-
단백질 접힘 과정에서의 구조 변화 관측에 성공
우리 대학 화학과 이효철 교수(기초과학연구원 나노물질 및 화학반응 연구단 부연구단장 겸임) 연구팀이 풀려있는 단백질이 접히는 과정을 분자 수준에서 규명하는 데 성공, 단백질 구조기반의 신약 개발을 위한 토대를 마련했다. 획기적인 연구성과를 냈다고 평가받고 있는 이 교수 연구팀은 단백질 접힘 경로에서의 단백질 구조 변화를 실시간으로 관측하는 데 최초로 성공했다고 9일 밝혔다.
이 교수 연구팀에 따르면 풀린 단백질이 접히는 과정을 엑스선 펄스를 이용한 고속 연사 촬영기법을 통해 단백질의 구조 변화를 연속 스냅숏으로 추출했고 이를 통해 일련의 단백질 접힘 과정을 분자 수준에서 밝혀내는 쾌거를 달성했다.
KAIST 화학과 박사과정 졸업생 김태우 연구원이 제1 저자로, KAIST 화학과 이효철, 이영민 교수가 교신저자로 참여한 이번 연구결과는 국제 학술지 `미국 국립과학원회보(PNAS, Proceedings of the National Academy of Sciences of the United States of America)' 7월 1일 字에 게재됐다. (논문명 : Protein folding from heterogeneous unfolded state revealed by time-resolved X-ray solution scattering).
잘 접혀있는 단백질이 풀리는 과정은 비교적 쉽게 연구할 수 있어 많은 연구가 이뤄져 왔지만 풀려있는 단백질이 접히는 과정은 연구가 힘들었는데 이효철 교수팀의 이번 연구는 그 과정을 밝혀냈다는데 큰 의미가 있다. 단백질이 접히는 과정을 연구하기 힘든 이유는 풀려있는 단백질이 특정 구조를 가지지 않고 매우 다양한 구조를 갖기 때문이다. 하지만 이 교수 연구팀은 이번 연구에서 엑스선 산란 신호 분석법을 개발, 적용해서 이런 난제를 해결하는 데 성공했다.
단백질의 3차원 구조를 결정하는 고유의 접힘 과정은 가장 중요한 생체 반응이다. 때에 따라 발생하는 잘못 접히는 과정은 단백질의 정상적인 기능을 방해하며, 알츠하이머, 광우병, 파킨슨병 등이 바로 단백질 접힘이 올바르지 않아 발병되는 질병이다.
연구팀은 생체 내 전자전달에 관여하는 사이토크롬 단백질을 풀림 상태에서 접힘 상태로의 전이 과정을 발생시켜, 해당 접힘 과정을 시간 분해 엑스선 산란법을 이용해 연속적으로 움직이는 단백질의 구조 변화를 관측했다. 여기서 주목할만한 점은 이 교수 연구팀은 그간 단백질 접힘에 대한 이론적 모델로만 제시됐던 깔때기꼴 접힘 가설을 사이토크롬 단백질의 접힘 과정을 통해 실험적으로 입증했다는 사실이다.
이와 함께 이 교수팀은 단백질의 구조 변화뿐만 아니라 접히는 과정의 속도가 기존에 알려진 보통의 지수함수 형태가 아니라 늘어진 지수함수 형태임을 밝혀냈다. 이로써 풀린 단백질에서 접힌 상태로 가는 경로가 매우 다양하다는 것을 실험적으로 알아낸 것이다.
제1 저자인 김태우 연구원은 "단백질 접힘은 3차원 단백질 구조가 만들어지는 가장 중요한 생명현상인데, 접힘 과정에 대한 이해는 단백질 구조기반 신약 개발의 기초가 될 것ˮ이라고 기대했다. 공동 교신저자로 참여한 KAIST 화학과 이영민 교수도 "단백질 접힘 이론 모형에 대한 실험적 검증은 이론 생물리학 관점에서 더욱 정확한 계산 방법 개발에 중요한 자산이 될 것ˮ라고 강조했다.
한편 이번 연구는 기초과학연구원, 한국연구재단 등의 지원을 받아 수행됐다.
2020.07.09
조회수 24483
-
기존 인공지능 기술을 뛰어넘는 양자 인공지능 알고리즘 개발
우리 대학 전기및전자공학부 및 AI 양자컴퓨팅 IT 인력양성연구센터장 이준구 교수 연구팀이 독일 및 남아공 연구팀과의 협력 연구를 통해 비선형 양자 기계학습 인공지능 알고리즘을 개발했다고 7일 밝혔다.
양자 인공지능은 양자컴퓨터의 발전과 함께 현재의 인공지능을 앞설 것으로 크게 기대되고 있으나 연산 방법이 전혀 달라 새로운 양자 알고리즘의 개발이 절실하다. 특히 양자컴퓨터는 본질적으로 일차방정식을 잘 푸는 선형적 성질을 가지고 있어 복잡한 데이터를 다루는 비선형적 기계학습에 어려움이 존재했다. 하지만 이번 연구를 통해 비선형 커널이 고안되어 복잡한 데이터에 대한 양자 기계학습이 가능하게 됐다. 특히 이준구 교수팀이 개발한 양자 지도학습 알고리즘은 학습에 있어 매우 적은 계산량으로 연산이 가능하다. 따라서 대규모 계산량이 필요한 현재의 인공지능 기술을 추월할 가능성을 제시한 것으로 평가를 받고 있다.
이준구 교수팀은 학습데이터와 테스트데이터를 양자 정보로 생성한 후 양자 정보의 병렬연산을 가능하게 하는 양자포킹 기술과 간단한 양자 측정기술을 조합해 양자 데이터 간의 유사성을 효율적으로 계산하는 비선형 커널 기반의 지도학습을 구현하는 양자 알고리즘 체계를 만들었다. 이후 IBM 클라우드 서비스를 통해 실제 양자컴퓨터에서 양자 지도학습을 실제 시연하는 데 성공했다.
KAIST 박경덕 연구교수가 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 네이처 자매지인 `npj Quantum Information' 誌 2020년 5월 6권에 게재됐다. (논문명: Quantum classifier with tailored quantum kernel).
기계학습에 있어 중요한 문제 중 하나는 주어진 데이터의 특징(feature)을 구분해 분류하는 것이다. 간단한 예로 동물 이미지 학습데이터에서 입, 귀 등의 특징을 바탕으로 분류하기 위한 결정 경계(decision boundary)를 학습하고 새로운 이미지가 입력되었을 때 개 또는 고양이로 분류하는 작업을 생각해볼 수 있다. 데이터의 특징들이 잘 나타나는 경우에는 선형적 결정 경계만으로 분류할 수 있다. 그러나 입과 귀 모양의 특징으로만 개와 고양이를 분류하기 쉽지 않다면 새로운 결정 경계를 찾기 위해 특징에 관한 정보 공간의 차원을 확장해야 하는데 이러한 과정에서 비선형 커널 기술이 필요하다.
양자컴퓨팅은 고전 컴퓨팅과는 달리 큐비트(quantum bit, 양자컴퓨팅 정보처리의 기본 단위)의 개수에 따라 정보 공간의 차원이 기하급수적으로 증가하기 때문에 이론적으로 고차원 정보처리에 있어 기하급수적으로 뛰어난 성능을 낼 수 있다.
연구팀은 이러한 양자컴퓨팅의 장점을 활용해 데이터 특징 대비 기하급수적인 계산 효율성을 달성하는 양자 기계학습 알고리즘을 개발했다. 이 교수 연구팀이 개발한 이 알고리즘은 저차원 입력 공간에 존재하는 데이터들을 큐비트로 표현되는 고차원 데이터 특징 공간(feature space)으로 옮긴 후, 양자화된 모든 학습데이터와 테스트데이터 간의 커널 함수를 양자 중첩을 활용해 동시에 계산하고 테스트데이터의 분류를 효율적으로 결정한다. 이때 사용되는 양자 회로의 계산 복잡도는 학습 데이터양에 대해서는 선형적으로 증가하나, 데이터 특징 개수에 대해서는 불과 로그(log)함수로 매우 천천히 증가하는 장점이 있다.
연구팀은 이와 함께 양자 회로의 체계적 설계를 통해 다양한 양자 커널 구현이 가능함을 이론적으로 증명했다. 커널 기반 기계학습에서는 주어진 입력 데이터에 따라 최적 커널이 달라질 수 있으므로, 다양한 양자 커널을 효율적으로 구현할 수 있게 된 점은 양자 커널 기반 기계학습의 실제 응용에 있어 매우 중요한 성과다.
연구팀은 IBM이 클라우드 서비스로 제공하는 다섯 개의 큐비트로 구성된 초전도 기반 양자 컴퓨터에서 이번에 개발에 성공한 양자 기계학습 알고리즘을 실험적으로 구현해 양자 커널 기반 기계학습의 성능을 실제 시연을 통해 이를 입증하는 데 성공했다.
이 연구에 참여한 박경덕 연구교수는 "연구팀이 개발한 커널 기반 양자 기계학습 알고리즘은 수년 안에 상용화될 것으로 예측되는 수백 큐비트의 NISQ(Noisy Intermediate-Scale Quantum) 컴퓨팅의 시대가 되면 기존의 고전 커널 기반 지도학습을 뛰어넘을 것ˮ이라면서 "복잡한 비선형 데이터의 패턴 인식 등을 위한 양자 기계학습 알고리즘으로 활발히 사용될 것ˮ이라고 말했다.
한편 이번 연구는 각각 한국연구재단의 창의 도전 연구기반 지원 사업과 한국연구재단의 한-아프리카 협력기반 조성 사업, 정보통신기획평가원의 정보통신기술인력 양성사업(ITRC)의 지원을 받아 수행됐다.
관련 논문: https://www.nature.com/articles/s41534-020-0272-6
2020.07.07
조회수 22248
-
100배 이상 해상도 높인 차세대 퀀텀닷 프린팅 기술 개발
우리 대학 신소재공학과 정연식 교수 · 전덕영 명예교수 공동 연구팀이 차세대 퀀텀닷 LED(QLED) 기반 디스플레이 실현에 핵심적인 기술인 풀 컬러(적·녹·청) 퀀텀닷 패터닝 프린팅 기술 개발에 성공했다고 6일 밝혔다.
퀀텀닷이란 별도의 장치가 없어도 크기와 전압에 따라 스스로 다양한 빛을 내는 수 나노미터(1 나노미터는 100만분의 1 밀리미터) 크기의 반도체 입자다.
연구팀은 풀 컬러 퀀텀닷 배열의 해상도를 최대 14,000ppi(인치당 픽셀 수) 까지 구현하는데 성공했다. 이 해상도는 현재 8K 디스플레이의 해상도인 117ppi 보다 약 100배 이상에 달한다. 연구팀은 또 기존 퀀텀닷 나노 패턴 구현 방법과는 원리가 다른 초 저압 전사 프린팅 방법을 세계 최초로 개발해, 패턴의 해상도와 프린팅 수율 및 퀀텀닷 발광소자 성능을 극대화하는 데도 성공했다.
우리 대학 신소재공학과 남태원 박사과정이 제1 저자로, 김무현 박사과정이 제2 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스 (Nature Communications)' 6월 16일 字 온라인판에 게재됐다. (논문명: Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution)
작년 10월 삼성디스플레이가 퀀텀닷 중심의 차세대 디스플레이 양산라인 구축 및 기술개발에 2025년까지 약 13조 원 규모의 투자계획을 발표하는 등 이제 퀀텀닷 소재는 디스플레이용 핵심 소재로 부상하고 있다. 하지만 퀀텀닷 소재는 OLED 발광 소재와는 달리 용매에 녹아 분산돼 있는 형태로 존재하기 때문에 기존 디스플레이 패터닝 기술을 적용하기 어려웠다. 이를 해결하기 위해 잉크젯 프린팅이나 리소그래피와 같은 공정을 적용하고 있지만, 양산성 및 해상도 측면에서 제한적이거나 공정 과정 중에 퀀텀닷의 효율이 크게 떨어지는 문제가 발생한다.
연구팀은 이런 문제해결을 위해 퀀텀닷의 용매 성분을 미세하게 조절해 수 나노미터에서 수천 나노미터급 주형에 선택적으로 스스로 조립하는 원리에 착안해 적용했다. 또한 조립된 퀀텀닷 미세 패턴을 분리한 후, 초 저압 방식으로 프린팅하는 기술을 개발해 풀 컬러 나노미터급 패턴을 100%에 달하는 수율로 구현했다. 특히 QLED용 퀀텀닷 패턴은 극도로 얇아서 외부 압력에 매우 민감하기 때문에 초 저압 전사 프린팅 기술을 활용해 패턴의 손상을 방지했는데 그 결과 QLED 소자의 성능이 기존 전사 프린팅 방식 대비 약 7배나 증가하는 결과를 확인했다.
연구팀 관계자는 "이번 연구 결과를 활용할 경우 적·녹·청 퀀텀닷 픽셀이 개별적으로 발광할 수 있는 초고해상도를 지닌 차세대 능동형 퀀텀닷 LED (Active Matrix QLED) 디스플레이 구현도 가능할 것ˮ이라고 내다봤다. 정연식 교수는 특히 "단일 퀀텀닷 크기를 갖는 극한 해상도 수준의 패턴도 구현이 가능해서 차세대 디스플레이 분야만 아니라 높은 민감도를 갖는 센서나 광학 소자로의 응용까지 기대된다ˮ라고 말했다.
한편, 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래 소재 디스커버리 사업(단장 최성율)의 지원을 받아 수행됐다.
2020.07.06
조회수 21033
-
이상엽 특훈교수팀 학생들, 천연물 생산 미생물 개발 전략 총정리
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀 소속 대학원생 4명이 대장균 세포 공장을 개발해 생산된 대표 천연물들의 생합성 경로를 총망라해 최신의 연구 내용과 흐름을 한눈에 파악할 수 있도록 대사 회로를 정리한 `천연물 생산을 위한 대장균에서의 대사공학'을 주제로 논문을 발표했다.
학생들은 이번 논문에서 천연물 생산 대장균 세포 공장 개발을 위한 주요 시스템 대사공학 전략을 `효소 개량'과 `대사흐름 최적화', 그리고 `시스템 접근법' 등 3단계로 정리했으며 각 단계별로 활용이 가능한 최신 도구 및 전략을 대사공학이 나아가야 할 방향과 함께 제시했다.
양동수·박선영·은현민 박사과정과 박예슬 석사과정 학생이 참여한 이번 연구결과는 국제학술지인 셀(Cell)誌가 발행하는 생명공학 분야 권위 리뷰지인 `생명공학의 동향(Trends in Biotechnology)' 7월호(특별호: 대사공학) 표지논문 및 주 논문(Featured Article)으로 1일 게재됐다.
인류 역사에서 천연물은 식품과 의약품 등의 분야에 널리 사용되고 있는데 많은 천연물이 그 자체로 의약 물질로 쓰이거나 새로운 의약 물질 개발의 구조적인 근간이 되고 있다. 고부가가치 천연물에 대한 국제적인 수요와 시장규모는 지속적으로 증가하는 추세인 데 반해 천연자원으로부터 얻을 수 있는 양은 극히 제한적이며 완전한 화학합성은 대체로 효율이 낮고 유기 용매를 다량으로 이용하기 때문에 환경 오염과 인류 건강에 악영향을 초래할 수 있다.
따라서 전 세계적으로 천연물을 친환경적이며 고효율로 생산이 가능한 미생물 세포 공장을 개발하려는 노력이 이뤄지고 있다. 미생물 세포 공장 구축을 위한 핵심전략인 시스템 대사공학은 기존 석유화학산업을 대체할 바이오산업의 핵심이 되는 미생물 균주를 보다 효과적으로 개발하기 위해 KAIST 이상엽 특훈교수가 창시한 연구 분야다.
이상엽 특훈교수 연구팀은 실제 시스템 대사공학 전략을 이용, 천연물·아미노산·생분해성 플라스틱·환경친화적인 플라스틱 원료와 바이오 연료 등을 생산하는 고성능 균주들을 다수 개발한 성과를 거뒀다.
이들 4명의 학생을 지도한 이상엽 특훈교수는 "천연물 생산을 위한 대사공학 연구를 체계적으로 분석, 정리하고 또 향후 전략을 제시했다는 점에서 큰 의미가 있다ˮ면서 "권위가 있는 학술지에 주 논문이자 표지논문으로 게재된 이번 연구를 수행한 학생들이 자랑스럽다ˮ고 말했다.
공동 제1 저자인 양동수·박선영 박사과정 학생도 "고령화가 진행되는 사회에서 헬스케어 산업은 그 중요성이 더욱 대두되고 있다ˮ면서 "인류가 건강한 삶을 지속적으로 영위하기 위해서 필수적인 각종 천연물을 대사공학적으로 생산하는 연구 또한 갈수록 중요해질 것ˮ이라고 강조했다.
한편 이번 연구는 과학기술정보통신부가 지원하는 기후변화대응기술개발사업의 `바이오리파이너리를 위한 시스템 대사공학 원천기술개발 과제' 및 노보 노디스크 재단의 지원을 받아 수행됐다.
2020.07.02
조회수 25869
-
"60년 만에 증명했다" 왼손 방향 스핀파 세계최초 보고
우리 대학 물리학과 김갑진 교수, 김세권 교수, 김창수 박사, 이수길 박사 연구팀이 우리 대학 신소재공학과 박병국 교수, 육종민 교수 연구팀 및 한국표준과학연구원(KRISS, 원장 박현민) 양자기술연구소 양자스핀팀과 함께 협업 연구하여 1960년대 이론으로만 소개됐던 왼손 방향으로 회전하는 스핀파를 세계최초로 증명했다. 이로써 스핀을 이용한 차세대 소자개발에 새로운 지평선이 열릴 것으로 전망된다.
공동연구팀은 전이금속 코발트(Co)와 희토류 가돌리늄(Gd)이 일정 비율로 혼합된 CoGd 준강자성체*에서 왼손 방향의 세차운동**을 하는 스핀파를 측정하고 이에 기반한 물리 현상들을 새롭게 밝혀냈다.
*준강자성체(ferrimagnet): 서로 다른 크기의 반평행한 자화들로 이루어진 자성체
**세차운동(precession): 회전하는 천체나 물체의 회전축 자체가 도는 형태의 운동이나 그 현상
스핀(spin)과 일렉트로닉스(electronics)의 합성어인 스핀트로닉스 기술은 전자의 전하와 스핀을 동시에 제어하는 기술로, 기존 전자소자의 기술적 한계를 극복할 수 있을 것으로 전망되고 있다.
스핀들의 집단적 움직임을 나타내는 스핀파의 경우, 작동 주파수가 매우 높은 영역에 분포하고 전력의 소비가 매우 적으므로 초고속 저전력 소자에 적용할 수 있다.
스핀트로닉스를 실현하려면 전자의 스핀 방향을 자유롭게 제어하여 정보를 저장할 수 있어야 한다. 그러나 스핀을 결정하는 물리적 원인과 제어 방법, 스핀의 회전 방향 분석 등 복합적이고 난도 높은 연구가 필요하다.
주변에서 흔히 볼 수 있는 자석을 잘게 쪼개면, 전자스핀 하나에 해당하는 작은 자석까지 나눌 수 있다. 이 작은 자석은 자기장이 주어지게 되면 오른손 방향으로 세차운동을 하는 성질을 갖는다.
그러나 반평행하게 정렬된 코발트와 가돌리늄의 단위 자화는 회전 관성이 더 큰 가돌리늄의 자화 때문에 전체적으로 왼손 방향으로 회전하는 성질을 가질 수 있다. 1960년대에 준강자성체의 세차운동에 대한 이론들이 발표되면서 왼손 방향 운동이 예측됐지만, 현재까지 미시적인 수준에서의 실험으로는 관찰되지 못했던 현상이다.
공동 연구팀은 빛과 스핀파 사이의 충돌을 이용하는 기법인 브릴루앙 광산란법(Brillouin light scattering)을 사용해 이론을 실험으로 증명했다. CoGd 준강자성체에 빛을 쪼아 스핀파와 충돌시킨 후, 되돌아온 빛을 분석해 스핀파가 가진 에너지와 운동량을 알아낸 것이다.
이번 연구에서는 수십 피코초(ps, 1000억분의 1초) 영역에서 왼손 방향 운동을 처음으로 관찰했으며, 준강자성체의 자화보상온도에서 스핀파 에너지가 0 근처로 수렴하고 자기장의 증가에 따라 각운동량 보상온도가 같이 증가하는 현상 등도 새롭게 밝혀냈다.
KRISS 황찬용 책임연구원은 “지금까지는 오른쪽으로 도는 자화를 기반으로만 이론이 제시되고 실험이 진행됐다”라며, “스핀파의 왼손 방향 운동을 최초로 규명함으로써 차세대 스핀트로닉스 소자개발에 새로운 지평선이 열릴 것으로 기대된다”라고 밝혔다. 또한 우리 대학 김세권 교수는 "준강자성체의 보상점에서 나타나는 새로운 물리현상을 세계 최초로 관측했다는 점에서 큰 의미를 가진다"고 평했으며, 김갑진 교수는 "이번 연구는 국내 연구진들이 공동연구를 통해 시너지를 일으켜 이룩한 성과로서 그 가치가 있다"고 밝혔다.
국가과학기술연구회 창의형융합연구사업(CAP), 한국연구재단 미래반도체 사업, 미래소재 디스커버리 사업, KAIST 특이점(프렙) 연구의 지원을 받은 이번 연구결과는 물리학 분야의 세계적 학술지인 네이처 머티리얼즈(Nature Materials–IF: 38.887)에 6월 30일 온라인 게재됐다.
2020.06.30
조회수 21196
-
육종민 교수팀, 살아있는 세포의 전자현미경 관찰 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다.
이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다.
신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils)
전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다.
수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다.
그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다.
최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다.
육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다.
육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다.
한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.06.29
조회수 20784
-
이효철 교수 연구팀, 분자가 탄생하는 모든 순간(35펨토 초) 포착
우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장) 연구팀은 원자가 결합하여 분자가 탄생하는 모든 과정을 실시간으로 관찰하는데 성공했고 이번 성과가 세계 최고 권위의 학술지 네이처(Nature, IF 43.070)誌 온라인 판에 6월 25일 0시(한국시간) 게재됐다고 밝혔다.
연구진은 펨토 초(1/1,000조 초)의 순간을 관측하기 위해 특수 광원인 포항 4세대 방사광가속기의 X-선자유전자레이저(펨토 초 엑스선 펄스*)를 이용하여 화학결합을 형성하는 분자 내 원자들의 실시간 위치와 운동을 관측하는데 성공했다.
* 펄스는 짧은 시간동안 만 빛이 방출되는 형태로, 펨토 초 엑스선 펄스는 X선이 펄스의 형태로 생성되고 그 시간 길이가 펨토 초 정도일 때를 말함
물질을 이루는 기본 단위인 원자들이 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토 초에 옹스트롬(1/1억 cm) 수준만 움직이기 때문에 그 움직임을 실시간으로 포착하기는 어려웠다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015) 분자의 구조를 원자 수준에서 관측한 바 있으며, 이번에 세계 최초로 화학반응의 시작부터 끝까지 전 과정의 원자의 움직임을 관찰하는데 성공했다.
화학반응의 시작인 반응물과 끝인 생성물은 상대적으로 오랫동안 구조를 유지하지만, 반응과정의 전이상태(transition state)의 경우 매우 짧은 시간 동안만 형성되기 때문에 관찰이 더 까다로웠다.
연구진은 기존보다 더 빠른 움직임을 볼 수 있도록 향상시킨 실험기법과 구조 변화 모델링 분석기법으로 금 삼합체(gold trimer)* 분자의 형성과정을 관찰했다. 그 결과, 세 개의 금 원자를 선형으로 잇는 두 개의 화학결합이 동시에 형성되는 것이 아니라, 한 결합이 35펨토 초 만에 먼저 빠르게 형성되고, 360펨토 초 뒤 나머지 결합이 순차적으로 형성됨을 규명했다.
* 세 개의 금 원자로 이뤄진 화합물(화학식 : [Au(CN)2-]3)로, 수용액 상에서 가까운 곳에 흩어져 있다가 빛(레이저)을 가하면 반응하여 화학결합을 시작하는 특징이 있다.
또한, 화학결합이 형성된 후 원자들이 같은 자리에 머물지 않고 원자들 간의 거리가 늘어났다가 줄어드는 진동 운동을 하고 있음도 관측했다.
연구진은 앞으로 단백질과 같은 거대분자에서 일어나는 반응뿐만 아니라 촉매분자의 반응 등 다양한 화학반응의 진행 과정을 원자 수준에서 규명해 나갈 계획이다.
제1 저자인 김종구 IBS 선임연구원(우리 대학 화학과 박사과정 졸업생)은 “장기적 관점에서 꾸준히 연구한 결과, 반응 중인 분자의 진동과 반응 경로를 직접 추적하는 ‘펨토초 엑스선 회절법’을 완성할 수 있었다”며 “앞으로 다양한 유‧무기 촉매 반응과 체내에서 일어나는 생화학적 반응들의 메커니즘을 밝혀내게 되면, 효율이 좋은 촉매와 단백질 반응과 관련된 신약 개발 등을 위한 기초정보를 제공할 수 있을 것”이라고 포부를 밝혔다.
2020.06.26
조회수 24374
-
고규영 특훈교수 연구팀, 대사적으로 건강한 비만을 유도하는 원리 밝혔다
대사적으로 건강한 비만을 유도하는 원리가 밝혀졌다. 기초과학연구원(IBS, 원장 노도영) 혈관연구단 고규영 단장(우리 대학 의과학대학원 특훈교수) 연구팀은 혈관 생성을 촉진하는 단백질 ‘안지오포이에틴-2(Angiopoietin-2)’가 건강한 지방 축적 작용의 핵심요소임을 규명했다. 대사 기능에 대한 혈관의 역할과 지방 축적 기전을 이해함으로써 비만, 당뇨병, 고혈압 등 대사질환 치료에 새길을 열 것으로 기대된다.
대사적으로 건강한 비만은 일반 비만에 비해 내장지방 축적이 적으며, 인슐린 저항성 수치, 혈압, 심혈관 질환 발병 위험이 낮다. 비만으로 인해 당 대사기능을 하는 간, 근육 등에 지방이 비정상적으로 축적되면 대사합병증 발병 위험이 높아지는데, 건강한 비만의 경우 혈중 지방이 주로 피하지방으로 축적되기 때문이다.
지방의 축적에는 모세혈관이 관여한다고 알려져 있다. 지방산전달인자들이 모세혈관에서 발현하고, 이들 인자는 모세혈관을 통해 지방의 주구성원인 지방산을 전달하여 지방세포로 축적시킨다. 모세혈관이 지방 축적을 위한 지방산의 전달자이자 이동통로인 셈이다. 그러나 이렇게 비만에 중요한 역할을 하는 모세혈관의 기능을 관장하는 요인과 기전은 밝혀지지 않았다.
이번 연구에서는 안지오포이에틴-2가 피하지방 모세혈관 내 지방산전달인자를 조절하여 건강한 비만을 유도하는 원리를 밝혀 기존의 한계를 극복했다. 연구팀은 피하지방 혈관에 특정 지방산전달인자들이 분포한다는 사실에 주목했다. 우선 건강한 비만환자의 피하지방에만 발현하는 물질을 찾기 위해 건강한 비만 환자군과 일반적인 비만 환자군을 비교분석했다. 그 결과 안지오포이에틴-2가 건강한 비만 환자의 피하지방에만 발현하는 유일한 분비 물질임을 발견했다. 안지오포이에틴-2가 건강한 지방 축적에 핵심 역할을 한다는 의미다. 실제로 안지오포이에틴-2를 지방세포에서 비활성화시킨 생쥐 모델에서 혈중 지방의 피하지방 축적이 감소하는 한편, 간‧골격근‧갈색지방 등에 비정상적으로 축적되어 인슐린 기능과 신진대사에 이상이 생겼다.
나아가 안지오포이에틴-2와 결합하는 ‘인테그린(Integrin)’수용체가 피하지방 혈관에 한해 발현함을 확인했다. 이어 혈관내피세포에서 수용체를 활성화시킨 결과 안지오포이에틴-2에 의한 지방산 전달이 크게 증가했다. 요컨대 인테그린 수용체에 안지오포이에틴-2가 결합하여 지방산전달인자들을 조절함으로써 피하지방으로만 지방을 전달하고 축적시키는 것이다.
배호성 선임연구원은 “혈관의 대사기능을 조절하여 피하지방에 선택적으로 혈중 지방이 축적될 수 있음을 밝혔다”며 “비만, 당뇨병 등 대사질환 치료에 새로운 접근법을 제시할 수 있을 것”이라고 전했다.
이번 연구결과는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications, IF 11.878) 온라인판에 6월 12일 오후 7시(한국시간) 게재됐다.
2020.06.25
조회수 18462
-
전해액 사용량을 4배 줄인 리튬-황 전지 개발
우리 연구진이 리튬-황 전지를 경제적으로 설계하되 성능은 획기적으로 개선한 기술개발에 성공해 차세대 배터리 기술개발에 한 발 더 다가섰다.
우리 대학 생명화학공학과 김희탁 교수팀이 기존 대비 전해액의 함량을 4배 이상 줄인 리튬-황 전지를 개발했다고 25일 밝혔다. 리튬-황 전지는 차세대 배터리 기술 중 연구개발이 가장 활발하게 이뤄지는 기술이다. 리튬-황 전지는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지에 비해 에너지 밀도가 2~3배 높아서 이를 사용하면 전기동력 기체 무게를 크게 줄일 수 있기 때문이다.
리튬-황 전지는 가벼운 황과 리튬금속을 활물질(화학적으로 반응하여 전기에너지를 생산하는 물질)로 이용하기 때문에 중금속 기반인 리튬이온전지에 비해 경량화가 가능하다. 특히 지구에 풍부하게 존재하는 황을 활용해 저가의 전지를 구현할 수 있다는 점 때문에 산업계와 학계로부터 그동안 많은 주목을 받아왔다. 다만 리튬-황 전지는 리튬이온전지와 달리 매우 높은 전해액 함량을 갖고 있다. 전지 무게의 40%에 달하는 과량의 전해질 사용은 전지 무게 증가로 인해 그동안 리튬-황 전지의 고에너지밀도 구현에 큰 걸림돌이 돼왔다. 리튬-황 전지는 황이 방전되고 난 후의 산물인 `리튬 폴리 설파이드(Lithium poly sulfide)'가 전해액에 용해된 상태에서 빠른 충 ‧ 방전 특성을 갖는다.
이 전해액 양을 낮추면 리튬 폴리 설파이드의 용해량이 감소해 용량 및 출력이 저하되는 문제가 발생한다. 또 리튬금속 음극이 전해액을 분해해 전해액이 고갈되는 문제는 낮은 전해 액체량에서 더욱 심해져 결국 전지 수명을 떨어뜨린다.
김희탁 교수 연구팀은 이번 연구를 통해 리튬 나이트레이트 염과 같이 높은 전자공여(다른 화합물에 전자를 주는 성질) 능력이 있는 염을 전해질에 주입하면 폴리 설파이드의 용해도를 증가시킴과 동시에 리튬금속에서 전해질 분해를 억제할 수 있음을 규명했다. 리튬이온과 결합력이 강한 나이트레이트 음이온이 리튬이온의 `용매화 껍질(Solvation Shell)' 역할을 수행함으로써 리튬 폴리 설파이드의 해리도를 증가시켜 결과적으로 용해도가 향상된다는 사실도 증명했다. 아울러 용매화 껍질 구조변화가 전해액 용매 분자와 리튬금속과의 접촉을 낮춰 분해반응을 억제하는 현상도 확인했다.
김희탁 교수팀은 이번 연구를 통해 전해액 성분 중 리튬 염 물질 하나만을 교체하는 간단한 방법으로 에너지 밀도를 높이면서 고가의 전해액 사용량을 4배 이상 줄여 가격을 대폭 절감하는 성과를 거뒀다. 김희탁 교수는 "이번 연구는 황 양극과 리튬금속 음극의 성능을 동시에 높일 수 있는 전해액 설계원리를 제시했다는 점에서 의미가 크다ˮ면서 "차세대 전지 전해액 설계산업 전반에 걸쳐 넓게 응용되기를 기대한다ˮ고 말했다.
KAIST 생명화학공학과 석사졸업생인 추현원 학생(現 MIT 박사과정 재학 중)과 정진관 박사과정이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced energy materials)' 6월 2일 字 표지논문으로 실렸다. (논문명: Unraveling the Dual Functionality of High-Donor-Number Anion in Lean-Electrolyte Lithium-Sulfur Batteries)
한편, 이번 연구는 LG화학, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2020.06.25
조회수 23125
-
세계 최고 성능을 지닌 데이터베이스 관리 시스템(DBMS) 기술 개발
우리 연구진이 방대한 정보를 저장하고 목적에 맞게 검색, 관리할 수 있는 시스템을 통칭하는 데이터베이스관리시스템(DBMS, DataBase Management System)을 세계 최고 수준의 성능으로 끌어올렸다.
우리 대학 전산학부 김민수 교수 연구팀이 데이터베이스 질의 언어 SQL(Structured Query Language, 구조화 질의어) 처리 성능을 대폭 높인 세계 최고 수준의 DBMS 기술을 개발했다.
김 교수 연구팀은 데이터 처리를 위해 산업 표준으로 사용되는 SQL 질의를 기존 DBMS와는 전혀 다른 방법으로 처리함으로써 성능을 기존 옴니사이(OmniSci) DBMS 대비 최대 88배나 높인 신기술을 개발했다. 김 교수팀이 개발한 이 기술은 오라클·마이크로소프트 SQL서버·IBM DB2 등 타 DBMS에도 적용할 수 있어 고성능 SQL 질의 처리가 필요한 다양한 곳에 폭넓게 적용될 수 있을 것으로 기대된다.
대부분의 DBMS는 SQL 질의를 처리할 때 내부적으로 데이터 테이블들을 `왼쪽 깊은 이진 트리(left-deep binary tree)' 형태로 배치해 처리하는 방법을 사용한다. 지난 수십 년간 상용화돼 온 대부분의 DBMS는 데이터 테이블들의 배치 가능한 가지 수가 기하급수적으로 많기 때문에 이를 `왼쪽 깊은 이진 트리' 형태로 배치해 SQL 질의를 처리해 왔다.
임의의 두 테이블이 기본 키(primary key, PK)와 외래 키(foreign key, FK)라 불리는 관계로 결합(조인 연산)하는 경우에는 이러한 방법으로 SQL 질의를 효과적으로 처리할 수 있다. 여기서 기본 키는 각 데이터 행(row)을 유일하게 식별할 수 있는 열(column)이고, 외래 키는 그렇지 않은 열이다.
지난 수십 년간 산업에서 사용되는 DB의 구조가 점점 복잡해지면서 두 테이블은 PK-FK 관계가 아닌 FK-FK 관계, 즉 외래 키와 외래 키의 관계로 결합하는 복잡한 형태의 SQL 질의들이 많아지고 있다. 실제 DBMS의 성능을 측정하는 산업 표준 벤치마크인 TPC-DS에서 전체 벤치마크의 26%가 이런 복잡한 SQL 질의들로 구성돼 있고 기계학습(머신러닝), 생물 정보학 등 다양한 분야들서도 이러한 복잡한 SQL 질의 사용이 점차 증가하는 추세다.
이전에 나온 DBMS들은 두 테이블이 주로 PK-FK 관계로 결합한다는 가정하에 개발됐기 때문에 FK-FK 결합이 필요한 복잡한 SQL 질의를 매우 느리거나 심지어 처리하지 못하는 실패를 거듭해왔다.
김 교수팀은 문제 해결을 위해 테이블들을 하나의 커다란 `왼쪽 깊은 이진 트리' 형태가 아닌 여러 개의 작은 `왼쪽 깊은 이진 트리'를 `n항 조인 연산자'로 묶는 형태로 배치해 처리하는 기술을 개발했다. 이때 각각의 `작은 이진 트리' 안에는 FK-FK 결합 관계가 발생하지 않도록 테이블들을 배치하는 것이 핵심이다.
각각의 `작은 이진 트리'의 처리 결과물을 `n항 조인 연산자'로 결합해 최종 결과물을 구하는 것도 난제로 꼽히는데 연구팀은 `최악-최적(worst-case optimal) 조인 알고리즘'이라는 방법으로 이 문제를 해결했다.
`최악-최적 조인 알고리즘'은 그래프 데이터를 처리할 때 이론적으로 가장 우수하다고 알려진 알고리즘이다. 김 교수 연구팀은 세계에서 가장 먼저 이 알고리즘을 SQL 질의 처리에 적용해 난제를 해결하는 데 성공했다.
김민수 교수 연구팀은 새로 개발한 DBMS 기술을 GPU 기반의 DBMS 개발업체인 미국 옴니사이(OmniSci)社 제품에 적용한 결과, OmniSci DBMS보다 성능이 최대 88배나 향상된 결과를 얻었다. 또 TPC-DS 벤치마크에서도 세계 최고 수준의 성능을 가진 기존의 상용 DBMS보다 5~20배나 더 빠른 사실을 확인했다. TPC-DS는 DBMS의 성능을 측정하기 위한 산업 표준의 최신 벤치마크이다.
교신저자로 참여한 김민수 교수는 "연구팀이 개발한 새로운 기술은 대부분의 DBMS에 적용할 수 있기 때문에 산업적 측면에서 파급 효과가 매우 클 것으로 기대한다ˮ 라고 말했다.
이번 연구에는 김 교수의 제자이자 미국 옴니사이(OmniSci)社에 재직 중인 남윤민 박사가 제1 저자로, 김 교수가 교신저자로 참여했으며 지난 18일 미국 오리건주 포틀랜드에서 열린 데이터베이스 분야 최고의 국제학술대회로 꼽히는 `시그모드(SIGMOD)'에서 발표됐다. (논문명 : SPRINTER: A Fast n-ary Join Query Processing Method for Complex OLAP Queries).
한편, 이 연구는 한국연구재단 선도연구센터 사업 및 중견연구자 지원사업, 과기정통부 IITP SW스타랩 사업의 지원을 받아 수행됐다.
2020.06.23
조회수 19981
-
상용화 안된 이산화탄소 활용 기술을 사전 분석하고 평가하는 툴 개발
우리 연구진이 독일 전문 연구진과 협력 연구를 통해 지구온난화의 주범 기체인 이산화탄소 활용 기술을 평가하는 방법을 국제 학술지에 발표했다. 이산화탄소 활용을 위한 신기술을 개발 중인 단계에서 연구의 효율성과 경제성을 사전에 파악할 수 있기 때문에 유망 신기술 발굴에 크게 도움을 줄것으로 기대된다.
우리 대학 이재형 생명화학공학과 교수 연구팀이 아직 상용화가 안되거나 개발단계에 있는 이산화탄소 활용 기술을 사전에 분석하고 평가하는 툴(Tool)을 개발했다고 22일 밝혔다. 이번 연구는 이재형 교수 연구실 노고산 박사가 제1 저자로 참여했으며 녹색·지속가능 기술 분야 국제 학술지인 ‘녹색 화학(Green Chemistry)’ 온라인에 지난달 21일 게재됐다. (논문명: Ealry-stage evaluation of emerging CO₂ utilization technologies at low technology readiness levels)
다양한 신흥(emerging) 녹색 기술을 연구하는 과정에서는 해당 기술이 과연 유망한 기술인지, 아닌지를 사전에 판단해 연구 인력과 예산을 집중하는 것은 매우 중요하다. 예를 들어, 해당 기술의 에너지 효율이 얼마나 높은지, 또는 향후 비용경쟁력을 확보할 수 있는지, 그리고 기술 도입이 환경에 얼마나 큰 영향을 미칠지를 사전에 분석할 수 있어야 한다. 하지만 연구개발 초기 단계에서는 관련 기술에 대한 정보력 부족으로 정확한 기술 분석이나 평가를 하기가 어렵다.
이재형 교수 연구팀이 개발한 이 툴은 상용화가 안 돼 있거나 개발단계에 있는 이산화탄소 활용 기술을 대상으로 구체적이고 세부적인 정보가 없이 일부 제한적인 정보만으로도 해당 기술의 에너지 효율과 기술 경제성, 온실가스 저감 잠재량 등을 파악할 수 있다는 게 장점이다.
이 교수팀은 특히, 이번 연구에서 기술 평가에 필요한 지표 계산이 가능하도록 해당 기술이 지니는 고유의 기술성숙도(Technology readiness level)와 다양한 이산화탄소 전환 특성 등 체계적이고 세분된 전략을 제시했다. 연구팀은 이와 함께 개발한 툴 검증을 위해 다양한 이산화탄소 활용 기술들을 대상으로 사례 연구를 수행했다고 밝혔다.
이번 연구는 이 교수팀과 독일 아헨공과대학교(RWTH Aachen University)에서 공정 설계와 최적화 분야 전문가로 꼽히는 알렉산더 밋소스(Alexander Mitsos) 교수, 이산화탄소 포집 및 활용 기술의 모든 과정을 평가(Life Cycle Assessment)하는 분야의 전문가인 안드레 바도우(André Bardow)교수, 그리고 분리막과 전기화학 분야 전문가인 마티아스 웨슬링(Matthias Wessling)교수 연구팀과 긴밀한 협력을 통해 이뤄졌다.
이재형 교수는 "이번 연구성과는 현재 전 세계에서 연구되고 있는 다양한 이산화탄소 활용 기술에 적용이 가능하다ˮ고 말했다. 이 교수는 이어 "아직 상용화가 안 돼 있거나 개발 중인 미성숙 기술을 대상으로 에너지 효율과 비용대비 경제성 등을 정확하게 평가할 수 있어 유망 신기술에 연구개발 인력과 비용을 집중할 수 있다”라고 강조했다.
한편, 이번 연구는 한국 이산화탄소 포집 및 처리 연구개발센터(KCRC)의 지원을 받아 수행됐다.
2020.06.22
조회수 17884
-
항암 백신 및 면역치료를 최적화한 신기술 개발
우리 연구진이 새로운 항암 나노 백신을 개발하고 또 이를 이용해 면역치료를 최적화한 기술 개발을 통해 효과적인 암 예방 및 암 치료가 가능케 함으로써 암 정복에 한 걸음 더 다가서는 계기를 마련했다.
우리 대학 생명과학과 전상용 교수 연구팀이 효과적인 항암 면역치료를 위한 나노입자 백신 개발에 성공했다고 16일 밝혔다.
전 교수 연구팀은 면역 반응을 유도하는 아미노산 중합체인 종양 펩타이드 항원과 면역보조제의 동시전달이 가능한 나노입자 기반 항암 백신을 개발했다. 전 교수 연구팀은 또 세포성 면역을 담당하는 림프구의 일종인 T 세포(면역 세포) 기반 `특이적 면역(specific immunity, 선천 면역과는 다른 고도로 발전된 방어체계)' 반응을 얻는 성과를 거뒀다. 결과적으로 전 교수팀은 특히 새로 개발한 나노입자 기반 항암 백신을 기존 항암 면역 치료제로 주목받고 있는 면역 관용 억제제를 병용하여 투여 순서와 시기를 적절히 조절, 사용하면 효능은 물론 치료 효과를 크게 증대시킬 수 있음을 확인했다.
생명과학과 김유진 박사과정, 강석모 박사가 공동 제1 저자로 참여한 이번 연구는 화학 분야 국제 학술지 `앙게반테 케미(Angewandte chemie, 독일화학회지)' 5월 19일 字 온라인판에 게재됐다. (논문명 : Sequential and timely combination of cancer nanovaccine with immune checkpoint blockade effectively inhibits tumor growth and relapse)
항암 백신은 종양 항원 특이적 면역 반응을 유도할 수 있다는 장점에도 불구하고, 면역 회피가 유도돼 우리 몸에서 백신에 대한 저항성이 발생할 수 있다는 한계가 있다. 최근 항암 치료제로 주목받고 있는 면역 관용 억제제의 경우 면역 억제를 되돌려 항암 효과를 유도할 수는 있으나, 적절한 면역 반응이 존재하지 않는 경우 효과가 극히 제한적인 것으로 알려져 있다.
연구팀은 이 같은 한계를 극복하기 위해 항암 백신과 면역 관용 억제제의 병용요법 진행을 통해 병용요법의 치료 효능을 증대시킬 수 있는 전략을 활용했다. 특히 항암 백신의 효능 증가를 위해 나노입자 전달 플랫폼을 새롭게 개발했다. 결과적으로 새로 개발한 나노입자 백신이 기존 대비 항원과 T 세포 기반 특이적 면역 반응을 더욱 증가시킬 뿐만 아니라 종양 동물모델에서 효과적인 암 예방 및 치료 효과를 거두는 성과를 확인했다.
연구팀은 또 항암 나노 백신의 치료 효과를 더욱 증대시키기 위해 면역 관용 억제제인 `PD-1 항체(활성화된 T 세포의 표면에 있는 단백질)'와 병용해 진행했는데 병용 순서에 따라 치료 효능이 달라질 수 있음을 발견했다. 이 밖에 나노 백신과 PD-1 항체의 병용 치료를 순차적으로 시기를 조절하면 종양 성장과 종양 재발을 효과적으로 억제한다는 사실도 함께 입증했다.
전상용 교수는 "효과적인 항암 면역치료를 목적으로 나노입자 백신을 개발했다ˮ면서 "이와 함께 기존 항암 백신 및 면역 관용 억제제가 가지는 한계를 극복할 수 있는 새로운 병용요법 전략을 개발했는데 이를 통해 향후 다양한 항암 면역치료법에 적용해 치료 효능을 더욱 증대시킬 수 있을 것으로 기대한다ˮ고 말했다. 한편, 이번 연구는 한국연구재단의 리더연구사업 및 바이오 의료기술 개발사업의 지원을 받아 수행됐다.
2020.06.16
조회수 23004