본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%B5%EA%B3%BC%EB%8C%80%ED%95%99
최신순
조회순
핵산중합효소의 비정상적인 활성 유도 규명
- 금속이온의 고감도 검출 및 새로운 유전자 분석기술로 적용 가능- 화학분야 세계적 학술지 ‘앙게반테 케미誌’12월호 표지논문 선정 우리학교 생명화학공학과 박현규 교수가 핵산중합효소의 비정상적인 활성을 금속이온을 통해 조절하고 이를 이용해 바이오 컴퓨터를 포함하는 미래 바이오 전자 분야의 핵심기술인 로직 게이트를 구현하는 기술을 개발했다고 23일 밝혔다. DNA를 새롭게 생성해 증폭시키는 효소인 핵산중합효소는 증폭 대상인 목적 DNA와 프라이머(primer)의 염기쌍이 서로 상보적인 짝(A와 T, C와 G)을 이룰 경우에만 가능하다고 알려져 왔었다. 박 교수는 이러한 기존의 개념을 뛰어넘어 특정 금속이 있을 경우에는 상보적인 염기쌍이 아닌 T-T 및 C-C 염기쌍으로부터도 핵산중합효소의 활성을 유도해 핵산을 증폭할 수 있다는 사실을 규명해냈다. 이는 수은 및 은 이온과의 결합을 통해 안정화 된 비 상보적인 T-T와 C-C 염기쌍을 상보적인 염기쌍으로 인식하는 핵산중합효소의 착각 현상에 기인한 것으로, 박 교수는 이를 ‘중합효소 활성 착오(Illusionary polymerase activity)’로 묘사했다. 연구팀은 이 현상을 기반으로 바이오 컴퓨터 등 초고성능 메모리를 가능하게 하는 미래 바이오전자 구현을 위한 핵심기술인 로직게이트를 구현했다. 박현규 교수는 “이번 연구는 기존에 연구되어온 금속 이온과 핵산의 상호작용연구에서 한 걸음 더 나아가 이를 효소활성 유도와 연관시킨 최초의 시도로써, 금속이온의 초고감도 검출 및 새로운 단일염기다형성(single nucleotide polymorphism) 유전자 분석 기술로 적용될 수 있다”고 말했다. 특히, “기존 핵산 기반 기술들과 비교해 비용이 저렴하고 간단한 시스템 디자인을 통해 정확한 로직 게이트 구현이 가능함으로써 분자 수준의 전자소자 연구에 큰 진보를 가져왔다”고 덧붙였다. 한편, 이번 연구는 한국연구재단(이사장 박찬모)이 시행하는 ‘중견연구자지원사업(도약연구)’의 지원을 받아 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적인 학술지인 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 12월호(12월 10일자) 표지논문으로 선정됐다.
2010.12.23
조회수 14460
뼈 형성 모방, 고성능 리튬전지 소재 개발
- 재료분야 세계적 학술지 Advanced Materials지 온라인판 게재- 리튬이차전지, 차세대 유․무기 나노복합소재 개발에 응용 가능해 우리학교 신소재공학과 강기석(35세) 교수팀과 박찬범(41세) 교수팀이 뼈의 형성 과정을 모방해 우수한 나노구조를 갖는 ‘리튬이차전지용 전극소재 합성을 위한 원천기술개발’에 성공했다고 22일 밝혔다. 뼈는 자연계에 존재하는 대표적인 나노복합소재로써 콜라겐이라는 단백질 섬유를 따라 칼슘인산염 나노결정이 생성․성장함으로써 생성된다.연구팀은 이러한 자연현상을 모방해 차세대 고안전성 리튬전지용 양극소재인 철인산염을 나노튜브 형태로 합성하는 데 성공했다. 리튬이차전지의 성능을 향상시키기 위해서는 에너지를 저장하거나 방출하기 위한 리튬의 빠른 이동이 필수적이다. 이를 위해 전극소재의 구조를 나노화하게 되면 표면적이 넓어지고 리튬의 확산에 필요한 거리가 짧아지기 때문에 보다 효과적으로 에너지를 저장하거나 방출할 수 있다. 이 기술의 핵심은 3차원 나노 구조를 갖는 생체재료 위에 철인산염을 균일하게 성장시킨 후 생체재료를 효과적 제거해 나노튜브구조를 얻는 것이다. 연구팀은 간단한 단백질의 일종인 펩타이드의 자기조립공정을 이용해 콜라겐 섬유와 유사한 구조 및 물성을 지니는 단백질 나노섬유를 합성한 뒤, 철 이온과 인산이온의 수용액상 침착반응을 이용해 단백질 나노섬유를 철인산염으로 균일하게 코팅했다. 이후 열처리를 통해 펩타이드 나노섬유를 탄화시키면, 내벽이 전도성 탄소층으로 코팅된 철인산염 나노튜브를 얻을 수 있었다 (그림). 연구팀은 철인산염 나노튜브가 차세대 리튬이차전지 전극소재로써 매우 우수한 특성을 가짐을 확인했다. 이번 연구는 생체재료분야와 리튬전지분야의 융합연구를 통해 이뤄졌으며, 기술적인 돌파구가 필요한 리튬전지개발에 이러한 접근방식이 새로운 해결방안이 될 수 있다는 가능성을 제시한 우수한 연구사례로 평가받고 있다. 이 기술을 이용하면 철인산염 외에 각종 다른 기능성 소재 개발에 응용이 가능해 리튬이차전지 뿐만 아니라 차세대 유․무기 나노복합소재 개발이 기여할 것으로 예상된다. 한편, 이번 연구결과는 재료분야 세계적 학술지 어드밴스드 머티리얼스(Advanced Materials) 12월 21일자 온라인판에 실렸다. 또한, 그 중요성을 인정받아 ‘네이처 퍼블리싱 그룹(Nature Publishing Group)’ 아시아 판에도 소개됐다.
2010.12.22
조회수 17085
나노튜브를 이용한 유기태양전지 효율 향상 기술 개발
우리학교 신소재공학과 김상욱 교수팀과 전기및전자공학과 유승협 교수팀이 탄소나노튜브를 유기태양전지에 적용해 에너지 변환효율을 크게 향상시키는데 성공했다. 이 연구결과는 재료공학의 세계적 학술지인 어드밴스드 머티리얼스(Advanced Materials)지 최신호(11월 30일, 화) 온라인 판에 게재됐다. 반도체고분자의 광반응을 통해 전기에너지를 생산하는 유기태양전지는 고가의 실리콘을 사용하지 않아 가격이 저렴하다. 또한, 잘 휘고 투명해 여러 분야에 적용 가능한 미래 친환경 에너지원이다. 이 전지는 휴대 전자기기나 스마트 의류, BIPV(Building Integration Photovoltaic : 건물 외피에 전지판을 이용하는 건물 외장형 태양광 발전) 등 다양한 분야에 응용이 기대된다. 유기태양전지가 다른 태양전지에 비해 효율이 낮은 중요한 이유 중 하나는 태양빛을 받아 전자와 정공을 형성시키는 반도체고분자의 수송특성이 낮아 생성된 전자나 정공이 효율적으로 외부로 전달되지 못한다는 점이다. 이러한 문제를 해결하기 위해 반도체고분자의 수송특성을 향상하려는 다양한 연구들이 전 세계적으로 진행되어 왔다. 특히, 탄소나노튜브나 나노와이어 등을 이용해 전자나 정공의 빠른 수송 경로를 제공해주는 방법이 꾸준히 연구되어 왔다. 그러나 이들 연구에서는 전자와 정공이 동시에 탄소나노튜브나 나노와이어에 주입되어 자기들끼리 재결합 함으로써, 결국 외부에서 채집되는 전류가 증대되지 못하거나 오히려 감소하는 고질적인 문제가 발생했다. 이러한 문제를 포함해 유기태양전지들은 상용화하기에는 아직 낮은 광변환 효율을 보여 이에 대한 성능향상이 시급히 요구되어 왔다. KAIST 연구팀은 유기 태양전지의 반도체고분자에 붕소 또는 질소 원소로 도핑된 탄소나노튜브를 적용해 전자나 정공 중 한쪽만을 선택적으로 수송하도록 함으로써 이들의 재결합을 막아 유기태양전지의 효율을 33%까지 크게 향상시키는데 성공했다. 또한 도핑된 탄소나노튜브는 유기용매 및 반도체고분자내에서 매우 쉽고 고르게 분산되는 특성을 보여 기존의 값싼 용액공정을 그대로 사용해 효율이 향상된 태양전지를 만들 수 있음을 확인했다. 이 연구결과로 반도체고분자가 이용되는 유기트랜지스터나 유기디스플레이 등 다양한 전자기기의 성능향상도 가능할 것으로 기대된다. 김상욱 교수는 “이번 연구결과를 통해 나노소재 기술이 유기태양전지의 성능향상에도 크게 기여할 수 있음을 알아냈다”며 “앞으로 나노소재 기술을 이용한 차세 대 에너지개발을 위한 연구에 노력하겠다”고 말했다. 이번 연구는 KAIST EEWS(Energy, Environment, Water, and Sustainability)연구사업의 지원을 받아 김상욱, 유승협 교수의 지도하에 박사과정 이주민 학생이 진행했다.
2010.12.07
조회수 18982
와이파이 기반 코엑스 실내 네비게이션 시스템 개발
- 실내 네비게이션 시스템 세계 최초 상용화 - - 높은 위치 추정 정확성과 신속한 반응 속도 해결- 우리학교는 전산학과 한동수 교수 연구팀이 와이파이(Wi-Fi) 신호를 이용해 코엑스와 같은 대규모 실내 공간에서 사용할 수 있는 실내 네비게이션 시스템을 개발했다고 16일 밝혔다. 한 교수팀은 개발된 시스템으로 코엑스에서 위치 추정 실험을 실시한 결과, 설치된 전체 3,400여 개의 AP(Access Point, 무선 접속 장치) 중 관리가 가능한 일부 AP만을 사용해도 지하 쇼핑몰에서는 3~5미터, 지상 1~4층의 전시장에서는 5~8미터의 평균 오차를 허용하는 높은 위치 추정 정확성을 달성했다. 이 결과는 AP 설치의 변화가 많은 실제 환경에서도 와이파이 기반 실내 네비게이션 시스템이 큰 문제없이 사용될 수 있음을 확인해 준 것이다. 또한, 위치 추정 속도도 코엑스가 매우 넓은 대규모 실내 공간임에도 평균 약 0.5초의 신속한 반응을 보이는 것으로 확인됐다. 개발된 실내 네비게이션 시스템을 이용하면 코엑스 지리에 익숙하지 않은 방문자도 목적지까지 실시간 길 안내를 받을 수 있게 된다. 또한, 주차장에서는 자신의 주차 위치를 확인한 뒤 용건을 마치고 주차 위치로 되돌아가는 서비스도 제공받을 수 있어, 백화점이나 쇼핑몰과 같이 넓고 복잡한 주차장에서 자신의 차량을 쉽게 찾을 수 있게 된다. 특히, 11월 코엑스에서 개최되는 ‘G20 정상회의’ 방문객들에게 이 서비스를 제공해 유용하게 사용될 수 있을 것으로 기대된다. 구글 안드로이드 OS가 탑재된 스마트 폰 사용자라면 누구나 이 시스템을 이용할 수 있으며, 한국무역협회, 코엑스, KTNET, 도심공항터미널 등 4사가 공동으로 제작에 참여한 ‘myCoex 모바일 앱’에 통합되어 오는 10월 1일 일반에게 공개된다. 이와 관련해 지난 달 KAIST와 한국무역협회 IT전문 자회사인 KTNET(사장 윤수영)은 코엑스 몰을 대상으로 한 ‘코엑스 실내 네비게이션 시스템 공동 개발 협약’을 체결했으며, 상용화를 위한 ‘기술실시계약’도 체결했다. 한동수 교수는 “스마트 폰을 소지한 일반인이 이번에 개발된 실내 네비게이션 시스템을 코엑스에서 본격적으로 사용하게 되면, 와이파이 기반 실내 네비게이션 시스템이 세계 최초로 상용화되는 것을 의미하게 된다”며, “향후 발전 가능성이 더욱 기대 된다”고 말했다. 앞으로 KAIST와 KTNET은 위치를 기반으로 한 모바일 응용 추천, 모바일 응용 자동 실행, 모바일 광고 등 코엑스에 적용 가능한 실내 위치 인식 및 관련 서비스 기술을 적극 발굴해 활용할 예정이다. 한편, 한 교수는 이번에 개발된 정확도 높은 와이파이 기반 실내 네비게이션 시스템 기술의 전 세계 확산을 위해, 미국의 위치 인식 서비스(LBS) 분야 전문가 그룹과 공동으로 미국 실리콘 밸리에서의 합작 회사 설립도 추진하고 있다. <용어설명> 와이파이 혹은 무선 랜: 와이파이(Wi-Fi)는 홈 네트워킹, 휴대전화, 비디오 게임 등에 쓰이는 유명한 무선 기술의 상표 이름이며, 무선 랜이라고도 한다. AP가 설치된 곳을 중심으로 일정 거리 이내에서 PDA나 노트북 컴퓨터를 통해 초고속 인터넷을 이용할 수 있다. 무선주파수를 이용한 방식이므로 전화선이나 전용선은 필요 없지만, PDA나 노트북 컴퓨터에는 무선랜카드가 장착되어 있어야만 와이파이를 이용할 수 있다. 와이파이는 개인용 컴퓨터 운영 체제, 고급형 게임기, 프린터, 다른 주변 기기에서 지원된다. AP(Access Point) :무선 접속 장치 위치 기반 모바일 응용 추천 : 특정 위치 혹은 그 주변에 근접하였을 때 스마트 폰에서 사용 가능한 응용 프로그램을 추천하는 것이다. 예를 들면, 코엑스의 메가 박스에 접근하면 메가 박스의 티켓 예매를 할 수 있는 응용 프로그램을 추천하거나 번잡한 음식점에서 음식을 주문하는 응용 프로그램을 추천할 수 있다. 위치 기반 모바일 응용 자동 실행 : 위치 기반 모바일 응용 추천이 일반화 되면 특정 응용에 대해서는 해당 위치에 근접하면 해당 위치와 연관된 응용 프로그램을 자동으로 실행시켜 사용자의 편리성을 도모할 수 있다. 위치 기반 모바일 광고: 스마트 폰 사용자가 특정 지역에 근접하면 해당 지역에서 가장 효과적인 광고를 사용자에게 제공하는 것으로 주변의 상가에 대한 정보와 할인 쿠폰 정보 등을 제공하는 것이 위치 기반 모바일 광고의 한 예가 될 수 있다.
2010.09.16
조회수 15551
"리튬이온 이차전지용 고성능 나노선"개발
- 내연기관 출력과 맞먹는 고성능 리튬 이차전지 개발 길 열려 - 전기자동차 상용화를 위한 가장 큰 걸림돌인 배터리 문제를 해결하는 데 한 걸음 더 나아가게 됐다. 우리학교 신소재공학과 김도경 교수팀은 ‘리튬망간산화물 미세나노선’ 을 개발하는 데 성공했다고 15일 밝혔다. 이 물질은 기존의 리튬이온 이차전지용 양극물질에 비해 100배 이상의 출력밀도를 나타내며, 제조기법이 단순하고 공정비용도 저렴해 앞으로 전기자동차용 배터리 분야에 폭넓게 이용될 수 있을 것으로 기대된다. 일반적으로 리튬이온 이차전지는 전기자동차용 배터리에 적용되기에는 충분히 높은 출력밀도를 가지지 못한다. 김 교수팀은 10nm(나노미터, 10억분의 1m) 미만 굵기의 미세나노선 구조를 대량 합성해 양극물질에 적용함으로써, 기존 리튬이온 이차전지보다 100~200배가량 높은 출력밀도를 나타내는 데 성공했다. 이는 엔진으로 사용되는 내연기관의 출력밀도에 근접한 수준이다. 하지만, 지금까지 개발된 리튬이온 이차전지는 내연기관의 출력밀도에 훨씬 미치지 못해 중량이 많이 나갔다. 또한, 값비싼 원료와 공정법을 이용하는 등 리튬이온 이차전지는 전기자동차에 사용하는 데에 있어서 극복해야 할 한계를 안고 있었다. 이번 연구에서는 10nm 미만의 미세한 나노선이 가지는 구조적 유연함을 이용해 기존 리튬망간산화물이 지니고 있었던 ‘얀-텔러 뒤틀림(Jahn-Teller distortion)" 현상을 극복할 수 있음을 보여주었다. 높은 출력밀도를 보인 리튬망간산화물 미세 나노선 제조에 관한 연구는 산업적 응용이 조기에 가능할 것으로 예상되며, 국가 과학기술 경쟁력 제고 측면에 기여할 것으로 기대된다. 한편, 이번 연구 결과는 나노기술(NT) 분야의 가장 권위 있는 학술지인 "나노 레터스(Nano Letters)"지 8월 26일자 온라인 판에 게재됐고, 현재 국내특허 출원 중이다. <용어설명> ○리튬이온 이차전지 : 이차 전지의 일종으로서, 에너지 밀도가 높고 기억 효과가 없으며, 사용하지 않을 때에도 자연방전이 일어나는 정도가 낮음. ○출력밀도(Power density) : 단위 무게당 출력되는 전력의 정도. ○얀-텔러 뒤틀림(Jahn-Teller distortion) 현상 : 리튬이온전지의 충전과 방전 시 양극물질의 구조가 뒤틀려져 성능이 급격히 저하되는 현상 ○리튬망간산화물 : 리튬이온전지에 이용되는 양극재료 중의 하나. 현재 상용화되는 리튬 코발트 산화물에 비하여 원자재 가격이 저렴하며, 친환경적이다.
2010.09.15
조회수 16131
10nm대의 초미세 나노패터닝 新기술 개발
- 나노 레터스 誌 발표, 대면적 10nm대 나노패턴의 실용화 가능성 열어 - 복잡하고 다양한 10nm대의 고분해능 나노패턴을 대면적에 효율적으로 제작할 수 있는 기술이 국내연구진에 의해 개발되었다. KAIST 정희태 교수가 주도한 이번 연구결과는 나노분야 세계적인 학술지인 ‘나노 레터스(Nano Letters)’에 온라인으로 최근 (8. 17) 게재되었다. 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 박찬모)이 시행하는 ‘세계수준의 연구중심대학(WCU) 육성사업’과 ‘중견연구자지원사업 도약연구’의 지원을 받아 수행되었다. 정희태 교수 연구팀은 차세대 반도체, 디스플레이 및 나노전자 소자개발에 핵심기술인 10nm대의 고분해능 패턴을 원하는 모양과 크기로 쉽게 대면적에 제작할 수 있는 기술을 개발하였다. 연구팀은 전압차를 이용하여 아르곤(Ar) 입자를 가속시켜, 원하는 목적층에 물리적 충격을 줌으로써 목적층의 물질을 제거하는 이온충격(ion-bombardment) 공정 중에서 나타나는 2차 스퍼터링 (secondary sputtering)이라는 현상을 적용하였다. 이 현상은 이온충격(ion-bombardment)으로 물리적 식각을 할 때 목적층의 물질이 다양한 각분포로 이탈하여 마스크 패턴의 옆면에 흡착하는 현상을 이용한 것으로서, 선 모양, 컵 모양, 가운데가 비어있는 실린더(Hole-cylinder) 모양, 삼각 터널(triangle tunnel) 등 다양한 모양을 가지며, 최대 종횡비(high-aspect-ratio) 20까지 높이를 간단하게 제어할 수 있다. 이렇게 제작된 패턴은 웨이퍼, 유리기판, 쿼츠(Quartz), 금속판 뿐만 아니라 PET필름과 같은 플렉서블 기판에서도 공정이 가능하기 때문에 범용적으로 사용되어 질 수 있다. 연구팀은 투명한 쿼츠셀 위에 금 선 패턴을 제작하여 ITO기판을 대체할 수 있을 만큼 높은 성능을 갖는 투명전극을 제작하여 태양전지에 응용함으로써 다양한 광학/전기적 나노소자에 응용할 수 있음을 보였다. 동 연구는 기존의 리소그라피기술로 제작된 패턴의 해상도를 능가하는 10nm급 패턴을 제작할 수 있는 신기술로 거의 모든 금속(금, 은, 알루미륨, 크롬)과 무기물(ZnO, ITO, SiO2)에 적용가능하며, 기존의 패터닝 방법과 비교하여 낮은 공정비용과 간단한 실험공정으로 고해상도 패턴을 대면적에 균일하게 제작할 수 있다는 장점이 있다. 정희태 교수는 “10nm급의 고해상도 미세패턴 제작기술은 미래산업 전반에 걸쳐 매우 중요한 기술군으로, 그동안 나노분야에서 극복해야 할 핵심과제였습니다. 본 연구는 이러한 문제점을 비교적 간단한 방법으로 극복하고 향후 태양광 발전, 반도체 및 바이오소자의 효율증대에 적용가능한 기술”이라고 연구의의를 설명하였다.
2010.09.08
조회수 17182
김상욱 교수, 저비용 대면적 나노패턴기술 개발
- ACS Nano誌 온라인판 19일자에 게재 - 나노기술의 오랜 난제가 KAIST와 삼성전자 LCD사업부에 의해 풀렸다. 우리학교 신소재공학과 김상욱 교수팀과 삼성전자 LCD사업부(사장 장원기)가 산학공동연구를 통해 분자자기조립현상(Molecular Self-assembly)과 디스플레이용 광리소그래피(Optical Lithography) 공정을 융합해 나노기술의 오랜 난제로 여겨지던 ‘저비용 대면적 나노패턴기술’ 개발에 성공했다. 최근 나노기술 분야에서는 서로 다른 종류의 고분자를 화학적으로 결합시킨 블록공중합체가 새로운 나노패턴소재로 각광받고 있다. 분자조립 과정을 통해 스스로 형성하는 초미세 나노구조를 블록공중합체에 이용하게 되면 최신 반도체공정으로도 만들기 힘든 수~수십 나노미터 크기의 미세한 점이나 선 등을 쉽고 값싸게 제조할 수 있다. 그러나 자연적으로 형성되는 블록공중합체 나노패턴은 그 배열이 불규칙하고 결함이 많아 상용화를 위한 기술적인 걸림돌로 지적되어 왔다. 블록공중합체 나노패턴을 반도체나 디스플레이에 이용하기 위해서는 임의의 대면적에서 블록공중합체 나노패턴을 원하는 형태로 잘 정렬시킬 수 있는 기술이 필수적이다. 그러나 현재까지 개발된 기술들은 방사광가속기와 같은 매우 값비싼 장비가 필요하고 임의의 넓은 면적에 적용할 수 없다는 근본적인 한계를 가지고 있었다.[그림.1] 자연적으로 형성된 무질서한 배열의 블록공중합체 나노패턴 (왼쪽)과 대면적 나노패턴공정으로 결함 없이 잘 배열된 블록공중합체 나노패턴 (오른쪽) 김 교수팀은 이번에 개발된 융합 기술을 통해 저비용 패턴공정인 디스플레이용 광리소그라피로 대면적에서 마이크로미터(1㎛=100만분의 1m) 크기의 패턴을 만든 후, 분자조립현상을 이용해 수십 나노미터(1㎚=10억분의 1m) 크기의 패턴으로 밀도를 백 배이상 증폭시킴으로써 대면적에서 잘 정렬된 나노패턴을 형성시키는데 성공했다. [그림.2] 대면적에서 마이크로 크기의 패턴이 수십나노미터 크기의 패턴으로 패턴의 밀도를 증폭시키는 과정(위쪽)과 이를 통해 대면적에서 형성된 20 나노미터 선폭의 초미세 분자조립 나노구조(아래쪽) 이는 기존 나노패턴기술에 비해 더 단순하고 공정비용이 저렴하며, 넓은 면적에서 연속 공정이 가능해 차세대 반도체나 디스플레이 분야에 폭넓게 이용될 수 있을 것으로 기대된다. 연구책임자인 김상욱 교수는 “이번 연구결과는 분자조립 나노패턴기술을 저비용, 대면적화 함으로써 실제 나노소자공정에 이용할 수 있는 가능성을 크게 높였다는데 의미가 있다”고 말했다. 이 연구는 김 교수의 지도하에 정성준 박사가 주도적으로 진행했으며 현재 정 박사는 KAIST에서 박사과정을 마친 후, U.C. Berkely에서 박사후연구원(Post doc)으로 근무하고 있다. 한편, 이번 연구결과는 KAIST 김상욱 교수팀과 삼성전자 LCD사업부의 3년간에 걸친 공동연구의 결실로서 그간 선행연구결과들이 Nano Letters, Advanced Materials, Advanced Functional Materials지 등 저명 학술지에 발표된 바 있으며, 최종적으로 개발된 ‘저비용, 대면적 나노패턴기술’은 최근 나노기술분야의 세계적인 학술지인 ‘ACS Nano誌’ 8월 19일자 온라인 판에 소개됐다.
2010.08.23
조회수 24531
김승우교수, 정밀거리측정기술 개발
- 네이처 포토닉스誌 발표, “미래우주핵심기술 개발을 통한 우주선진국 도약 가능성 열어”- 수 백 km의 거리에서 1nm*의 차이까지 정확히 측정할 수 있는 정밀거리 측정기술이 국내 연구진에 의해 개발되었다. * 1nm(나노미터) : 10억분의 1m 우리학교 기계공학과 김승우 교수가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 중견연구자지원사업 (도약연구)과 우주원천기초기술개발사업의 지원을 받아 수행되었고, 연구결과는 광학 분야 최고 권위지인 ‘네이처 포토닉스(Nature photonics)’ 온라인 속보(8월 8일자)에 게재되었다. 김 교수팀은 지금까지 장거리 측정의 한계점이던 1mm 분해능*을 1nm 분해능으로 측정할 수 있는 획기적인 정밀거리 측정기술 개발에 성공하였다. * 분해능(分解能, resolving) : 측정기가 검출할 수 있는 가장 작은 단위의 물리량을 의미하며, 1mm 분해능은 수백 km의 거리에서 1mm의 차이를 측정할 수 있음. 특히 이 기술은 일반적으로 장거리를 측정할 때 나타나는 모호성(ambiguity)도 극복하여, 이론적으로 100만km를 모호성 없이 측정할 수 있다. 김 교수팀은 실제 700m의 거리에서 150nm의 분해능 구현에 성공하였고, 우주와 같은 진공상태에서는 1nm의 분해능 구현도 가능하다는 사실을 실험을 통해 검증하였다. 이번 연구결과로 향후 지구와 유사한 행성을 찾기 위한 편대위성군 운용* 및 위성 또는 행성 간의 거리측정을 통한 상대성 이론 검증과 같은 미래우주기술개발에 한 발 다가서게 되었다. * 편대위성군운용(formation flying of multiple satellites) : 여러 대의 소형위성을 동시에 쏘아 올려 위성간의 거리를 측정함으로써, 지구와 유사한 행성을 찾거나 상대성이론 검증에 활용 위성 또는 행성 간의 정밀거리측정은 지구와 유사한 행성을 찾거나 상대성 이론을 검증하는 핵심기술로, 우주 선진국에서는 이 기술을 개발‧보유하기 위해 경쟁적으로 연구하고 있다. 김승우 교수는 “장거리를 1nm 분해능으로 측정할 수 있는 기술개발로, 우리나라도 편대위성군운용과 같은 미래우주핵심기술인 정밀거리측정 기술을 보유하게 되어, 명실 공히 우주 선진국으로 도약할 수 있는 기반을 마련하게 되었다”라고 연구의의를 밝혔다.
2010.08.17
조회수 16495
이상엽 교수, 가상세포 방법론 개발
- 미국 국립과학원회보 게재, "가상세포 시스템 활용 대사특성 예측 기술 개발" - 우리학교 이상엽 교수 연구팀이 생명체의 세포를 체계적으로 분석하여 세포 전체의 대사적 특성을 정확하게 예측할 수 있는 "가상세포 방법론"을 개발했다. 이 연구는 교육과학기술부 "미래기반기술사업(시스템생물학 연구개발)의 지원을 받아 수행되었으며, 연구결과는 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌" 8월 2일자 온라인판에 게재되었다. 환경문제와 질병에 대한 관심도가 나날이 높아짐에 따라 의학적인 용도 및 일상생활에 널리 쓰이는 화학물질이나 바이오연료 등을 바이오기반으로 생산하는 것이 더욱 중요해 지고 있다. 이러한 유용한 물질들은 상당수 미생물을 사용하여 개발하는데, 이를 위해 미생물의 체계적인 분석과 개량 연구가 필요하다. 이에, 전체적인 관점에서 복잡한 생명체의 대사를 체계적으로 파악할 수 있는 방법의 개발이 요구되어 왔다. 가상세포는 컴퓨터시스템으로 실제세포를 모사하여 연구하고자하는 생명체의 세포를 체계적으로 분석하는 중요한 도구이다. 이상엽교수 연구팀은 생명체의 정확한 모사를 위한 가상세포 시스템을 개발하였다. 이를 이용하여 얻어진 가상세포 예측 결과들은 실제 세포 실험으로 측정된 결과와 비교하여 정확도가 획기적으로 개선되었다. 이로써 보다 정확한 가상세포 예측이 가능하여 실제 생명체의 분석연구에서 시간과 비용을 큰 폭으로 줄일 수 있게 되었다. 이번 가상세포 방법론의 개발은 국내뿐 아니라 세계생명공학 분야에서 새로운 패러다임을 제공하여, 생명체의 분석과 개량연구에 소모되는 시간과 비용을 절감할 수 있게 되었으며, 또한 이번에 개발한 방법론은 게놈 염기서열이 분석된 모든 생명체에 적용이 가능하기 때문에 다양한 산업적, 의학적 응용을 위한 미생물 개발에 활용될 수 있을 것으로 기대된다.
2010.08.04
조회수 13908
이상엽 교수, 초고분자량 거미 실크 단백질 생산기술 개발
- 초고분자량의 거미 실크 단백질이 거미줄을 강하게 만든다는 사실 밝혀 -- 첨단 초강력 섬유소재로의 활용 기대 - 우리학교 이상엽 특훈교수는 서울대 박명환 교수팀과 공동으로 세계적으로 이제까지 생산하지 못했던 ‘초고분자량의 거미 실크 단백질’을 대사공학으로 개량된 대장균을 이용하여 생산하였다고 발표하였다. 이 초고분자량의 단백질로 만든 거미 실크 섬유는 강철보다 강한 성질을 나타냄을 밝혔다.이 연구는 교육과학기술부가 2009년부터 추진하고 있는 ‘신기술융합형 성장동력사업(바이오제약 사업본부장 수원대 임교빈 교수, 분자생물공정 융합연구단장 KAIST 김정회 교수)의 지원을 받아 수행되었으며, 연구결과는 특허 출원 중으로 세계적 저명 학술지인 「미국 국립과학원 회보 (PNAS)」誌’ 7월 26일자 온라인판에 게재되었다. 거미가 만드는 초고분자량의 실크 섬유는 미국 듀폰(Dupont)社의 고강력 합성섬유인 케블라(Kevlar)에 견줄 강도를 갖고 있으며, 탄성력이 뛰어나 의료산업 등 다양한 분야에서 활용될 수 있는 것으로 알려져 있다. 거미 실크 섬유의 우수한 특성 때문에 그동안 효모, 곤충, 동물세포, 형질전환식물, 대장균을 비롯한 여러 생체 시스템을 활용하여 거미실크를 대량 생산하는 기술을 개발하려는 많은 시도가 있어 왔다.그러나 지금까지는 글리신 등 특정 아미노산이 반복적으로 많이 존재하는 거미 실크 단백질의 특수성으로 인해 고분자량의 거미실크를 인공적으로 생산할 수 없었다. 이러한 기존 기술의 한계와 달리, 우리학교 생명화학공학과 이상엽 교수 연구팀은 고분자량의 거미실크 단백질 (황금 원형 거미; Nephila clavipes 유래)을 생산하는 대장균을 대사공학적으로 새로이 개발하고, 이를 활용함으로써 고성능의 거미실크섬유를 인공적으로 합성하는데 성공하였다. 우선, 연구팀은 비교 단백체 분석 등 시스템 대사공학 기법을 이용하여 거미 실크 단백질을 생산할 때 대장균 내에 글리실-tRNA의 부족 현상이 일어남을 밝혀냈다. 그리고 이 문제의 해결을 위해 관련 유전자들을 증폭 또는 제거 하는 등 대장균의 대사를 재구성함으로써 대장균으로부터 세계 최고 수준의 반복단위수를 가진 285 kDa에 달하는 거미실크 단백질을 성공적으로 합성해 낼 수 있었다. 또한, 대장균에서 생산된 거미 실크 단백질을 분리‧정제한 후에 생체 모방 기술을 이용한 스피닝 작업을 통해 실크 섬유 형태로 제작하였다. 이렇게 만들어진 거미 실크 섬유의 물성을 측정한 결과 강도 (tenacity) 508 MPa, 인장탄성율 (Young"s modulus) 21 GPa를 보여 케블라 수준의 강도를 가지게 된다는 사실을 확인하였다. 기존에는 285 kDa이나 되는 큰 거미 실크 단백질의 생산이 불가능하여 고강도의 거미 실크 섬유를 만들 수 없었는데, 이번 연구를 통해 가능하게 되었다. 이상엽 교수는 “이번 연구는 바이오기반 화학 및 물질 생산시스템 개발의 핵심기술인 시스템 대사공학적 방법을 통해 기존의 석유화학 제품과 대체 가능한 고성능의 섬유를 생산하는 기반기술을 확립하였다는 데 그 의의가 있으며, 향후 생산시스템 향상과 물성 연구를 계속 수행하여 실용화하고 싶다.”라고 밝혔다.
2010.07.28
조회수 22305
KAIST, 미국 TI社 지원받아 미래 CPU개발
- 전기 및 전자공학과 유회준교수 연구실, 공식 TI Lab 지정 - 우리학교 전기및전자공학과 유회준 교수 연구실이 공식 TI Lab(Texas Instruments Lab.)으로 선정돼 연구비와 3억원 상당의 연구장비를 지원받는다. 미국의 종합 반도체 생산업체인 Texas Instruments社(이하 TI社)는 유회준 교수 연구실과 ‘사람의 뇌를 모방한 매니코어 프로세서 칩(Many-core Processor Chip) 개발’을 위한 협약을 7월초 가진 바 있다. 21일에는 박현욱 KAIST 전기및전자공학과장, 유회준 전기및전자공학과 교수와 유혜경 TI사 한국지부 반도체영업부장은 유회준 교수 연구실에서 TI Lab 선정 현판식을 가졌다. 최근 하나의 칩상에 수십 개 이상의 프로세서를 집적하는 미래형 CPU가 미국 인텔사 등을 중심으로 활발하게 연구되고 있다. KAIST 전기 및 전자공학과 유회준 교수팀은 인텔 기술을 뛰어 넘는 새로운 CPU기술을 개발해오고 있다. TI사 관계자는 “KAIST와의 연구 협력을 통해 미래 세계를 이끌어갈 지능형 컴퓨터의 핵심 기술인 매니코어 프로세서개발에 새로운 전기를 마련할 계획”이라며 “유회준 교수 연구실과의 기술 교류를 통해 차세대 기술 개발을 선도할 수 있을 것으로 기대 한다”고 밝혔다. 유 교수는 “이번 기회로 미래 CPU를 국내 기술이 선도할 수 있는 계기로 삼고 싶다”고 말했다. 유 교수는 면적을 적게 소모하며 계산 속도가 뛰어난 아날로그 회로와 전력 소모가 낮고 정밀도가 높은 디지털 회로를 한 칩으로 하는 혼합형 회로를 통해 인체의 뇌를 모방하는 신경회로망을 설계하였으며, 이를 Many-core Processor에 일부분으로 삽입하여 인간의 뇌의 종합적인 지능을 단순처리에 능한 종래의 프로세서에 접목시키는 연구를 해오고 있다. 특히 이를 이용해 지능형 감시 카메라, 로봇 및 자동차 등의 ‘눈’을 한층 더 똑똑하게 만들어 2008년부터 매년 미국 샌프란시스코에서 발표해오고 있다. 국제 전기전자공학자학회(IEEE) 석학회원이며 세계 최고 권위의 국제 고체회로학회(ISSCC)의 아시아 지역 회장이기도 한 유 교수는 미국의 국제적인 출판사인 Wiley사에서 올해 ‘Mobile 3D Graphics SoC’라는 책을 출간했으며 2년전에는 미국 CRC 출판사에서 ‘Low-Power NoC for High Performance SoC Design’이라는 책을 펴낸 바 있다.(끝) <용어설명> ○ Texas Instruments社 : 인텔, 삼성, 도시바와 함께 세계 4대 반도체 엔진 생산업체 중 하나 ○ Many-core Processor : 10개 이상의 코어를 탑재하여 만든 프로세서, 싱글코어에 비해 처리 속도가 빠르고 전력 소모량이 적다. ○ 신경회로망 : 인간의 뇌가 물체를 인식하는 방법을 모사하여 설계한 칩으로 기존의 복잡한 연산과정을 거치지 않기 때문에 컴퓨터의 물체 인식 처리 시간을 20배 이상 빨라지게 하였으며 전력 소모량도 크게 줄였다.
2010.07.22
조회수 18347
최성민교수, 세포막의 탄성특성 변화현상 규명
- 피지컬 리뷰 레터스 7월16일자 게제 -- 새로운 의약품 개발에 중요한 역할을 할 것으로 기대- 우리학교 원자력 및 양자공학과 최성민 교수 연구팀은 세포막을 형성하는 인지질 이중막과 향균 펩타이드의 상호작용에 따른 세포막의 탄성특성 변화 현상을 첨단 중성자 산란 측정을 이용하여 세계 최초로 규명했다. 이번 연구결과는 지난 16일 물리학 분야의 세계적 권위지인 피지컬 리뷰 레터스(Physical Review Letters)에 발표됐다. 최성민 교수와 박사과정 이지환 씨가 주도한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 원자력연구기반확충사업(원자력기초공동연구소)의 지원을 받아 수행됐다. 세포막은 인지질 분자의 이중막으로 구성되어 있으며, 세포 내부의 물질을 유지하는 방어막 역할과 다양한 기능의 단백질을 함유하고 있는 등 매우 중요한 역할을 담당한다. 세포막을 통한 물질전달, 세포 분열 등 세포에서 일어나는 여러 가지 현상은 세포막과 단백질의 상호작용에 의해 지배되며 세포막은 이러한 과정에서 다양한 형태의 구조적 변화를 겪게 된다. 세포막의 탄성특성, 즉 탄성계수는 세포막이 얼마나 부드럽거나 단단한가를 나타내는 것으로 세포막과 단백질의 상호작용에 따른 탄성특성 변화에 대한 이해는 세포에서 일어나는 여러 가지 과정과 이에 따른 구조적 변화를 이해하는데 매우 중요한 사안이다. 최 교수팀은 펩타이드라는 작은 단백질들이 세포막을 구성하는 인지질 이중막에 흡착되어 인지질 이중막의 구조적 변화를 일으키는 과정에서 인지질 이중막의 탄성특성이 어떻게 변하는가를 중성자 스핀에코 분광법이라는 최첨단 비탄성 중성자 산란 기법을 이용하여 규명했다. 이번 연구결과에 의하면 멜리틴이라는 펩타이드는 그 양이 적을 때는 인지질 이중막 표면에 흡착되어 이중막을 형성하고 있는 인지질 분자들의 정렬도를 저해함으로써 인지질 이중막을 부드럽게 만드는 효과를 보인다. 반대로, 멜리틴의 양이 일정량보다 많아지게 되면 인지질 이중막을 통과하는 구멍을 형성하고 동시에 이중막을 단단하게 만들기 시작하며, 멜리틴에 의해 형성된 인지질 이중막의 구멍이 더욱 많아지게 되면 구멍들이 서로 상호작용을 일으켜 인지질 이중막이 급격하게 단단해짐을 밝혔다. 현재 여타 단백질과 인지질 이중막의 상호작용에 대한 추가적인 연구가 진행되고 있으며, 이러한 현상에 대한 이해는 세포에서의 생명현상에 대한 근본적인 이해와 향후 새로운 의약품 개발에 중요한 역할을 할 것으로 기대된다. 최 교수팀은 최근 중성자 및 X-선 산란을 이용하여 탄소나노튜브 및 나노입자의 자기조립 초구조체 개발 연구를 수행하여 신소재 및 화학분야의 세계적 권위지인 어드밴스드 메터리얼즈(Advanced Materials), 미국화학회지(Journal of the American Chemical Society) 등에 연속적으로 논문을 게재하는 등 연성나노물질 연구에서도 우수한 연구성과를 거두고 있다. 최 교수는 중성자를 이용한 연성나노물질 연구분야에서 국제적 전문성을 인정받고 있으며 대표적인 국제 중성자 협회인 아시아-오세아니아 중성자 산란협회(AONSA)의 총무이사를 담당하고 있다. 또한 최성민 교수와 한국원자력연구원이 공동으로 개발한 하나로 냉중성자 연구시설의 40m 소각중성자산란 장치는 세계 최고수준의 나노구조 측정능력을 갖추고 있어 우리나라 나노소재 연구분야의 발전에 새로운 기회를 제공할 것으로 기대되고 있다. <용어설명> ❶ 세포막(cell membrane) 세포와 세포 외부의 경계를 짓는 막으로 세포 내의 물질들을 보호하고 세포간 물질 이동을 조절한다. 세포막은 인지질 및 단백질 분자로 구성된 얇고 구조적인 인지질 이중층으로 되어 있으며, 선택적인 투과성을 지닌다. ❷ 펩타이드(Peptide) 아미노산의 중합체이다. 보통 소수의 아미노산이 연결된 형태를 펩타이드라 부르고 많은 아미노산이 연결되면 단백질로 부른다. ❸ 멜리틴(melittin)벌 독에서 분리한 26개의 아미노산으로 구성된 단백질로 10∼20년 전에 그 성분과 역할이 알려져 항균물질로 사용된다. [그림]세포막을 구성하는 인지질 이중막에 멜리틴 펩타이드가 흡착되어 형성하는 구조의 각 단계별 모식도 (왼쪽). 멜리틴 펩타이드 양의 증가에 따른 인지질 이중막의 각 단계별 탄성특성 변화 (오른쪽).
2010.07.19
조회수 19125
<<
첫번째페이지
<
이전 페이지
71
72
73
74
75
76
77
78
79
80
>
다음 페이지
>>
마지막 페이지 83