-
주의력결핍 과잉행동장애의 유전적 요인 규명
- 네이처 메디신 온라인 판에 4월 18일 게재
- “새로운 주의력결핍 과잉행동장애 치료법 개발의 가능성 열어”
우리학교 생명과학과 김은준 교수와 강창원 교수의 공동연구팀이 주의력결핍 과잉행동장애(ADHD)가 뇌의 신경 시냅스 단백질(GIT1)이 부족해서 발생한다는 것을 세계 최초로 밝혔다.
전 세계 취학아동의 5% 정도가 겪고 있는 ADHD(Attention Deficit Hyperactivity Disorder)는 주의가 산만하고 지나친 행동을 하면서 충동적 성향을 보이는 성장기 아동의 뇌 발달 장애다.
연구팀은 이 증상이 있는 아동들과 없는 아동들의 유전자형을 비교하는 유전역학 연구를 통해 GIT1 유전자의 염기 한 개가 달라서, 이 단백질이 적게 만들어지는 아동들에서 ADHD의 발병 빈도가 현저히 높다는 것을 발견했다.
또한, 생쥐 실험에서 GIT1의 유전자를 제거해 이 단백질을 합성하지 못하게 하면 ADHD 증상을 보인다는 것을 동물행동 분석 및 신경과학 실험을 통해 밝힘으로써 GIT1과 ADHD의 인과관계를 뒷받침했다.
GIT1 결핍 생쥐들이 사람의 ADHD처럼 과잉행동을 보이고, 학습능력이 떨어지며 비정상적인 특이 뇌파를 내는 것을 확인한 것이다. 아울러 이런 생쥐에 ADHD 치료약을 투여하면 ADHD 증상들이 사라지는 것도 확인됐다.
ADHD 아동이 성인이 되면 과잉행동이 없어지는데, GIT1 결핍 생쥐도 2개월째에는 보이던 과잉행동이 7개월(사람의 20-30세에 해당)이 되면 사라지는 것을 확인했다.
KAIST 생명과학과 김은준 교수는 “신경세포를 흥분시키는 기작과 진정시키는 기작이 균형을 이뤄야 하는데, GIT1이 부족하면 진정 기작이 취약해서 과잉행동을 억제하지 못하는 것으로 추정한다”고 말했다.
또한, 같은 학과의 강창원 교수는 “이번 연구 성과는 ADHD 발병기작을 연구하거나 신약을 개발하는 데 GIT1 결핍 생쥐를 모델생물로 사용할 수 있게 돼 새로운 ADHD 치료법 개발의 가능성을 열었다는 평가를 받고 있다”고 말했다.
이번 연구 성과는 의약학계 세계 최고 학술지인 네이처 메디신(Nature Medicine, Impact Factor 27.136)의 4월 18일자 온라인 판에 게재됐다. 특히, 이 학술지에 게재된 논문 중 그 중요성을 인정받아 전 세계 언론에 특별히 소개됐다.
한편, 이번 연구는 한국연구재단의 창의적연구진흥사업을 수행하는 김은준 교수 연구실의 원혜정, 마원 박사과정 학생과 핵심연구지원사업을 수행하는 강창원 교수 연구실의 김은진 박사가 주도했다.
이외에도 김대수(KAIST 생명과학과), 정재승(KAIST 바이오및뇌공학과), 조수철, 김재원(서울대병원 소아정신과), 최세영(서울대 치대 생리학교실) 교수의 연구팀들이 참여했으며, 신경생물학, 유전체학, 신경유전학, 신경생리학, 뇌공학, 소아정신과 등 여러 분야 전문가들이 협업해 성공한 모범적 사례다.
※ 그림 설명
GIT1 결핍 생쥐가 ADHD 아동처럼 어려서는 과잉행동을 보이다가 성장하면 정상이 되고, ADHD 치료약을 투여해도 정상이 된다.
2011.04.18
조회수 17538
-
얼굴 위의 수면 전문의 개발
- 얼굴에 붙이기만 해도 자동 동작하는 수면다원검사 시스템 세계최초 개발
- 숙면 방해 원인을 본인 스스로 간편하게 조기 진단 가능
작고 똑똑한 ‘가정형 수면다원검사 시스템’이 국내 연구진에 의해 개발됐다.
우리학교 전기및전자공학과 유회준 교수 연구팀은 현재 병원에서 사용하고 있는 전선이 복잡하게 연결된 수면다원검사 시스템보다 훨씬 작고 얼굴에 붙여도 느낌이 없을 정도로 가볍지만 성능은 뛰어난 ‘가정형 수면다원검사 시스템’을 세계 최초로 개발하는 데 성공했다고 7일 밝혔다.
수면다원검사(Polysomnography, PSG)는 병원 내에 위치한 검사실에서 하룻밤을 보내며 잠을 자는 동안의 생체 신호를 모니터링 해 수면 관련 질환을 치료하는 데 사용된다. 그러나 기기의 크기나 이물감, 주변 환경의 변화 등에 의한 제약으로 정확한 결과를 얻기 위해서는 여러 날에 걸쳐 검사를 해야 했다.
연구팀이 이번에 개발한 시스템은 사용자의 수면에 방해를 받지 않도록 면봉 하나의 무게보다도 훨씬 가볍게 제작됐다. 또한, 수면 중 어쩔 수 없는 뒤척임으로 인해 장치가 떨어지더라도 이를 자동으로 감지해 스스로 다른 센서를 연결시켜 사용자의 수면 상태를 계속 모니터링 할 수 있는 지능형 집적회로(IC)가 탑재됐다.
아울러 생체신호 수집, 통신 및 처리 전반에 필요한 초저전력 회로를 적용함으로써, 전체 시스템이 작은 코인 배터리 하나 만으로도 연속 10시간 이상 동작이 가능해 수면에 충분한 동작 시간을 확보함과 동시에 무게를 크게 줄였다.
개발된 시스템은 생활 중 흔히 볼 수 있는 불면증이나 코골이 등과 같은 수면장애를 갖고 있는 사람들이 병원이 아닌 집에서 평소처럼 잠자는 동안 심장박동, 뇌파, 호흡 등의 생체 신호를 자동으로 측정한다. 다음 날 아침 밤새 저장된 생체 신호를 주치의에게 전송하면 주치의는 이를 분석해 원격으로 처방하는 방식으로 사용될 수 있다.
기존의 수면검사 시스템은 대형 병원의 특수 검사실에 설치되어 있어 입원을 하고 몸에 커다란 센서 수 십 개와 여러 개의 전선을 연결한 상태에서 하루 밤을 자야만 했었다. 그러나 이번에 개발된 시스템은 집에서 편하게 자는 동안 많은 양의 생체 신호를 측정할 수 있을 정도로 크기가 작고 무게가 가벼우며 소형 코인 배터리 1개만으로 구동이 가능할 정도로 적은 전력을 소모하기 때문에 유회준 교수 연구팀의 이번 연구가 더욱 주목을 받고 있다.
연구팀은 이러한 측정, 진단 및 처방 간의 의료 서비스 연계를 KAIST 내 병원과 함께 유-헬스케어의 연구로 수행할 예정이다.
유회준 교수는 “개발된 시스템은 우리가 세계 최초로 개발한 직물형 인쇄회로 기판(P-FCB)을 이용한 것으로, 천 위에 모든 시스템을 종합해 제작한 가볍고 사용하기 편리한 미래지향형 의료기기다. 조만간 민간 기업에 기술 이전을 통해 상품화할 예정이다”라고 말했다.
또한, “이 기술을 사용하면 일상생활 속에서 손쉽게 질병 및 장애를 진단, 처방 및 치료할 수 있어 삶의 질을 향상시킬 수 있는 진정한 유-헬스케어의 실현을 기대할 수 있을 것"이라고 덧붙였다.
한편, 이번 연구의 책임자인 유회준 교수와 이슬기 박사과정 연구원은 개발한 시스템을 세계적인 반도체 학술대회인 ‘국제 고체회로 컨퍼런스(International Solid-State Circuits Conference, ISSCC)’에서 발표했으며 국내․외 관련분야 학자들에게 커다란 관심을 끌기도 했다. 특히 이 논문은 미국 ISSCC에서도 우수 논문으로 선정되었으며 일본의 유명 잡지인 닛케이일렉트로닉스(NIKKEI ELECTRONICS) 1월호에서도 차세대의 건강∙의료기기용 반도체 분야의 하이라이트 논문으로 소개되기도 했다.
2011.03.07
조회수 13945
-
숲을 모방한 차세대 태양전지 기술 개발
- 산화아연 나노와이어 이용해 염료감응형 태양전지 효율 3~5배 향상
- 세계적 학술지‘나노 레터스(Nano Letters)’ 1월호 온라인 판 게재
우리나라 태양전지 연구개발 수준이 글로벌 경쟁력을 갖추게 됐다.
우리학교 기계공학과 고승환·성형진 교수팀이 숲을 모방한 산화아연 기능성 나노구조체를 만드는 기술을 개발하고, 이 기술을 염료감응형 태양전지에 적용해 에너지 변환효율을 세계 최고 수준으로 크게 향상시켰다.
염료감응형 태양전지(DSSC: Dye Sensitized Solar Cell)는 주로 산화티타늄(TiO2) 나노입자로 이루어진 무질서한 다공성 구조체를 전극 재료로 이용한다. 이 전극에서 생성된 전자가 다공성 구조체를 지나면서 생기는 정공-전자 재결합으로 인해 에너지 손실이 많았다.
연구팀은 자연계에서 무성한 나뭇가지로 나뭇잎이 햇빛을 효과적으로 흡수할 수 있도록 한 구조에 착안해, 산화아연(ZnO) 나노와이어로 합성된 ‘나노 나무’와 그들의 집합체인 ‘나노 숲’을 구현했다.
이 나노구조체를 이용해 광반응으로 생성된 전자의 손실을 크게 줄여 염료감응형 태양전지의 효율을 3~5배 향상시키는 데 성공했다. 또한, 이 구조는 염료감응형 태양전지에서 산화티타늄 나노다공성 구조체의 효율을 뛰어넘을 수 있다는 가능성도 세계 최초로 제시했다.
고승환 교수는“이번 신물질과 새로운 기능성 나노구조체 개발에 대한 연구로 태양전지 효율을 극대화해 이 분야에서 세계적 수준을 갖추게 됐다”며, “나노구조체가 광센서 디스플레이등의 다양한 전자기기의 성능향상의 연구에도 적용될 수 있을 것으로 기대된다”고 말했다.
한편, 이번 연구는 한국연구재단의 창의적 연구 진흥사업과 신진연구사업 지원을 받아 수행됐으며, 나노과학의 세계적 학술지인 ‘나노 레터스(Nano Letters)’지 1월호 온라인 판에 게재됐다.
2011.01.31
조회수 14675
-
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대.
우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다.
소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다.
그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다.
정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다.
이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다.
이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다.
한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 17871
-
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다.
이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다.
반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다.
이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다.
유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다.
이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다.
그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다.
이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다.
KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다.
또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다.
이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다.
김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세
대 에너지개발을 위한 연구에 노력하겠다”고 말했다.
이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 19044
-
유연한 나노신소재 발전기술 개발
휴대폰이나 심장에 이식한 미세 로봇이 배터리 충전 없이 영구적으로 작동할 수는 없을까?
공상과학 영화에서나 나올 법한 이런 일들이 머지않아 가능할 것으로 보인다.
우리학교 신소재공학과 이건재 교수팀은 압전특성이 우수한 세라믹 박막물질을 이용하여 심장 박동, 혈액 흐름과 같은 미세한 움직임으로도 전기를 만들 수 있는 새로운 형태의 유연한 나노발전기술을 개발했다.
압전특성이란, 가스레인지의 점화스위치 작동원리와 같이, 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 특성을 말하는 데, ‘페로브스카이트(perovskite)’ 구조를 가지는 세라믹 물질들이 높은 효율을 나타내지만 깨지기 쉬운 성질을 가지고 있어 유연한 전자 장치로의 활용이 불가능했다.
이 교수팀은 높은 압전특성을 가지면서 깨지지 않고 자유롭게 구부릴 수 있는 세라믹 나노박막물질을 만들어 바이오-환경 친화적인 고효율 나노발전기술 개발에 세계 최초로 성공한 것이다.
나노기술과 압전체가 만나 만들어지는 나노발전기술은 전선과 배터리 없이도 발전이 가능해, 휴대용 전자제품 뿐만 아니라 몸속에 집어넣는 센서나 로봇의 에너지원으로도 사용이 가능하기 때문에, 그 활용영역은 응용기술 여하에 따라 얼마든지 넓어질 수 있을 것으로 보고 있다.
미세한 바람, 진동, 소리와 같이 자연에서 발생되는 에너지원과 심장 박동, 혈액 흐름, 근육 수축·이완과 같이 사람 몸에서 발생되는 생체역학적인 힘을 통해 전기를 생산할 수 있게 됨으로써 꿈의 무공해·무한 에너지원이 될 수 있는 것이다.
이번에 개발한 나노발전기술은 이 교수가 2004년 세계 최초로 공동발명한 ‘고성능 단결정 휘어지는 전자소자’를 토대로, 세라믹 나노박막물질을 유연한 플라스틱 기판 위에 옮겨, 외적인 힘이 주어질 때마다 신소재 압전물질로부터 전기를 얻는 데 성공한 것이 핵심이다. 또한 이 나노발전기술의 회로구조를 변형하면 LED발광도 이루어 질 수 있다고 이 교수는 말했다.
이 연구 결과는 나노과학기술(NT) 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 11월호 온라인 판에 게재됐고, 국내·외에 특허 출원되었으며, 논문의 공동저자로 참여한 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수팀과 동물 이식형 나노발전기 생체실험을 후속 연구로 진행하고 있다.
<관련동영상>
외부적인 힘에 의해 나노발전기에서 전기가 발생되는 동영상
http://www.youtube.com/watch?v=sWdopmi0B7U
<그림설명>
구부러지는 유연한 나노박막물질에서 전기가 발생되고 있다.
2010.11.08
조회수 18617
-
열팽창이 작은 플라스틱 필름 기판 개발
-‘어드밴스드 머티리얼스’표지논문 선정,“자유자재로 휘어지는 디스플레이와 태양전지 상용화 앞당겨”-
자유자재로 휘거나 구부릴 수 있는(flexible) 디스플레이와 태양전지 제작에 필요한 열팽창이 작은(13ppm/oC 이하) 투명한 유리섬유직물* 강화 플라스틱 필름 기판이 국내 연구진에 의해 개발되었다. * 유리섬유직물(glass cloth) : 실처럼 만든 유리섬유를 사용하여 옷감처럼 직조한 유리섬유 강화재로, 강력하고 열팽창이 적어 조선, 건축, 자동차 및 전자산업 등 폭넓게 사용됨
우리학교 배병수 교수가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 직무대행 김병국)이 추진하는 선도연구센터(ERC)의 지원을 받아 수행되었고, 연구결과는 재료분야 최고 권위의 학술지인 ‘어드밴스드 머티리얼스(Advanced Materials)’ 표지논문(10월 25일)에 선정되는 영예를 얻었다.
배 교수 연구팀은 유리섬유직물과 굴절률이 똑같은 하이브리드 소재 수지를 독자적으로 제작한 후, 이를 유리섬유직물에 함침시켜 열팽창이 작은 투명한 플라스틱 필름 기판을 개발하였다.
차세대 꿈의 디스플레이로 불리는 자유자재로 휘거나 구부릴 수 있는 디스플레이나 미래 생활형 태양전지를 개발하기 위해서, 지금까지 전 세계 연구자들은 투명한 플라스틱 필름 기판을 사용하였다.
그러나 플라스틱 필름은 유리에 비해 온도가 올라가면서 열팽창이 점점 커져 기판 위에 디스플레이나 태양전지를 제작하기 어려워, 열팽창이 작은 투명한 플라스틱 필름 기판 개발이 절실히 요구되었다.
플라스틱의 열팽창을 낮추는 가장 쉬운 방법은 유리섬유직물을 보강하는 것인데, 이것은 플라스틱 안에 유리직물이 들어가므로 불투명해진다.
배 교수팀은 이를 해결하기 위해서, 유리섬유직물과 굴절률이 똑같은 특수한 하이브리드소재 수지를 직접 제작하여, 이를 유리섬유직물에 함침시켜 투명한 플라스틱 필름 기판을 개발하였다. 유리섬유직물과 함침된 하이브리드재료의 굴절률이 정확히 일치하면, 육안으로 전혀 차이를 느낄 수 없어 투명하게 되는 원리를 이용한 것이다.
배 교수팀이 개발한 투명 플라스틱 필름 기판은 유리섬유직물로 보강되었기 때문에 유리의 열팽창계수(9ppm/oC)에 가까운 낮은 열팽창계수(13ppm/oC)를 갖고, 내열성이 우수한 하이브리드소재를 이용하여 높은 온도(250oC 이상)에서도 디스플레이와 태양전지 등의 소자를 제작할 수 있는 장점이 있다.
배 교수팀의 투명 플라스틱 필름 기판은 휘어지는(flexible) 디스플레이와 태양전지의 기판 소재는 물론, 플라스틱의 특성(큰 열팽창과 낮은 내열성)으로 다양하게 사용되지 못하던 응용분야에 다각적으로 활용될 수 있을 것으로 전망된다.
연구팀은 이번에 개발한 투명 플라스틱 필름 기판을 이용하여 LCD나 아몰레드(AMOLED)에 사용되는 휘어지는(flexible) 산화물 박막 트랜지스터 (TFT)와 박막 태양전지를 직접 제작하여 응용 가능성을 높였다.
배병수 교수는 “이번에 개발한 투명 유리섬유직물 강화 플라스틱 기판은 성능도 우수하지만 가격도 저렴하면서 손쉽게 제작할 수 있어, 유리 기판을 대체하여 휘어지는 디스플레이나 태양전지의 상용화를 앞당길 수 있는 핵심기술이다. 앞으로 국내외 산업체, 연구소, 대학들과의 긴밀한 협력으로 다양한 소자들을 제작하여, 기술의 우수성을 검증 받고 활용성을 더욱 확대할 계획이다”라고 밝혔다.
2010.10.25
조회수 17624
-
‘가상손가락’ 아이디어로 5억 벌었다.
- 황성재 학생 개발 ‘멀티터치 모사기술’, 빅트론닉스과 기술이전계약
학생의 작은 아이디어가 기술로 구현돼 5억 원을 받고 기술이전에 성공했다.
우리학교 문화기술대학원 박사과정 황성재(28세) 학생은 모바일 환경의 태생적 단점인 손가락에 의한 화면가림현상과 디바이스를 한손으로 잡은 상황에서 멀티터치 조작이 매우 불편하다는 아이디어에 착안해, 한 손가락만으로도 핀치 줌인/아웃 등의 멀티터치 기능을 수행하는 가상손가락(Virtual Thumb) 기술을 개발했다.
이 기술은 마치 사용자가 두 손가락으로 명령을 수행하는 것과 동일한 효과를 발휘한다. 즉, 터치 지점의 대응점에 생성되는 가상 손가락을 이용, 실제 터치 동작에 대응하는 움직임을 모사하여 줌인/아웃과 회전각 기반의 다양한 명령을 수행한다.
또한 객체 회전이 필요치 않은 상황에서는 회전각 변화를 통해 다양한 명령을 직관적으로 매칭시킬 수 있다. 이는 별도의 명령 메뉴를 활성화하지 않아도 다양한 명령을 동시수행하게 만드는 기능이다. 코너 영역에서의 줌인 명령의 경우, 화면 중심으로 객체를 이동시키지 않아도 코너만을 효과적으로 줌인하는 것도 가능하다.
기술이전에 성공한 ‘가상손가락’ 기술은 지난해 12월 초 특허청이 주최한 2009 대한민국발명특허대전에서 은상을 수상한 아이디어가 기반이 됐으며, 앞으로 각종 터치기반 기기, 즉 TV 리모트 컨트롤러, 이북(eBook), 휴대폰, 태블릿PC, 내비게이션, 교육용 기기 등의 미들웨어로 적용이 가능하다.
기술이전과 관련해 황성재 박사과정은 “연구 과정에서 창출된 작은 아이디어가 발전돼 실제 기술사업화된다고 생각하니 매우 영광스럽다. 앞으로도 많은 창의적 연구를 통해 학계와 산업에 조금이나마 보탬이 되는 연구자가 되겠다.” 라고 소감을 밝혔다.
한편, 산학협력단(단장 장재석)은 이 아이디어에 대한 시제품 제작 등의 지원과 마케팅활동으로 사업화를 성공시켰으며, 국내 이동전화기 제조업분야의 중소기업인 (주)빅트론닉스와 특허양도비 5억 원에 기술이전 계약을 체결하였다고 18일 밝혔다.
2010.10.19
조회수 15787
-
김상욱 교수, 저비용 대면적 나노패턴기술 개발
- ACS Nano誌 온라인판 19일자에 게재 -
나노기술의 오랜 난제가 KAIST와 삼성전자 LCD사업부에 의해 풀렸다.
우리학교 신소재공학과 김상욱 교수팀과 삼성전자 LCD사업부(사장 장원기)가 산학공동연구를 통해 분자자기조립현상(Molecular Self-assembly)과 디스플레이용 광리소그래피(Optical Lithography) 공정을 융합해 나노기술의 오랜 난제로 여겨지던 ‘저비용 대면적 나노패턴기술’ 개발에 성공했다.
최근 나노기술 분야에서는 서로 다른 종류의 고분자를 화학적으로 결합시킨 블록공중합체가 새로운 나노패턴소재로 각광받고 있다.
분자조립 과정을 통해 스스로 형성하는 초미세 나노구조를 블록공중합체에 이용하게 되면 최신 반도체공정으로도 만들기 힘든 수~수십 나노미터 크기의 미세한 점이나 선 등을 쉽고 값싸게 제조할 수 있다.
그러나 자연적으로 형성되는 블록공중합체 나노패턴은 그 배열이 불규칙하고 결함이 많아 상용화를 위한 기술적인 걸림돌로 지적되어 왔다.
블록공중합체 나노패턴을 반도체나 디스플레이에 이용하기 위해서는 임의의 대면적에서 블록공중합체 나노패턴을 원하는 형태로 잘 정렬시킬 수 있는 기술이 필수적이다.
그러나 현재까지 개발된 기술들은 방사광가속기와 같은 매우 값비싼 장비가 필요하고 임의의 넓은 면적에 적용할 수 없다는 근본적인 한계를 가지고 있었다.[그림.1] 자연적으로 형성된 무질서한 배열의 블록공중합체 나노패턴 (왼쪽)과 대면적 나노패턴공정으로 결함 없이 잘 배열된 블록공중합체 나노패턴 (오른쪽)
김 교수팀은 이번에 개발된 융합 기술을 통해 저비용 패턴공정인 디스플레이용 광리소그라피로 대면적에서 마이크로미터(1㎛=100만분의 1m) 크기의 패턴을 만든 후, 분자조립현상을 이용해 수십 나노미터(1㎚=10억분의 1m) 크기의 패턴으로 밀도를 백 배이상 증폭시킴으로써 대면적에서 잘 정렬된 나노패턴을 형성시키는데 성공했다.
[그림.2] 대면적에서 마이크로 크기의 패턴이 수십나노미터 크기의 패턴으로 패턴의 밀도를 증폭시키는 과정(위쪽)과 이를 통해 대면적에서 형성된 20 나노미터 선폭의 초미세 분자조립 나노구조(아래쪽)
이는 기존 나노패턴기술에 비해 더 단순하고 공정비용이 저렴하며, 넓은 면적에서 연속 공정이 가능해 차세대 반도체나 디스플레이 분야에 폭넓게 이용될 수 있을 것으로 기대된다.
연구책임자인 김상욱 교수는 “이번 연구결과는 분자조립 나노패턴기술을 저비용, 대면적화 함으로써 실제 나노소자공정에 이용할 수 있는 가능성을 크게 높였다는데 의미가 있다”고 말했다.
이 연구는 김 교수의 지도하에 정성준 박사가 주도적으로 진행했으며 현재 정 박사는 KAIST에서 박사과정을 마친 후, U.C. Berkely에서 박사후연구원(Post doc)으로 근무하고 있다.
한편, 이번 연구결과는 KAIST 김상욱 교수팀과 삼성전자 LCD사업부의 3년간에 걸친 공동연구의 결실로서 그간 선행연구결과들이 Nano Letters, Advanced Materials, Advanced Functional Materials지 등 저명 학술지에 발표된 바 있으며, 최종적으로 개발된 ‘저비용, 대면적 나노패턴기술’은 최근 나노기술분야의 세계적인 학술지인 ‘ACS Nano誌’ 8월 19일자 온라인 판에 소개됐다.
2010.08.23
조회수 24581
-
김승우교수, 정밀거리측정기술 개발
- 네이처 포토닉스誌 발표, “미래우주핵심기술 개발을 통한 우주선진국 도약 가능성 열어”-
수 백 km의 거리에서 1nm*의 차이까지 정확히 측정할 수 있는 정밀거리 측정기술이 국내 연구진에 의해 개발되었다.
* 1nm(나노미터) : 10억분의 1m
우리학교 기계공학과 김승우 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업 (도약연구)과 우주원천기초기술개발사업의 지원을 받아 수행되었고, 연구결과는 광학 분야 최고 권위지인 ‘네이처 포토닉스(Nature photonics)’ 온라인 속보(8월 8일자)에 게재되었다.
김 교수팀은 지금까지 장거리 측정의 한계점이던 1mm 분해능*을 1nm 분해능으로 측정할 수 있는 획기적인 정밀거리 측정기술 개발에 성공하였다.
* 분해능(分解能, resolving) : 측정기가 검출할 수 있는 가장 작은 단위의 물리량을 의미하며, 1mm 분해능은 수백 km의 거리에서 1mm의 차이를 측정할 수 있음.
특히 이 기술은 일반적으로 장거리를 측정할 때 나타나는 모호성(ambiguity)도 극복하여, 이론적으로 100만km를 모호성 없이 측정할 수 있다.
김 교수팀은 실제 700m의 거리에서 150nm의 분해능 구현에 성공하였고, 우주와 같은 진공상태에서는 1nm의 분해능 구현도 가능하다는 사실을 실험을 통해 검증하였다.
이번 연구결과로 향후 지구와 유사한 행성을 찾기 위한 편대위성군 운용* 및 위성 또는 행성 간의 거리측정을 통한 상대성 이론 검증과 같은 미래우주기술개발에 한 발 다가서게 되었다.
* 편대위성군운용(formation flying of multiple satellites) : 여러 대의 소형위성을 동시에 쏘아 올려 위성간의 거리를 측정함으로써, 지구와 유사한 행성을 찾거나 상대성이론 검증에 활용
위성 또는 행성 간의 정밀거리측정은 지구와 유사한 행성을 찾거나 상대성 이론을 검증하는 핵심기술로, 우주 선진국에서는 이 기술을 개발‧보유하기 위해 경쟁적으로 연구하고 있다.
김승우 교수는 “장거리를 1nm 분해능으로 측정할 수 있는 기술개발로, 우리나라도 편대위성군운용과 같은 미래우주핵심기술인 정밀거리측정 기술을 보유하게 되어, 명실 공히 우주 선진국으로 도약할 수 있는 기반을 마련하게 되었다”라고 연구의의를 밝혔다.
2010.08.17
조회수 16541
-
이상엽 교수, 가상세포 방법론 개발
- 미국 국립과학원회보 게재, "가상세포 시스템 활용 대사특성 예측 기술 개발" -
우리학교 이상엽 교수 연구팀이 생명체의 세포를 체계적으로 분석하여 세포 전체의 대사적 특성을 정확하게 예측할 수 있는 "가상세포 방법론"을 개발했다.
이 연구는 교육과학기술부 "미래기반기술사업(시스템생물학 연구개발)의 지원을 받아 수행되었으며, 연구결과는 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌" 8월 2일자 온라인판에 게재되었다.
환경문제와 질병에 대한 관심도가 나날이 높아짐에 따라 의학적인 용도 및 일상생활에 널리 쓰이는 화학물질이나 바이오연료 등을 바이오기반으로 생산하는 것이 더욱 중요해 지고 있다. 이러한 유용한 물질들은 상당수 미생물을 사용하여 개발하는데, 이를 위해 미생물의 체계적인 분석과 개량 연구가 필요하다. 이에, 전체적인 관점에서 복잡한 생명체의 대사를 체계적으로 파악할 수 있는 방법의 개발이 요구되어 왔다.
가상세포는 컴퓨터시스템으로 실제세포를 모사하여 연구하고자하는 생명체의 세포를 체계적으로 분석하는 중요한 도구이다.
이상엽교수 연구팀은 생명체의 정확한 모사를 위한 가상세포 시스템을 개발하였다. 이를 이용하여 얻어진 가상세포 예측 결과들은 실제 세포 실험으로 측정된 결과와 비교하여 정확도가 획기적으로 개선되었다. 이로써 보다 정확한 가상세포 예측이 가능하여 실제 생명체의 분석연구에서 시간과 비용을 큰 폭으로 줄일 수 있게 되었다.
이번 가상세포 방법론의 개발은 국내뿐 아니라 세계생명공학 분야에서 새로운 패러다임을 제공하여, 생명체의 분석과 개량연구에 소모되는 시간과 비용을 절감할 수 있게 되었으며, 또한 이번에 개발한 방법론은 게놈 염기서열이 분석된 모든 생명체에 적용이 가능하기 때문에 다양한 산업적, 의학적 응용을 위한 미생물 개발에 활용될 수 있을 것으로 기대된다.
2010.08.04
조회수 13937
-
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 -
우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다.
거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다.
이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다.
우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다.
또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다.
이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 22357