 미국 질병통제예방센터(CDC)는 연간 최소 200만 명 이상의 환자가 항생제 내성 병원균에 의해 발생하고 있다고 보고했다.
도파민은 대다수 생명체에서 신경전달물질로 사용되며, 산소가 존재하는 환경에서 다른 물질의 도움 없이 자체 중합반응(두 개 이상 결합해 큰 화합물이 되는 일)이 일어난다. 이렇게 중합된 도파민 고분자는 짙은 갈색을 나타내고, 다양한 물질 표면에 흡착해 층을 형성한다.
연구팀은 이러한 도파민의 성질을 이용해 병원균이 생장하는지와 항생제 내성을 갖는지를 육안과 형광으로 동시에 탐지 가능한 기술을 개발했다. 이 기술은 현재 사용되는 디스크 확산 검사나 균 배양 분석에 대비해 시간이 짧고 중합효소 연쇄 반응(PCR 검사)과 비교할 때도 전처리 과정이 필요 없는 간편한 기술이라는 점이 큰 장점이다.
우리 대학 나노과학기술대학원 석박사통합과정 이주훈 학생이 제1 저자로, 나노과학기술대학원 석박사통합과정 류제성 학생과 생명과학과 강유경 박사가 공동 저자로 참여한 이번 연구 결과는 재료과학 분야 국제학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, IF 16.836)'에 11월 3일 字 온라인 게재됐다. (논문명 : Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling)
도파민의 자체 중합반응에서는 개시제 역할을 하는 산소가 필수적인 존재다. 연구팀은 박테리아가 생장함에 따라 용액 내의 산소를 소모하는 현상을 이용, 박테리아의 생장 정도를 도파민의 중합반응과 연관 지어 관측하는 방법을 개발했다.
또 박테리아의 생장에 영향을 끼치지 않는 소재인 덱스트란으로 형광나노입자를 제조해 실험에 사용했다. 도파민의 자체 중합반응은 용액 내에 존재하는 형광나노입자 표면에 흡착하고 층을 형성해 입자의 화학적, 물리적 성질에 큰 변화를 일으키고 기존에 발생하던 강한 형광 신호를 약하게 만든다. 또한, 도파민과 나노입자가 첨가된 용액 내에서는 도파민의 산화와 자체 중합반응 때문에 용액의 색이 짙은 갈색으로 변한다.
하지만 박테리아가 용액 내에 존재하는 경우 박테리아 생장 때문에 산소가 소모돼 도파민의 자체 중합반응은 저해되고 용액의 색깔은 투명하게 유지된다. 나노입자의 형광 신호 역시 원래의 신호를 유지하게 된다.
연구팀은 이러한 현상을 박테리아의 생장 및 항생제 내성을 탐지하는데 적용할 수 있다는 점에 착안, 항생제에 내성을 가지는 `뉴 델리 메탈로-베타락타마제 1 (NDM-1)'을 발현하는 대장균(E. coli)을 대상으로 실험을 진행했다.
일반적인 대장균의 경우 카바페넴 계열의 항생제인 암피실린에 의해 생장이 크게 저해되는데, 항생제에 내성을 갖는 대장균은 생장이 잘 이뤄진다. 즉 항생제 내성을 가지는지에 따라 소모하는 산소의 양이 달라지고, 이 차이 때문에 도파민의 중합반응 여부를 육안과 광학적 측정으로 확인할 수 있다.
이렇게 살아있는 세포의 활성에 따라 일어나는 도파민의 자체 중합반응은 실제로 인체에 존재하는 다양한 `카테콜아민' 물질에서 나타나는 반응과 깊은 관련이 있다. 일례로 피부에 존재하는 카테콜아민은 자체 중합반응이 왕성하게 일어나 피부의 색에 큰 영향을 주는 멜라닌 색소를 형성하게 되는데 신경계에 존재하는 카테콜아민은 자체 중합반응이 거의 일어나지 않고 단일분자 형태로 존재하여 작용하는 것으로 알려져 있다. 연구팀은 이번 연구 결과를 향후 생체 내에서 도파민 등 카테콜아민의 역할과 작용을 다양한 생체 모델에서 밝히는 연구로 발전시킨다면 매우 흥미로운 연구 결과를 얻을 것으로 기대하고 있다.
정현정 교수는 “이번 연구는 도파민의 자체 중합반응을 생체 시스템에서 규명한 연구로 큰 의미를 가지며, 이를 박테리아 생장 및 항생제 내성의 실시간 검출에 적용할 수 있어 기존의 미생물 배양법보다 신속하게, 그리고 PCR 검사보다 간편하게 진단이 가능해 감염병 확산 예방에 크게 기여할 것으로 기대된다”고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업 및 KAIST 그랜드 챌린지 사업의 지원을 통해 이뤄졌다.
2020.12.07
조회수 45216
-
생물학적 무기 나노재료의 종류와 응용 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 생물학적으로 합성된 무기 나노재료의 종류와 응용을 총망라해 최신의 연구내용과 흐름을 한눈에 파악할 수 있도록 전략을 정리한 `미생물과 박테리오파지를 이용한 생물학적 무기 나노재료의 합성 및 응용' 논문을 발표했다고 4일 밝혔다.
금속 물질 등이 주된 무기 나노재료(inorganic nanomaterial)는 물리·화학적 합성법들에 따라 얻어지며, 고온·고압의 조건에서 반응이 이뤄지고, 유독한 유기용매 및 고액의 촉매가 필요해 환경오염의 문제를 일으키는 단점이 있다.
생물학적 무기 나노재료 합성법은 친환경 및 단순한 공정으로 경제적인 효과는 물론 생물학적 무기 나노재료의 높은 생체 적합성을 장점으로 촉매, 에너지 수확 및 저장, 전자기기, 항균물질, 바이오 의료 분야 등 폭넓게 적용될 수 있을 것으로 기대된다.
연구팀은 미생물과 박테리오파지를 이용해 55개 주기율표 원소 기반 단일 또는 두 가지 원소 조합으로 146개의 무기 나노재료가 생물학적으로 합성 가능함을 보였다.
생물학적 무기 나노재료 합성에는 박테리아, 곰팡이, 조류, 박테리오파지가 주로 이용됨을 정리했다. 이들의 합성 메커니즘에는 효소·비효소 단백질, 펩타이드, 전자 수송경로의 구성 요소 등이 주요 역할을 담당하고 있다.
특히 연구팀은 유전적으로 조작된 미생물과 박테리오파지들을 이용하면 생물학적 무기 나노재료의 합성 수율을 높일 수 있다고 밝혔다. 유전적으로 조작된 미생물들은 무기 이온에 대한 결합력을 높이고 무기 이온의 생물학적 환원을 증가시키는 한편 무기 이온의 생물체에 대한 독성을 줄이기 위한 전략으로도 도입된다.
이번 연구에는 미생물과 박테리오파지를 이용한 무기 나노재료의 생산 가능성과 크기, 모양, 결정성을 조절하기 위한 전략들이 포함됐다.
연구팀은 결정질 무기 나노재료를 생물학적으로 합성하기 위해 물질의 열역학적 안정성을 나타내주는 푸베이 다이어그램 분석을 활용한 전략도 제시했다.
또한 연구팀은 생물학적 나노재료의 합성 시 고려해야 하는 사항을 정리한 10단계의 흐름도를 제시했다. 현재 생물학적으로 합성된 무기 나노재료들은 촉매, 에너지 수확 및 저장, 전자기기, 항균물질, 의생명 분야의 응용에 적용됐다.
이상엽 특훈교수는 "생물학적 나노재료들이 추후 바이오 의료 분야의 재료, 바이오 전자기기, 친환경 화학물질 생산 등에 새롭게 적용될 수 있을 것ˮ이라고 기대감을 내비쳤다.
이번 연구 성과는 과학기술정보통신부와 한국연구재단이 추진하는 기후변화대응사업의 바이오리파이너리를 위한 시스템대사공학 연구과제 지원으로 수행됐으며, KAIST 생명화학공학과 최유진 박사가 제1 저자로 참여한 논문은 우수성을 인정받아 국제학술지 `네이처 리뷰 케미스트리(Nature Reviews Chemistry)'에 12월호 표지논문으로 게재됐다.
2020.12.04
조회수 43127