-
바이오부탄올 핵심생산효소 구조 및 특성 규명
이 상 엽 특훈교수
우리 대학 생명화학공학과 이상엽 교수 연구팀이 경북대학교 김경진 교수 연구팀과의 공동연구를 통해 친환경 차세대 에너지인 바이오부탄올의 핵심 생산 효소인 싸이올레이즈(Thiolase)의 구조 및 특성을 규명했다.
연구 결과는 네이처 커뮤니케이션즈(Nature Communications) 9월 22일자 온라인 판에 게재됐다.
바이오부탄올은 바이오연료로 이미 사용되고 있는 바이오에탄올을 능가할 수 있는 친환경 차세대 수송용 바이오연료로 각광받고 있다.
바이오부탄올의 에너지 밀도는 리터당 29.2MJ(메가줄)로 바이오에탄올(19.6MJ)보다 48% 이상 높고 휘발유(32MJ)와 큰 차이가 없다. 또한 폐목재, 볏짚, 잉여 사탕수수, 해조류 등 비식용 바이오매스에서 추출하기 때문에 식량파동 등에서도 자유롭다.
바이오부탄올의 가장 큰 장점은 휘발유와 비교했을 때 공기연료비, 기화열, 옥탄가 등 연료 성능이 비슷해 현재 자동차 등에 사용되고 있는 가솔린 엔진을 그대로 사용할 수 있다는 점이다.
바이오부탄올은 클로스트리듐이라는 미생물로부터 생산이 가능하지만 클로스트리듐의 주요 효소의 구조 및 기작 등에 대한 연구는 체계적으로 이뤄지지 못했다.
이 교수 연구팀은 이 미생물의 성능 향상을 위해 바이오부탄올 생합성에 필요한 주요 효소 중 하나인 싸이올레이즈의 3차원 입체구조를 포항방사광가속기를 이용해 규명했다.
이를 통해 일반적인 미생물의 효소에서는 발견되지 않고 클로스트리듐 내의 싸이올레이즈에서만 관찰되는 산화-환원 스위치 구조를 발견했다.
또한 가상세포모델 등을 활용한 시스템대사공학 기법을 활용해 이 싸이올레이즈가 실제 미생물 내에서 산화-환원의 스위치로 작동한다는 것을 증명했다.
연구팀은 밝혀낸 싸이올레이즈 구조의 원천기술을 활용해 활성이 향상된 돌연변이 효소를 설계했다. 그리고 이를 이용해 바이오부탄올 생산 미생물의 대사회로를 조작해 바이오부탄올 생합성이 향상되는 결과를 얻었다.
이상엽 교수는 “바이오부탄올 생합성 대사회로에서 가장 중요한 효소의 구조와 작용 기작을 세계 최초로 밝혔다”며 “싸이올레이즈 관련 원천기술을 활용해 바이오부탄올을 더욱 경제적으로 생산할 수 있는 대사회로 구축에 응용하겠다”고 말했다.
김상우, 장유신, 하성철 박사가 공동 1저자로 참여한 이번 연구는 미래창조과학부와 한국연구재단의 기후변화대응기술개발사업 및 글로벌프런티어 차세대바이오매스사업단 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 바이오부탄올 생산 효소(thiolase)의 구조 및 산화-환원 스위치 작용기작
그림 2. 바이오부탄올 생산을 위한 포도당 대사회로에서 바이오부탄올 생산 효소(thiolase)의 산화-환원 스위치 작용기작
2015.09.22
조회수 14453
-
대장균 이용 농·의약품 및 나일론 전구체 제작 원천기술 개발
<이 상 엽 특훈교수>
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 11일 세계 최초로 미생물을 이용한 1,3-다이아미노프로판(원, 쓰리-다이아미노프로판) 생산에 성공했다.
이번 연구결과는 사이언티픽 리포트(Scientific Reports) 11일자에 게재됐다.
1,3-다이아미노프로판은 에폭시 수지의 가교제와 의약 및 농약제품 제작에 이용되는 핵심 화학물질이다. 또한 중합반응을 통해 의료용 접착제, 엔지니어링 플라스틱 등으로 이용되는 나일론(폴리아마이드)을 제작할 수 있다.
이 1,3-다이아미노프로판은 현재 석유를 통해 생산된다. 그러나 기후변화와 환경문제를 유발하고 한정자원인 석유화학공정을 이용한다는 한계가 있어 연구팀은 지속가능한 친환경 바이오화학공정으로 재편에 힘쓰고 있다.
이상엽 교수 연구팀은 세계 최초로 대장균을 이용한 1,3-다이아미노프로판 생산에 성공해 지속가능한 자원인 바이오매스로부터 생산 가능성을 열었다.
연구팀은 자체적으로 1,3-다이아미노프로판을 생산할 수 없는 대장균의 문제점 해결을 위해 시스템 대사공학을 이용했다. 시스템 대사공학은 세포전체 대사회로를 정량, 정성적 분석 후 시스템 수준에서 총체적으로 조작해 원하는 화합물을 대량생산하는 기술이다.
연구팀의 생산 과정은 ▲외래 미생물의 1,3-다이아미노프로판 생산 대사회로를 컴퓨터 가상 세포에 도입해 가장 효율적인 대사회로를 결정한 후 ▲이 대사회로를 실제 대장균에 도입해 1,3-다이아미노프로판 생산 ▲마지막으로 추가적인 시스템 대사공학을 통해 약 21배 이상 생산량을 증가시켜 최종 발효를 통해 배양액 1 리터당 13그램의 1,3-다이아미노프로판 생산에 성공했다.
이 기술로 재생 가능 비식용 바이오매스를 이용한 1,3-다이아미노프로판 생산이 가능해져 기존 석유기반 화학 산업을 바이오리파이너리(Bio-refinery)로 대체할 수 있을 것으로 기대된다.
이 교수는 “이번 연구는 세계 최초로 KAIST 연구실에서 바이오리파이너리를 통해 1,3-다이아미노프로판 생산 가능성을 제시한 점에서 의의를 갖는다”며 “더 많은 연구를 통해 생산량 및 생산성을 증산할 계획이다”고 말했다.
이번 연구는 미래창조과학부의 기후변화대응 기술개발사업의 지원을 받아 수행됐고, KAIST 채동언(박사과정) 학생이 제 1저자로 참여했다.
□ 그림 설명
그림 1. C4 대사회로를 이용하여 1,3-다이아미노프로판을 생산하기 위한 대사공학 전략들
그림 2. 최종적으로 엔지니어된 대장균들의 발효 프로파일
2015.08.11
조회수 11525
-
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다.
이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다.
빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다.
하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다.
학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다.
즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다.
연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다.
또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다.
연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다.
더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다.
김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다.
이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 제작된 3차원 갭-플라즈몬 안테나
그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과
그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13325
-
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다.
우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다.
실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다.
테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다.
그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다.
정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다.
테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다.
이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다.
미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다.
그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다.
그림2. 굴절률 분포형 렌즈 원리
그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공>
그림4. 논문표지
2014.09.24
조회수 20143
-
배추 절이는 원리로 광결정 미세캡슐 개발
- “반사형 컬러 디스플레이 소자 및 인체 주입 바이오센서에 응용가능” -- 콜로이드 및 유체역학 분야의 대가 故 양승만 교수에게 연구결과 헌정 -
우리 학교 생명화학공학과 김신현 교수 연구팀이 하버드대와 공동으로 삼투압 원리를 이용해 차세대 광학소재로 주목받는 광결정의 미세캡슐화 기술을 개발했다.
연구결과는 네이처 자매지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다.
남미 열대림에서 서식하는 몰포(Morpho)나비의 날개는 파란 색으로 보이지만 색소가 없다. 날개 표면에 있는 규칙적인 나노 구조로 인해 파란색 파장의 빛만을 반사하기 때문에 우리 눈에는 파란 색으로 보이는 것이다.
이처럼 물질의 광구조가 특정 파장의 빛만 반사하고 나머지는 통과하는 배열을 갖도록 만들어낸 물질을 ‘광결정’이라고 한다.
광결정은 빛의 파장 절반 수준에서 굴절률이 주기적으로 변하는데 특정 파장의 빛만을 제어할 수 있는 특성과 다양한 응용가능성을 갖고 있어 ‘빛의 반도체’라고도 불린다.
1987년 미국 벨연구소 이론 물리학자 엘리 야블로노비치(Eli Yablonovitch)와 프린스턴대학 사지브 존(Sajeev John)이 광결정 개념을 최초로 보고한 이래 지난 27년 동안 많은 과학자들이 광결정을 인공적으로 제조하기 위해 노력해왔다. 그러나 반사색이 대부분 고정된 구조에 의해 발현돼 색을 바꾸는 것이 불가능하고 제조 공정이 까다로워 상용화가 어려웠다.김 교수 연구팀은 △액체 상태의 광결정을 잉크처럼 캡슐화하고 △광결정을 덩어리 형태가 아닌 머리카락 굵기(약 100나노미터) 수준의 미세캡슐형태로 제조해 제작의 공정성을 높였으며 △고무재질의 캡슐막을 적용해 모양을 자유자재로 바꿀 수 있도록 제작했다.
연구팀은 배추를 소금물에 절일 때 발생하는 ‘삼투압현상’을 활용했다. 배춧잎은 물 분자만을 투과시키는 반투막으로 이뤄져있는데 배추가 소금물에 잠기면 높은 삼투압을 갖는 소금물이 배춧잎 내부의 물 분자를 반투막 밖으로 꺼내고 배춧잎은 부피가 줄어드는 원리를 이용한 것이다.
연구팀은 이 현상을 나노입자를 담은 미세 물방울에 적용했다. 삼투압현상에 의해 물방울의 부피가 줄어듦에 따라 나노입자가 스스로 규칙적인 구조로 배열돼 캡슐막 내부에 액상의 광결정을 만들었다. 이 과정에서 머리카락 굵기 수준의 작은 통로를 구현한 미세유체소자를 활용해 광결정 미세캡슐을 균일한 크기로 제조하는데 성공했다.
김신현 교수는 “미세 광결정 잉크캡슐은 상용화 가능한 수준으로 향후 구부리거나 접을 수 있는 차세대 반사형 컬러 디스플레이 소자 및 인체 내로 주입 가능한 바이오센서 등을 구성하는 핵심 광학소재로 사용될 수 있을 것”이라고 이번 연구 의의를 설명했다.
KAIST 및 하버드 연구진들은 이번 연구 결과를 지난해 9월 불의의 사고로 고인이 된 콜로이드 및 유체역학 분야의 세계적 대가 故 양승만 교수(前 KAIST 생명화학공학과 교수)에게 헌정했다고 전했다.
한편, 이번 연구는 산업통상자원부에서 지원하는 선진기술국가 국제공동기술개발사업으로 진행됐다.
□ 용어설명- 광결정 (Photonic crystals): 빛의 파장의 절반 수준에서 굴절률이 규칙적으로 변하는 물질로써 특정 에너지를 갖는 광자가 물질 내에 존재할 수 없는 광밴드갭 (photonic bandgap)을 갖는 물질을 말함. 광밴드갭에 해당하는 파장이 가시광선 영역에 있을 때, 외부에서 입사하는 백색광 중 광밴드갭에 해당하는 파장의 빛이 선택적으로 반사되어 금속 광택과 흡사한 느낌의 색깔을 보임.
- 미세유체소자(Microfluidic device) : 머리카락 굵기 수준의 미세한 유로를 집적화함으로써 유체 흐름을 매우 정교하게 제어할 수 있게 해주고, 균일한 크기와 구조의 이멀젼(emulsion) 을 생성시킬 수 있는 소자.
□ 그림설명
그림1. 삼투압 차에 따른 캡슐 크기 감소를 보여주는 모식도
그림2. 균일한 크기의 광결정 캡슐을 제조할 수 있는 미세유체소자
그림3. 초록색 및 파란색 반사색을 보이는 광결정 캡슐의 광학현미경 사진
그림4. 광결정캡슐의 변색 및 변형을 보여주는 광학현미경 사진
그림5. 자연계에 존재하는 광결정의 예: 오팔보석, 공작새 깃털, 극락조의 날개
2014.01.15
조회수 25739
-
치매 정복의 열쇠, PET-MRI 국산화 시대 열린다!
- 순수 국내기술로 PET-MRI 동시 영상 시스템 상용화기술 개발 -- KAIST, 나노종합기술원, 서강대, 서울대병원 융합연구 쾌거 -
수입에만 의존하던 최첨단 의료영상기기 분야에서 국산화에 대한 기대감이 높아지고 있다.
우리 학교 원자력및양자공학과 조규성 교수가 총괄책임을 맡고 있는 3개 대학 공동연구팀은(KAIST, 서강대, 서울대) KAIST 부설기관인 나노종합기술원(원장 이재영)과 함께 순수 국내기술로 PET-MRI 동시영상 시스템을 개발하고 이 시스템을 이용해 자원자 3명의 뇌 영상을 획득하는데 성공했다.
PET-MRI는 인체의 해부학적 영상을 보는 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 세포활동과 대사상태를 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 융합된 최첨단 의료영상기기다. 신체 내 해부학적 정보와 기능적 정보를 동시에 확인할 수 있기 때문에 종양은 물론 치매의 정밀한 조기 진단이 가능하고 신약 개발과 같은 생명과학연구에서도 필수적인 장치다.
기존의 장비는 MRI에서 발생되는 강한 자기장의 영향으로 인해 PET과 MRI 영상을 각각 찍은 후 결합하는 분리형 방식을 주로 사용해 왔다. 이 때문에 촬영시간이 길어지고 환자의 움직임으로 인한 오차가 발생해 두 기기의 영상을 동시에 측정하는 기술이 필요해 자기장내에서 동작되는 PET 개발이 절실했다.
연구팀이 국내 최초로 개발한 일체형 PET-MRI의 핵심 기술은 크게 △자기장 간섭이 없는 PET 검출기 기술 △PET-MRI 융합시스템 기술 △PET-MRI 영상 처리 기술로 나뉜다.
PET 검출기는 전체 시스템 가격의 절반을 차지할 정도로 비싸고 가장 핵심적인 요소다. 조 교수와 나노종합기술원 설우석 박사 연구팀은 강한 자기장 내에서 사용 가능한 실리콘 광증배센서(방사선 검출기에 들어오는 빛을 증폭) 개발에 성공했다. 개발된 센서는 반도체 공정을 최적화해 95% 이상의 높은 양산성과 10%대의 감마선 에너지 분해능을 확보해 글로벌 경쟁력을 갖췄다.
서강대 전자공학과 최용 교수는 신개념 전하신호전송방법과 영상위치판별회로를 적용한 최첨단 PET 시스템을 개발했다. 연구결과는 창의성 및 우수성을 인정받아 지난 6월 의학물리(Medical Physics)지에 표지논문으로 게재됐다.
서울대병원 핵의학과 이재성 교수는 △실리콘 광증배센서 기반 PET 영상재구성 프로그램 △MRI 영상기반 PET 영상 보정기술 △PET-MRI 영상융합 소프트웨어 개발을 맡았다.
이 밖에 KAIST 전기및전자공학과 박현욱 교수는 PET과 MRI가 동시설치 가능한 무선주파차폐(RF Shielding) 기술을 확보하고 이를 기반으로 PET과 연계해 설치 가능한 뇌전용 헤드코일을 개발했다.
이 기술들을 바탕으로 공동연구팀은 뇌전용 PET-MRI 시스템 개발에 성공, 지난 6월 3명의 PET-MRI 융합 뇌 영상을 획득했다. 이는 실리콘 광증배센서 기반의 PET과 MRI를 융합한 기기에서 세계 최초로 획득한 인체영상이라고 연구팀은 전했다.
특히, 이 시스템은 기존 전신용 MRI시스템에 뇌전용 PET 모듈 및 MRI 헤드코일이 탈부착 가능하도록 제작해 낮은 설치비용으로 PET-MRI 동시영상을 획득할 수 있는 게 큰 특징이다.
조규성 교수는 “국산 PET의 상용화 기반을 마련하고 세계적으로도 도입기인 PET-MRI 시스템 기술에서 세계 최고 기업들과 견줄 수 있게 됐다”며 “향후 수요가 급증할 것으로 예상되는 치매를 비롯한 뇌질환 진단 비용을 획기적으로 절감할 수 있을 것”이라고 이번 연구의 의의를 밝혔다.
산업통상자원부 산업원천기술개발사업으로 지원(7년간 총 98억원)받아 수행된 이번 연구를 통해 20여편의 특허를 출원하고 20여편의 SCI 논문을 발표했다.
그림1. 개발한 PET-MRI에서 획득한 뇌팬텀(모형) MRI, PET 및 융합 영상
그림2. 개발한 PET-MRI에서 획득한 인체(뇌) MRI, PET 및 융합 영상
그림3. 국산 PET-MRI 임상 영상 촬영 모습
그림4. MRI 내에 삽입된 Head RF 코일과 PET 검출기
그림5. 제작된 삽입형 PET 검출기 모듈
그림6. 제작된 실리콘 광증배센서(좌)와 섬광 크리스탈 블록(우)의 모습
그림7. 제작된 실리콘 광증배센서
그림8. PET 검출원리
2013.11.13
조회수 21260
-
세계 최초로 미생물 이용 가솔린 생산
- 대장균의 지방산 대사회로를 대사공학적으로 개량하여 알코올, 디젤, 가솔린 생산 -
우리 학교 연구진이 세계 최초로 대사공학적으로 개발된 미생물을 이용하여 바이오매스로부터 가솔린(휘발유)을 생산하는 원천기술을 개발했다. 이 신기술은 나무 찌꺼기, 잡초 등 풍부한 비식용 바이오매스를 이용하여 가솔린, 디젤과 같은 바이오연료, 플라스틱과 같은 기존 석유화학제품을 생산할 수 있어 생명공학 등 관련 산업기술 발전에 크게 기여할 것으로 기대된다.
이번 연구는 미래창조과학부(장관 최문기) 글로벌프론티어사업의 차세대 바이오매스 연구단(양지원 단장)과 기후변화대응 기술개발사업의 지원으로 이상엽 특훈 교수팀이 진행하였으며, 연구결과는 네이처(Nature) 9월 30일(온라인판)에 게재되었다.
* 논문명 : Microbial production of short-chain alkanes
연구팀은 세포의 유전자를 조작하여 원하는 형태의 화합물을 대량으로 생산하도록 하는 기술인 대사공학을 이용하여 크래킹(cracking) 없이 세계 최초로 미생물에서 직접 사용가능한 가솔린을 생산하는데 성공했다.
* 크래킹 : 끓는점이 높은 중질유를 분해하여 원료유보다 끓는점이 낮은 경질유로 전환하는 방법
가솔린은 탄소수가 4~12개로 이루어진 사슬모양의 탄화수소 화합물로 그 동안 미생물을 이용하여 ‘짧은 사슬길이의 Bio-Alkane(가솔린)’을 생산하는 방법은 개발되지 않았다. 따라서 기존 기술은 추가적인 크래킹(cracking) 과정을 거치지 않고는 가솔린으로 전환할 수 없어 비용과 시간이 많이 소요되는 한계가 있었다.
* 2010년 미국에서 사이언스지에 발표한 미생물 이용 Bio-Alkane(배양액 1리터당 약 300mg)의 경우 탄소 사슬 길이가 13~17개인 바이오 디젤에 해당
연구팀은 대사공학기술을 미생물에 적용하여 지방산 합성을 저해하는 요소를 제거하고, 지방산의 길이를 원하는 목적에 맞게 조절할 수 있는 효소를 새롭게 발견하였으며, 개량된 효소를 도입하여 미생물에서 생산하기 어려운 길이가 짧은 길이의 지방산 생산에 성공하였다.
또한 세포내에 생산된 짧은 길이의 지방산 유도체로부터 가솔린을 생산할 수 있는 추가 대사반응과 생물체 내에 존재하지 않는 식물 유래의 신규 효소를 포함하는 합성대사경로를 도입하여 최종 대장균 생산균주를 개발하였다. 이렇게 개발된 대장균을 배양하여 배양액 1리터당 약 580mg의 가솔린을 생산하는데 성공했다.
개발된 기술은 바이오 연료, 생분해성 플라스틱 등과 같은 다양한 바이오 화합물을 생산할 수 있는 플랫폼 기술이 될 수 있을 것으로 전망된다.
또한 이 기술을 활용하면 재생 가능한 바이오매스를 전환하여 바이오 연료, 계면활성제, 윤활유 등으로 이용할 수 있는 알코올(Fatty alcolols) 및 바이오 디젤(Fatty ester)도 생산이 가능하다는 점에서 기존의 석유기반 화학산업을 바이오기반 화학산업으로 대체하는 기반이 될 수 있을 것으로 기대된다.이상엽 교수는 “비록 생산 효율은 아직 매우 낮지만 미생물을 대사공학적으로 개량하여 가솔린을 처음으로 생산하게 되어 매우 의미있는 결과라고 생각하며, 향후 가솔린의 생산성과 수율을 높이는 연구를 계속할 예정”이라고 밝혔다.
그림 1. 대장균을 이용한 바이오 매스로부터 short-chain alkane(가솔린)을 생산하는 대사회로
a) 지방산 분해 회로 차단, b) 바이오 매스로부터 짧은 길이의 지방산을 대량 생산, c) 지방산을 가솔린 생산의 중간체인 fatty acyl-CoA로의 전환 유도, d) fatty acyl-CoA의 가솔린의 직접적인 전구체인 fatty aldehyde로의 전환 유도, e) 최종 가솔린 생산
(보충설명) 미생물의 세포 내부를 들여다보면, 매우 복잡한 지방산 대사회로 네트워크가 존재 한다. 지방산은 세포 내부에서 합성되어, 미생물이 살아가는데 필요한 세포막을 형성하거나, 분해되어 에너지원으로 사용되기도 한다. 대부분의 미생물에서 지방산은 전체 세포의 1%도 되지 않을 만큼 소량 만들어지고, 지방산의 길이 또한 매우 길기 때문에, 이러한 지방산을 이용해서 우리가 원하는 화합물을 대량으로 만들거나, 새로운 화합물을 생산하는 것은 매우 어려웠다. 이를 극복하기 위하여, 이상엽 특훈교수 연구팀은 시스템 대사공학적 기법을 대장균에 도입하여 효소의 개량 및 지방산 합성을 저해하는 요소를 제거하여 짧은 길이의 지방산 과생산에 성공하였고, 생물체내에 존재 하지 않는 신규 회로를 도입하여 지방산을 가솔린으로 전환하는데 성공하였다.
그림 2. short chain alkane을 생산하는 발효 공정 시스템 (보충 설명) 위와 같은 cooling 장치가 연결된 발효기를 통하여 가솔린을 생산함
2013.10.01
조회수 22975
-
순수한 그래핀의 양자점 개발 성공
- 수 나노미터 직경의 완전히 순수한 그래핀 양자점 개발 -- “바이오센서, 광센서, 바이오 이미징 등 다양한 분야로 응용 가능” -
우리 학교 생명화학공학과 서태석(42) 교수와 물리학과 조용훈(48) 교수 공동 연구팀은 흑연 나노입자를 이용해 순수한 그래핀 양자점을 개발하는데 성공하고 그래핀 양자점에서의 방출되는 형광 빛의 원인을 밝혔다.
연구결과는 나노분야의 권위 있는 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 7월 19일자 표지논문(Back Cover)으로 게재됐다.
이번에 개발된 그래핀 양자점은 흑연으로 제작돼 인체에 무해한 친환경 소재라는 점에서 바이오센서, 광센서, 바이오 이미징 등 다양한 응용 분야에 적용할 수 있을 것으로 기대된다.
그래핀 양자점은 수 나노미터 이하의 직경을 갖고 있으며, 가시광 영역의 형광을 방출하는 특징이 있다.
기존 그래핀 양자점은 대부분 산화된 그래핀 양자점을 다시 환원하는 방식으로 제작했다. 따라서 그래핀 양자점 구조에 존재하는 순수한 탄소 결합과 산소 결합에 의한 형광 특성이 혼합돼 있어 발광의 근원을 정확하게 구분하기 어려웠다. 또 복잡한 화학적 방법으로 제작해 생산성이 떨어졌다.
연구팀은 그래핀 양자점의 정확한 발광 원인을 규명하기 위해 수 나노미터 크기의 흑연 나노입자를 이용해 순수한 그래핀 양자점을 산화반응 과정 없이 제작했다. 또 일반적으로 사용되고 있는 산화 과정을 흑연 나노입자에 적용해 산화 그래핀 양자점을 간단하게 제작하는 방법도 개발했다.
연구팀은 개발된 순수한 그래핀 양자점과 산화 그래핀 양자점으로부터 각각 파란색과 녹색 형광의 빛을 방출하는 것을 확인했는데, 이 두 종류의 양자점들은 산소 결합의 유무에 근본적 차이가 있다는 것을 밝혔다.
이와 함께 다양한 광분석 기법을 이용해 순수한 그래핀 양자점의 파란색 형광 현상이 벤젠 형태의 탄소 결합에 의한 것임을 규명하고, 산화 그래핀 양자점의 녹색 발광이 그래핀에 결합된 다양한 산소 기능기에 의한 것임을 규명했다.
서태석 교수는 “순수한 그래핀 양자점의 개발과 발광 특성 분석을 통해 기존에 뚜렷하게 설명되지 않았던 그래핀 양자점에서의 파란색 형광 빛의 원인을 밝혀냈다”고 이번 연구의 의의를 밝혔다.
KAIST 생명화학공학과 페이 리우(Fei Liu), 물리학과 장민호(제1저자) 박사과정 학생이 서태석, 조용훈 교수의 지도를 받아 수행한 이번 연구는 환경융합 신기술개발사업과 KAIST 나노융합연구소의 그래핀 연구센터 지원으로 수행됐다.
서태석 교수(왼쪽), 조용훈 교수(오른쪽)
2013.08.07
조회수 14799
-
깨지지 않는 스마트폰 화면 나온다!
- 유리섬유직물 적용한 고강도 플라스틱 디스플레이 기판 개발 -
- “기존 유리 기판 대체 가능해 일대 혁신 가져올 것” -
깨지지 않는 핸드폰 화면을 구현하고, 대화면 TV의 무거운 유리 기판 대신 가벼운 플라스틱 필름을 사용할 수 있는 길이 열렸다.
KAIST IT융합연구소 윤춘섭 교수(물리학과) 연구팀이 깨지기 쉬운 디스플레이 유리 기판을 대체할 수 있는 고강도 플라스틱 기판 원천기술을 개발했다.
윤 교수팀이 유리섬유직물을 무색투명 폴리이미드 필름에 함침시켜 만든 플라스틱 기판은 고내열, 고투명, 고유연, 고내화학, 고인장강도 특성을 갖고 있다. 소재는 플라스틱 필름의 장점인 유연성을 갖고 있으면서도 인장강도는 일반 유리보다 세 배 크고 강화유리와 비슷하다. 또 유리처럼 무색투명하고, 450℃까지 내열성을 가지며, 열팽창률은 기존 플라스틱 열팽창률의 10∼20%에 불과하다.
유리 기판은 표면이 매끄러울 뿐만 아니라 디스플레이 기판의 조건인 고내열, 고투명, 고내화학, 고인장강도 특성을 모두 가지고 있어 지금까지 핸드폰 화면, TV, 컴퓨터 모니터 등 거의 모든 디스플레이에 사용돼 왔다. 그러나 유리 기판은 무겁고 깨지기 쉬운 단점이 있어 최근 유리 기판을 대체할 목적으로 열적, 화학적 안정성이 우수한 플라스틱 재질의 무색투명 폴리이미드 필름이 활발하게 연구되고 있다.
그러나 무색투명 폴리이미드 필름은 내열성 및 기계적 강도가 충분하지 못하기 때문에 이를 보강하기 위해 유리섬유직물을 폴리이미드 필름에 함침시키면 필름의 표면 거칠기 및 광 투과도 조건이 악화되는 문제가 발생해 실용화되지 못하고 있다. 이는 유리섬유직물을 폴리이미드 전구체 용액에 함침시킬 때 용매가 증발하며 0.4µm(마이크로미터) 내외의 표면 거칠기가 발생하고, 무색투명 폴리이미드 필름과 유리섬유직물의 굴절률 불일치로 인한 광 산란이 심하게 발생하기 때문이다.
윤 교수팀은 투명 폴리이미드 필름의 굴절률을 유리섬유직물의 굴절률과 소수 네 자리까지 일치시키는 방법과, 필름의 표면 거칠기를 수 nm 수준으로 평탄화 시키는 핵심기술을 개발해 이 문제를 해결했다. 그 결과 110µm 두께의 유리섬유직물 함침 무색투명 폴리이미드 필름 기판에서 11ppm/℃의 열팽창률, 0.9nm의 표면 거칠기, 250MPa의 인장강도, 2mm의 굽힘곡률반경, 90%의 광 투과도를 달성했다.
윤춘섭 교수는 “개발된 기판은 기존 디스플레이의 유리 기판을 대체할 수 있고, 플렉서블 디스플레이 기판으로도 사용할 수 있다”며 “핸드폰 화면이 깨지는 문제점을 근본적으로 해결하고, 대면적 TV의 무게 및 두께를 획기적으로 줄일 수 있으며, 디스플레이 생산에 롤투롤 공정을 적용할 수 있어 디스플레이 산업에 일대 혁신을 가져올 수 있을 것”이라고 전망했다.
한편, 2008년부터 5년간 지식경제부의 ‘모바일 플렉시블 입출력 플랫폼 개발사업’의 지원으로 개발된 이 기술은 총 3건의 특허출원을 마치고 관련기업과 기술 이전을 협의 중이다.
그림1. 유리섬유직물의 굴절률이 무색투명 폴리이미드 필름의 굴절률과 일치된 경우의 필름 투명도(좌측)와 일치되지 않는 경우(우측). 좌측의 글자는 선명하게 보이는 반면 우측의 글자는 뿌옇게 보인다.
그림2. 개발한 유리직물섬유 사진
2013.05.14
조회수 16804
-
무선충전 전기열차 원천기술 개발
- KAIST, 철도연과 공동으로 60kHz 무선전력전송 원천기술 개발 성공 -
우리 학교와 한국철도기술연구원(이하 철도연, 원장 홍순만)은 대용량 고주파(60kHz, 180kW) 무선전력전송 원천기술을 세계 최초로 확보(2012년 12월)하고, 13일 오전 10시 충북 오송에 위치한 철도연 무가선트램시험선에서 대전력 무선급전 단위모듈시험을 공개했다.
이 기술은 지난 2011년 KAIST가 개발한 무선충전전기버스로 검증된 20kHz 급집전 기술을 크게 발전시킨 것으로 3배 이상의 전력전송 밀도를 향상시켰으며, 집전모듈의 크기와 무게 감소, 급전과 집전장치의 제작비 절감 등 경제성을 높여 무선급전시스템 상용화에 성큼 다가섰다.
그동안 소규모의 전기를 사용하는 버스만을 움직일 수 있었던 무선전력전송기술은 60kHz 대전력 무선전력전송기술의 확보로 대전력이 필요한 철도시스템, 항만과 공항 하역장비 등 물류이송시스템은 물론 전송효율 증대로 기존 무선급전 시장이었던 휴대폰, 노트북 등 휴대기기 및 가전제품, 로봇분야, 레저분야 등에도 광범위하게 활용될 것으로 보인다.
대전력 무선전력전송기술을 철도에 적용할 경우 열차가 비접촉 방식으로 전력을 공급받기 때문에 급전장치의 마모가 없어 유지보수 비용이 절감된다. 또한 전신주 등 전차선 설비가 필요하지 않아 철도부지 소요면적이 줄어들고, 터널단면적도 크게 축소돼 건설비를 낮출 수 있다. 높은 속도에서도 팬터그래프와 전차선 간에 이선문제와 소음문제 등이 해결돼 레일형 초고속열차 개발도 가속화될 것으로 보인다.
KAIST와 철도연은 이번에 성공한 대전력 무선전력전송기술을 올해 무가선트램(5월경)과 차세대도시철도 및 고속열차(9월경)에 적용해 시험할 계획이다.
무선급전기술이 성공적으로 진행될 경우 독일 봄바디어(Bombardier)사의 프리모베(Primove)를 뛰어넘는 세계 최고 수준의 기술을 확보하게 된다.
※ 독일 봄바디어 프리모베 열차
- 아우크스부르크 시험선 총 800m 중 275m에 무선급전시스템설치 운영 중 20kHz, 200kW 용량, 최고속도 50km/h
KAIST 서남표 총장은 “KAIST가 개발한 무선급전버스에 이어 철도까지 움직일 수 있는 대용량 무선전송기술개발에 성공함으로써 무선급전시스템의 완결판을 만들 수 있게 돼 기쁘다”고 전했다.
KAIST 조동호 교수는 “2009년 무선충전전기버스 기술개발 시작 당시 관련부품의 기술 수준 한계로 20kHz 공진주파수를 이용하는 등 많은 고비가 있었으나 한국철도기술연구원과 협력해서 60kHz 대용량 급진전원천기술을 개발할 수 있었고, 향후 철도에 적용할 수 있는 가능성을 증명한 것”이라고 밝혔다.
철도연 홍순만 원장은 “무선전력전송기술은 철도 건설시 철도부지 소요면적이 줄어들고, 터널단면적 축소 등으로 인한 건설비 절감을 비롯해, 전차선이 없어 도시미관이 개선되고, 유지보수비가 절감되는 등 철도시스템 전반에 대한 패러다임을 바뀔 것으로 기대한다”며 “계속해서 좀 더 용량이 큰 대전력 기술 개발과 상용화 추진을 통해 첨단의 새로운 미래철도 기술을 개발하고, 해외시장 진출을 위한 기술경쟁력 강화에도 기여할 것”이라고 전했다.
2013.02.13
조회수 12873
-
이산화탄소 포집 효율을 획기적으로 향상시킨 물질 개발
- 질소대비 CO2 선택성 300배 증가, 네이처 커뮤니케이션즈 게재 -
우리 학교 WS 대학원의 자페르 야부즈 교수, 알리 조스쿤 교수, 정유성 교수 공동연구팀이 질소대비 이산화탄소 선택성을 300배 높인 세계 최고 수준의 CO2흡수제를 개발했다.
최근 전 세계적으로 기후변화 대응을 위한 현실적 대안으로 이산화탄소를 포집하여 저장․처리하는 CCS*기술의 중요성이 부각되고 있다.
* CCS : Carbon Capture and sequestration
현재 이산화탄소를 포집하는 기술로는 액상흡수제를 이용한 습식포집기술, 고체 흡수제를 이용한 건식포집기술, 필름과 같은 얇은 막을 이용하는 분리막 포집기술이 있다.
발전소, 제철소와 같이 이산화탄소 대량 배출원에 적용하게 되는 동 기술은 고온과 다량의 수분이 존재하는 극한조건하에서도 포집효율이 낮아지지 않는 것이 연구개발의 핵심과제이다.
기존에 연구되었던 건식흡수제인 MOF(Metal Organic Framework)나 제올라이트의 경우는 수분 조건에서 불안정하거나 합성이 비싸다는 단점이 존재하였다.
연구팀이 이번에 개발한 흡수제는 건식흡수제로서 ‘아조-코프(Azo-COP)’라고 명명하였는데 값비싼 촉매 없이도 합성이 가능하여 제조비용이 매우 저렴하며, 고온 및 수분 조건에서도 안정한 특성을 나타내었다.
코프(COP)는 간단한 유기분자들을 다공성 고분자형태로 결합시킨 구조체로 동 연구팀이 처음으로 개발한 건식 이산화탄소포집물질이다.
연구팀은 이물질에 ‘아조(Azo)’라는 기능기를 추가로 도입함으로써 질소를 배제하고 혼합기체 중에서 이산화탄소만을 선택적으로 포집하도록 하였다.
‘아조(Azo)"기를 포함하는 아조-코프(Azo-COP)는 일반적 합성방법을 통해 쉽게 제조하였으며, 값비싼 촉매대신 물과 아세톤 등의 용매를 사용해 불순물도 쉽게 제거함으로써 제조비용을 대폭 낮출 수 있었다.
특히, 아조-코프(Azo-COP)는 이산화탄소와 화학적 결합이 아닌 약한 인력을 통해 결합함으로써 흡착제 재생 에너지 비용을 혁신적으로 낮출 수 있으며,
350℃ 정도의 극한 조건에서도 안정해 이산화탄소 포집제로서 활용은 물론 더욱 가혹한 환경의 다양한 분야에서 포집 물질로 활용될 것으로 기대된다.
해당성과는 교과부 산하 (재)한국이산화탄소포집및처리연구개발센터(센터장 박상도) 및 KAIST EEWS 기획단의 지원으로 이루어졌다.
자페르 야부즈 교수와 알리 조스쿤 교수는“Azo-COP를 CO2, N2 분리 실험에 적용한 결과 포집 효율이 수백배 향상됐다”며 “이 물질은 촉매가 필요 없고, 수분 안정성, 구조 다양성 등 우수한 화학적 특성으로 인해 앞으로 이산화탄소 포집을 비롯한 많은 분야에 활용될 것으로 기대한다”고 밝혔다.
한편, 이번 연구 결과는 세계적 학술지인 ‘네이처’ 자매지 ‘네이처 커뮤니케이션즈’ 1월 15일자로 게재됐다.
2013.02.01
조회수 17492
-
C형 간염 바이러스의 간 손상 메카니즘 규명
- 부작용 없이 간세포 손상 억제하는 치료제 개발 길 열어 -- 의학분야 세계 최고수준 학술지 ‘헤파톨로지’ 9월호 표지논문 장식 -
의사출신으로 구성된 KAIST 연구진이 C형 간염 바이러스 기전을 밝혀내 치료제 개발에 탄력을 받게 됐다.
우리 학교 바이오및뇌공학과 최철희 교수와 의과학대학원 신의철 교수팀이 공동으로 C형 간염 바이러스에 감염된 환자의 간 손상에 대한 메카니즘을 세계 최초로 규명했다.
이번 연구결과로 앞으로 부작용이 없으면서도 간세포 손상이 적은 C형 간염 바이러스 치료제가 개발될 수 있을 것으로 기대된다.
C형 간염은 C형 간염 바이러스(HCV, Hepatitis C virus)에 감염되었을 때 이에 대응하기 위한 신체의 면역반응으로 인해 간에 염증이 생기는 질환이다.
C형 간염 바이러스는 전 세계적으로 약 1억 7천만 명, 그리고 우리나라에서도 1%정도가 감염되어 있는 것으로 추정된다. 감염되면 대부분 만성으로 변하며, 간경변증이나 간암을 유발해 사망할 수 있는 무서운 질병이다.
하지만 2005년 시험관 내 세포에서 C형 간염 바이러스의 감염이 성공하기 전까지는 세포실험이 불가능했고, 침팬지 이외에는 감염시키는 동물이 없어 동물실험이 어려워 연구에 한계가 있었다.
연구팀은 C형 간염 바이러스에 감염시킨 세포주를 이용해 바이러스가 면역을 담당하는 세포에 의해 분비되는 단백질인 종양괴사인자(TNF-α)에 의한 세포의 사멸이 크게 증가하는 메카니즘을 세계 최초로 밝혀냈다.
이와 함께 이러한 작용을 일으키는 바이러스 구성 단백질도 규명에도 성공했다.
기존에는 C형 간염 바이러스가 간 손상을 일으키는 기전을 밝혀내지 못해 주로 바이러스의 증식을 억제하는 데 초점을 맞춰 신약이 개발돼 부작용이 많았다.
이번 연구결과를 통해 바이러스에 의한 간세포 손상을 억제하는 부작용 없는 신약개발이 가능하게 될 것으로 전망된다.
최철희 교수는 “이번 연구를 통해 C형 간염 바이러스가 숙주의 간세포와 어떤 상호 작용을 하는지 밝혀내 감염 환자의 치료법을 획기적으로 개선할 수 있을 것”이라고 말했다.
신의철 교수는 “이번 연구는 기초의학과 응용의학의 융합연구가 성공한 대표적 사례”라며 “앞으로도 다학제간 융합연구를 실시하면 그동안 풀지 못했던 난제들을 효율적으로 해결할 수 있을 것”이라고 강조했다.
한편, 교육과학기술부 미래기반기술개발사업(신약타겟검증연구사업)의 지원을 받아 수행된 이번 연구 결과는 의학 분야의 세계적 학술지인 헤파톨로지(Hepatolog, Impact Factor=11.665) 9월호 표지 논문으로 선정됐다.
□ 연구 세부사항 설명
TNF-α(종양괴사인자)는 면역을 담당하는 세포에 의해 분비되는 단백질이다. HCV에 감염되면 바이러스의 증식을 억제하기 위해 체내의 면역작용이 활발해지고 TNF-α의 분비도 늘어난다.
TNF-α는 세포의 생존을 담당하는 NF-κB 신호전달과 세포의 죽음을 담당하는 JNK 신호 전달을 동시에 활성화시킨다. HCV에 감염되면, 세포의 생존을 담당하는 NF-κB 쪽 신호전달 경로만 선택적으로 활성을 억제하게 되고, TNF-α의 역할은 세포의 죽음 쪽으로 균형이 기울게 된다.
바이러스의 증식을 억제하기 위해 분비된 TNF-α가 오히려 간세포를 죽이게 되는 것이다. 이는 곧 간 손상을 뜻하며, HCV를 구성하는 10가지의 단백질 중 core, NF4B, NS5B 라는 단백질이 이러한 작용을 한다고 규명해냈다.
2012.09.04
조회수 15005