< 사진 1.(왼쪽부터) 한국지질자원연구원 정인철 박사, KAIST 오세은 박사과정, 이강택 교수 >
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다.
우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다.
스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다.
연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다.
< 그림 1. Advanced Energy Materials 표지 >
그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다.
이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다.
< 그림 2. AI 및 계산화학 기반 스피넬 신소재 촉매 스크리닝 프레임워크 >
이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다.
연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다.
한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts)
< 그림 3. 양이온 전기음성도 지표에 따른 스피넬 산화물의 안정성, 촉매 활성도 및 전기화학적 메커니즘 상관관계 >
한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
우리 대학 인공지능반도체대학원 주최로 20일(목) 오전 대전 오노마 호텔에서 ‘제2회 한국인공지능시스템포럼(KAISF) 조찬 강연회’가 성황리에 개최되었다. 본 행사는 인공지능(AI) 기술의 최신 동향과 혁신 및 응용, 특히 AI-X(AI-특정산업)에 대해 다양한 분야의 전문가들이 모여 심도 있는 논의를 진행하는 자리로 LG AI 연구원의 최정규 상무가 LLM(거대언어모델)에 대해 개발에 대해 발표한다. 조찬 회의에는 총 65명의 AI 전문가가 참석하였으며, LG AI 연구원에서 최근 개발하고 공개한 대규모 언어 모델인 ‘엑사원(EXAONE)에 대해 Driving the Future of AI Innovation’라는 주제로 발제 발표가 진행되었다. 최정규 LG AI 연구원 상무는 LG 엑사원의 현재 연구 현황과 향후 글로벌 AI 시장에서의 계획을 발표하였으며 특히 최근 AI 생태계를 뜨겁게 달구고 있는 ‘딥시크(Deep
2025-03-20전기차(EV) 시장의 성장과 함께 리튬이온 배터리의 충전 시간을 단축하는 기술이 중요한 과제로 떠오르고 있다. 우리 연구진이 충전 속도가 상대적으로 느린 전기차 리튬 배터리의 혁신적 전해질 기술을 개발하여 충전 시간을 15분으로 단축시키는데 성공했다. 우리 대학생명화학공학과 최남순 교수 연구팀이 신소재공학과 홍승범 교수 연구팀과 협력 연구를 통해 새로운 전해질 용매 ‘아이소부티로니트릴(isoBN)’을 개발하여 배터리내 리튬 이온 이동을 극대화시키는 전략으로 전기차 배터리의 충전 시간이 상온에서 15분 내로 가능한 기술을 개발했다고 17일 밝혔다. 연구팀은 전해질 내에서 용매화(Solvation) 구조를 조절하는 전략을 개발했다. 이는 배터리의 핵심 요소인 음극 계면층(SEI, Solid Electrolyte Interphase)의 형성을 최적화하여 리튬이온 이동을 원활하게 하고, 고속 충전 시 발생하는 문제(리튬 전착, 배터리 수명 단축 등)를 해
2025-03-17최근 챗GPT, 딥시크(DeepSeek) 등 초거대 인공지능(AI) 모델이 다양한 분야에서 활용되며 주목받고 있다. 이러한 대형 언어 모델은 수만 개의 데이터센터용 GPU를 갖춘 대규모 분산 시스템에서 학습되는데, GPT-4의 경우 모델을 학습하는 데 소모되는 비용은 약 1,400억 원에 육박하는 것으로 추산된다. 한국 연구진이 GPU 사용률을 높이고 학습 비용을 절감할 수 있는 최적의 병렬화 구성을 도출하도록 돕는 기술을 개발했다. 우리 대학 전기및전자공학부 유민수 교수 연구팀은 삼성전자 삼성종합기술원과 공동연구를 통해, 대규모 분산 시스템에서 대형 언어 모델(LLM)의 학습 시간을 예측하고 최적화할 수 있는 시뮬레이션 프레임워크(이하 vTrain)를 개발했다고 13일 밝혔다. 대형 언어 모델 학습 효율을 높이려면 최적의 분산 학습 전략을 찾는 것이 필수적이다. 그러나 가능한 전략의 경우의 수가 방대할 뿐 아니라 실제 환경에서 각 전략의 성능을 테스트하는 데는 막대한 비용과
2025-03-13‘제2의 반도체’로 불리는 리튬이온 전지(LIB)는 가장 높은 시장 점유율로 에너지 저장 장치 시장을 주도하고 있지만, 화재에 취약하는 약점을 가지고 있다. 한국 연구진이 화재로부터 안전하고 값이 저렴한 아연 금속과 공기중의 산소로 구동되는 고에너지 밀도를 가진 고출력 차세대 전지를 개발했다. 우리 대학 신소재공학과 강정구 교수 연구팀이 연세대 한병찬 교수 연구팀, 경북대 최상일 교수 연구팀 및 성균관대 정형모 교수 연구팀과의 공동연구를 통해, 인공지능 기반 이종기능* 전기화학 촉매를 개발 및 촉매 활성 메커니즘을 규명하고, 고효율 아연-공기 전지를 개발했다고 4일 밝혔다. *이종기능: 충전(Charging) 동안에서의 산소 발생(OER) 기능과 방전(Discharging) 동안의 산소 환원 (ORR) 기능 최근 활발하게 연구가 진행되고 있는 아연-공기 전지 배터리의 음극에 사용되는 아연 금속과 공기극*에 필요한 공기는 자연에 풍부하다는 특성 때문에
2025-03-04뇌의 맥락 추론 방식이 챗지피티 같은 대규모 인공지능 모델과 어떻게 다를까? 우리 연구진이 ‘뇌처럼 생각하는 인공지능’기술로서 과도한 자신감을 보이는 인공지능의 할루시네이션(Hallucination) 현상을 완화하거나 인간이나 동물과 유사하게 스스로 가설을 세워 검증하는 신개념 인공지능 모델을 개발하는데 성공했다. 우리 대학 뇌인지과학과 이상완 교수(신경과학-인공지능 융합연구센터장)와 생명과학과 정민환 교수(IBS 시냅스 뇌질환 연구단 부연구단장) 연구팀이 동물이 가설을 세워 일관된 행동 전략을 유지함과 동시에, 본인의 가설을 스스로 의심하고 검증하면서 상황에 빠르게 적응하는 새로운 강화학습 이론을 제시하고 뇌과학적 원리를 규명했다고 20일 밝혔다. 현재 상황에 맞게 행동의 일관성과 유동성 사이의 적절한 균형점을 찾아가는 문제를 ‘안정성-유동성의 딜레마(Stability-flexibility dilemma)’라 한다. 이를 위해서
2025-02-27