본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%B0%94%EC%9D%B4%EC%98%A4%EB%B0%8F%EB%87%8C%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
조영호 교수, 정신건강 측정 기술 개발
〈 조 영 호 교수 〉 우리 대학 바이오및뇌공학과 조영호 교수 연구팀이 스트레스 등인간의 정신 건강 상태를 측정할 수 있는 피부 부착형 패치를 개발했다. 미래 사회에서 인간의 감성 증진 및 정신건강 관리의 중요성을 일깨워주는 과학적 연구가 될 것으로 예상된다. 이번 연구는 네이처의 자매지 ‘사이언티픽 리포트(Scientific Reports)’ 3월 23일자 온라인 판에 게재됐다. (논문명: A Flexible and Wearable Human Stress Monitoring Patch) 최근 인공지능과 신체 건강 등의 모니터링에 대한 관심이 고조되고 있지만 감성 관리와 정신건강 향상에 대한 기술은 많이 부족했다. 기존 스트레스 측정을 위한 데이터 분석은 맥파 등 하나의 생리적 데이터만을 분석하기 때문에 스트레스 이외의 생리적 상태(운동, 더위, 추위, 심혈관 질환 등)에 의한 영향을 구분하는 데 한계가 있었다. 연구팀은 문제 해결을 위해 피부에 나타나는 세 가지 감정 징후인 피부온도, 땀 분비량, 맥파 등 다중 생리적 데이터의 변화를 측정해 이를 피부에 부착 가능한 패치로 제작했다. 이 우표크기(25mm*15mm*72µm)의 피부 부착형 스트레스 패치는 맥박이 뛸 때 생기는 압력으로 스스로 전기를 만들어 공급하는 방식으로 외부 전원 및 배터리 없이 사용이 가능하다. 또한 모든 센서를 하나의 극소형 패치로 집적해 기존의 패치에 비해 피부 접촉면적을 1/125로 줄이고 유연성을 6.6% 높여 착용감을 극대화했다. 이를 통해 감정과 스트레스 징후를 연속적으로 측정해 개인의 감정 관리 및 정신건강 증진에 도움이 될 것으로 보인다. 연구팀은 “기존 웨어러블 기기에 쉽게 연결 가능하고 전원이 필요 없어 산업적 응용가치가 크다”며 “급격히 성장 중인 인공지능 기술과 접목할 경우 인간의 이성적 지능과 함께 감성적 부분까지 교감할 수 있을 것이다”고 말했다. 조 교수는 “미래사회에서는 인간의 지능과 신체 건강 뿐 아니라 고차원적 감정 조절과 정신 건강 관리의 중요성이 크게 부각될 것이다”며 “인간-기계 간 교감을 통해 정신적 만족감을 더해 삶의 질을 향상시키려는 감성 교감 기술이다”고 말했다. 윤성현, 심재경 박사과정 연구원이 주도한 이번 연구는 미래창조과학부 신기술융합형 성장동력사업의 지원으로 수행됐다. □ 그림 설명 그림1. 피부부착형 유연 스트레스 패치 소자 부착 사진 그림2. 피부부착형 유연 스트레스 패치의 다층 구조 그림3. 피부부착형 유연 스트레스 패치 실제 크기
2016.04.19
조회수 12377
남윤기 교수, 빛과 열로 신경세포의 활성을 억제하다
〈 남 윤 기 교수 〉 우리 대학 바이오및뇌공학과 남윤기 교수와 박지호 교수 연구팀이 빛과 열을 통해 신경세포의 활성을 억제할 수 있는 새로운 플랫폼을 개발했다. 이번 연구는 나노분야 학술지 ‘에이씨에스 나노(ACS Nano)’ 9일자 온라인 판에 게재됐다. 신경세포는 활동 전위를 생성해 세포 사이의 정보를 교환하는 역할을 담당한다. 신경세포의 활성은 뇌기능을 이해할 수 있는 핵심 요소로 이를 조절하기 위해 전기 자극, 광유전학 등 다양한 방법의 기술이 연구됐다. 그러나 전기 자극은 신경세포의 활성 유도엔 효과적이나 그 반대인 활성 억제엔 기술적 한계를 갖는다. 광유전학은 빛으로 신경세포 활성을 조절할 수 있지만 유전자 조작이 까다롭고 다른 기술과의 결합이 어려웠다. 연구팀은 문제 해결을 위해 금 나노막대를 신경세포 칩에 결합하는 방법을 선택했다. 금 나노막대는 특정 파장대의 빛을 흡수해 열을 발생시키는 특성이 있어 광열 자극의 매개체로 사용 가능하다. 연구팀은 신경세포가 이 광열 자극에 노출될 경우 그 활성이 억제되는 현상을 발견했고 이를 응용한 전기 광학적 신경플랫폼을 제작했다. 근적외선을 선택적으로 흡수하는 금 나노막대를 합성한 후 생체 친화성을 갖는 중합체(polymer)로 코팅해 신경세포 칩 표면에 결합했다. 신경세포 칩 상의 금속 전극은 금 나노막대가 결합한 후에도 전기적 특성이 변하지 않아 신경세포 활성 측정에 적합하다. 금 나노막대가 결합한 칩에 신경세포를 배양하면 전기적으로 신경세포의 활성을 측정하는 동시에 광열 자극으로 신경세포의 활성을 억제함을 확인했다. 이 기술은 유전자 조작 없이도 빛으로 활성 조절이 가능해 기존의 광유전학 기술의 단점을 상쇄시켰다. 연구팀이 개발한 전기 광학적 신경플랫폼은 광유전학 기술의 대안이 될 것으로 기대된다. 또한 기존 신경플랫폼과 결합해 뇌기능 연구 및 뇌질환 치료에 다각적으로 활용 가능할 것으로 예상된다. 남 교수는 “나노입자와 신경세포를 결합해 새로운 자극 플랫폼을 제시했다”며 “기존의 전기적 신경 시스템을 활용하는 동시에 광열 자극으로 신경세포의 활성을 자유롭게 억제할 수 있다”고 말했다. 우리 대학 바이오및뇌공학과 유상진 박사과정 학생이 1저자로 참여한 이번 연구는 한국연구재단 중견연구자지원사업 도약연구의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금나노막대와 미세전극칩을 결합한 광-전기 복합 자극칩 플랫폼 모식도
2016.03.31
조회수 11308
은(銀)으로 덮은 종이 크로마토그래피 개발
〈 정 기 훈 교수 〉 우리 대학 바이오및뇌공학과 정기훈 교수 연구팀이 종이에 금속나노입자를 증착시켜 저렴하면서도 정교한 결과를 내는 크로마토그래피용 종이를 개발했다. 이번 연구는 광학분야의 국제 학술지 ‘빛: 과학과 응용(Light: Science and Applications)’지 1월 15일자 온라인 판에 게재됐다. 크로마토그래피는 특정 용매를 이용해 혼합물을 분리하는 기술이다. 가장 전통적인 종이 크로마토그래피를 비롯해 박막, 가스 등 다양한 방법을 이용한 크로마토그래피가 존재한다. 그 중 종이 크로마토그래피는 종이를 용매에 살짝 담근 후 종이 내 혼합 물질의 성분과 종이의 인력 차이에 의해 물질이 나아가는 정도가 달라지는 것을 이용한 혼합물 분리 방법이다. 종이 크로마토그래피는 저렴하고 다수의 성분을 동시에 검출할 수 있어 광합성 산물 및 다양한 생체 혼합물의 분리, 검출에 응용된다. 크로마티그래피 기술로 혼합물을 분리하고 나면 다음 단계로 물질의 성분을 파악하기 위해 물질에 빛을 조사한다. 분자는 각자 다른 성질을 갖고 있어 빛을 받은 후 분출하는 파장이 모두 다르다. 파장의 차이를 분석하면 혼합물에 어떤 분자가 포함됐는지 파악이 가능하다. 사람의 지문과 같은 역할을 하는 것이다. 그러나 이 과정에서 문제가 발생한다. 현존하는 종이 크로마토그래피 기술은 가격이 저렴한 대신 혼합물 분리의 정교성이 떨어지고, 혼합물 내 분자의 농도가 낮을 경우 빛을 조사해도 성분 검출이 잘 되지 않는 등의 한계가 있다. 분자를 검출하기 위해 형광 표지(label)을 붙여 빛을 조사하는 방법도 있지만 형광 표지로 인해 분자의 본래 특성이 변하게 되는 문제가 발생한다. 연구팀은 문제 해결을 위해 나노플라즈모닉스 특성을 갖는 은 나노섬을 종이 표면에 균일하게 증착했다. 나노플라즈모닉스 기술은 금속 나노구조 표면에 빛을 집광시키는 기술로 신경전달물질, 유전물질, 생체 물질 검출 등 다양하게 응용 가능하다. 은과 같은 금속은 빛을 조사했을 때 기존보다 강한 빛을 받아들이는 특성을 가져, 연구팀은 종이의 특성을 유지하면서 기판 표면에서의 빛 집광도를 최고 수준으로 끌어올릴 수 있었다. 연구팀은 개발한 종이에 표면증강 라만 분광법(Surface-enhanced Raman spectroscopy)을 접목해 별도의 표지 없이 혼합물을 분리하고 피코몰(10-12M) 수준의 극 저농도 물질도 측정하는 데 성공했다. 이 기술은 검출가능한계를 최고 수준으로 향상시켜 진단의학, 약물 검사 등 특정 성분의 분리 검출이 요구되는 다양한 분야에 응용 가능할 것으로 예상된다. 연구팀은 “진공증착, 저온 열처리 등 일반적인 반도체공정을 이용해 정밀하고 대면적 양산이 가능한 금속나노구조를 제작했다”며 “기존 기술의 단점인 비싼 가격, 셀룰로스의 특성 변화 등의 문제를 해결할 수 있을 것이다”고 밝혔다. 정 교수는 “이번 결과를 바탕으로 향후 저비용 무표지 초고감도 생체 분자 혼합물의 분리 및 분석이 가능해질 것이다”며 “또한 신약 개발용 약물 스크리닝, 환경 지표 검사, 생리학적 기능 연구 등에 크게 기여할 것이다”고 말했다. □ 그림 설명 그림1. 크로마토그래피용 금속나노입자를 갖는 종이의 단면 주사전자현미경 사진 그림2. 크로마토그래피용 금속나노입자를 갖는 종이의 주사전자현미경 사진 그림3. 각종 크로마토그래피용 종이 광학사진 그림4. 비타민 혼합물의 분리 및 무표지 검출
2016.02.02
조회수 12261
복합 처방된 약물의 부작용 예측 기술 개발
〈이 도 헌 교수〉 우리 대학 바이오및뇌공학과 이도헌 교수(유전자동의보감사업단장, 제 1저자 박경현 연구원) 연구팀이 복합 처방된 약물들의 인체 내 간섭현상을 컴퓨터 가상인체로 분석해 부작용을 예측할 수 있는 기술을 개발했다. 이번 연구결과는 미국 공공과학도서관 학술지 플러스 원(PLOS ONE) 10월 15일자에 게재됐다. 의료 현장에서는 여러 약물을 함께 처방받아 복약하는 경우가 많다. 이러한 복합처방은 모든 가능성을 미리 시험할 수 없기 때문에 널리 알려진 대표적 위험사례를 제외하면 완벽한 사전시험이 불가능하다. 기존에는 부작용 사례를 의약품 적정사용평가(DUR)에 등재시켜 의료현장에서 활용하는 사후 추적만이 최선의 방법이었다. 따라서 복합처방으로 인한 의료 사고를 막기 어려웠고 부작용 예측에도 한계가 있었다. 문제 해결을 위해 연구팀은 발생 가능한 상황을 사전에 컴퓨터 가상인체로 예측함으로써 위험을 미리 파악할 수 있는 기술을 개발했다. 연구팀은 컴퓨터 가상인체에서 랜덤워크 알고리즘을 이용해 약물 표적의 생체 내 분자 신호전파를 시뮬레이션 했다. 약물이 투여됨으로써 신체에 영향을 끼치는 정도를 측정한 것인데, 이를 통해 두 개의 약물이 서로 어느 정도의 영향을 주는지 정량화에 성공했다. 따라서 만약 두 약물 간 간섭이 심해 서로 많은 영향을 준다면 부작용이 발생할 가능성이 높기 때문에 신중한 처방을 해야한다는 결론을 얻을 수 있다. 기존 예측 기술들이 단백질 상호작용 네트워크에서 약물 표적사이의 근거리 간섭만을 고려했다면 이 교수 연구팀은 약물 표적의 생체 내 분자 신호전파 시뮬레이션을 통해 원거리 간섭까지 고려해 정확도를 높였다. 연구팀은 이 기술이 다수의 표적을 갖는 복합 천연물의 신호 전파도 분석해 약물과 천연물 사이의 상호작용 예측에도 활용될 것이라고 예상했다. 이 교수는 “이번 기술은 자체 개발한 대규모 컴퓨터 가상인체 시스템을 통해 진행됐다”며 “약물 복합처방의 부작용을 예측할 수 있는 새로운 방법을 제시했다는 의의를 갖는다”고 말했다. □ 그림 설명 그림 1. 연구팀이 개발한 컴퓨터 가상인체 시스템 그림 2 . 처방된 복합 약물 사이의 신호전파 간섭 예시
2015.10.22
조회수 9742
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수> 우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다. 이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다. 일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다. 연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다. 엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다. 연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다. 연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다. 연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다. 박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다. 박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다. □ 그림설명 그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술 세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14346
심장세포의 핵심 신호전달경로 스위치 규명
심장근육세포내 베타수용체 신호전달경로의 자극 세기에 따라 세포의 생존과 사멸이라는 상반된 운명이 어떻게 결정되는지 그 근본원리가 우리 학교 연구진에 의해 규명되었다. 향후 심부전을 비롯한 다양한 심장질환의 치료에 활용될 것으로 기대된다. 우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 신성영 박사(제1저자), 이호성 박사과정학생, 강준혁 박사과정학생이 참여하였으며, 광주과학기술원 생명과학부 김도한 교수팀이 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약/전략연구)과 바이오·의료기술개발사업 및 KAIST 미래형 시스템헬스케어사업의 지원으로 수행되었고, 연구결과는 네이처(Nature) 자매지인 네이처 커뮤니케이션스(Nature Communications)지에 12월 17일자로 게재되었다. * (논문명) The switching role of β-adrenergic receptor signalling in cell survival or death decision of cardiomyocytes 베타수용체 신호전달경로는 심장근육세포의 생존을 촉진(베타2수용체 매개)하지만 동시에 심장근육세포의 사멸을 유도하기도 하여 심장독성을 유발(베타1수용체 매개)함으로써 심부전 등 다양한 심장질환을 일으킨다. 지금까지 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정(생존 혹은 사멸)에 대한 근본 원리를 밝히고자 하는 많은 시도가 있어왔으나 아직 밝혀지지 않았다. ※ 베타수용체(β-adrenergic receptor): 심장근육세포의 세포막에 존재하는 단백질로서 에피네프린이나 노르에피네프린 등의 신경호르몬에 의해 자극받으면 심장근육세포가 더 강하고 빠르게 수축하도록 촉진하는 신호를 전달한다. 연구팀은 대규모 컴퓨터시뮬레이션 분석과 세포생물학 실험의 융합연구인 시스템생물학 연구를 통하여 ERK* 신호전달경로와 ICER** 신호전달경로가 매개하는 피드포워드회로가 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치임을 밝혀냈다. * ERK(Extracellular signal-regulated kinases): 세포생존에 관여하는 신호전달분자 ** ICER(Inducible cAMP early repressor): 세포사멸에 관여하는 신호전달분자 약한 베타수용체의 자극에 대해서는 ERK 신호전달경로가 활성화되고 이로 인하여 Bcl-2*** 단백질의 발현량이 증가되어 심장근육세포의 생존이 촉진되지만, 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로가 활성화되고 Bcl-2 단백질의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발되는 것이다. *** Bcl-2(B-cell lymphoma 2): 세포생존 촉진에 핵심적인 역할을 하는 신호전달분자 또한 연구팀은 시스템생물학적 접근을 통해 실제 심부전 환자에게 널리 사용되는 약물인 베타차단제(β-blocker)****의 작동원리를 밝혀내었다. 심장근육세포에 베타1차단제를 처리하였을 때 강한 베타수용체 자극에서의 Bcl-2 발현량이 증가하고 이로 인하여 심장근육세포의 생존율이 향상되어 세포보호효과가 일어난다는 것을 발견함으로써, 베타차단제의 근본약리기전을 신호전달경로 수준에서 규명하였다. **** 베타차단제(β-blocker): 베타수용체의 활성화를 저해하는 약물이며, 심부전의 진행을 억제시키는 효과가 있어서 임상에서 가장 널리 처방되는 심부전 치료약물이다. 조광현 교수는 “정보기술(IT)과 생명과학(BT)의 융합연구인 시스템생물학 연구를 통해 지금껏 밝혀지지 않았던 베타수용체 신호전달경로에 의해 조절되는 심장근육세포의 상반된 운명결정과정에 대한 핵심 원리를 성공적으로 규명한 것으로 향후 심장근육세포운명의 제어 및 이를 통한 심부전 등의 다양한 심장질환 치료에 널리 활용될 것으로 기대된다.”고 밝혔다. 조광현 교수 연구팀은 IT와 BT가 융합된 시스템생물학 분야를 세계 최초로 개척해왔으며 특히 인체의 복잡한 질병과 관련된 신호전달네트워크의 모델링과 시뮬레이션 분석, 실험적 증명에 관한 혁신적인 연구를 수행해오고 있다. 지금까지 140여편의 국제저널논문을 게재하였으며, 2014년에는 Cell, Science, Nature 자매지에 연이어 연구성과를 게재하였다. 심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명 및 제어기술 개발: 수학모델링과 대규모 컴퓨터시뮬레이션 분석을 통해 규명된 심장근육세포의 상반된 운명결정과정을 조절하는 핵심회로의 규명. ERK 신호전달경로와 ICER 신호전달경로가 매개하는 피드포워드회로는 심장근육세포의 생존과 사멸을 결정하는 핵심 분자스위치이다. 약한 베타수용체의 자극에 대해서는 ERK 신호전달경로(파란색 화살표)가 활성화되고 이로 인하여 Bcl-2의 발현량이 증가되어 결과적으로 심장근육세포의 생존이 촉진된다. 반면 강한 베타수용체의 자극에 대해서는 ICER 신호전달경로(빨간색 화살표)가 활성화되고, 이로 인해 Bcl-2의 발현량이 감소하게 되어 심장근육세포의 사멸이 유발된다. 이로서 심장근육세포의 사멸을 방지하면서 심장박동의 기능을 유지시킬 수 있는 원천제어기술의 토대가 마련되었다.
2014.12.26
조회수 17520
신기루 현상 착안해 테라헤르츠파 광학렌즈 개발
무더운 여름, 아스팔트 도로에 물웅덩이가 보이다가 가까이 다가가면 사라지고 좀 가다보면 또 물웅덩이가 나타난다. ‘신기루’라고 불리는 이 현상은 지표면 가까운 공기층의 큰 온도차로 인한 공기밀도 변화로 빛이 굴절되기 때문이다. 우리 학교 바이오및뇌공학과 정기훈 교수는 물리학과 안재욱 교수와 신기루 현상에서 착안한 물리적 효과를 이용해 테라헤르츠파 굴절률 분포형 렌즈를 세계 최초로 개발했다. 실리콘 소재를 곡면으로 가공해 만드는 카메라렌즈에 사용되는 기존방식과는 달리 이번에 개발된 렌즈는 평평한 실리콘 웨이퍼를 소재로 반도체 양산공정으로 제작해 비용을 최대 1/100 수준으로 낮출 수 있으며 제작시간도 훨씬 단축시킬 수 있다. 광원 추출효율은 4배 이상 향상시켰다. 테라헤르츠파는 0.1THz~30THz(테라헤르츠, 1조헤르츠) 대역의 전자기파로 가시광선이나 적외선보다 파장이 길어 X선처럼 물체의 내부를 높은 해상도로 정확히 식별할 수 있어 보안검색, 의료영상기술 등 비파괴 검사 도구나 의료용 진단기구의 성능을 획기적으로 향상시킬 수 있을 것으로 전망된다. 그러나 넓은 대역의 주파수 특성으로 인해 손실되는 전자기파의 비율이 높아 테라헤르츠파를 높은 효율로 집중시킬 수 있는 광학소자 개발이 요구됐다. 정 교수 연구팀은 평평한 실리콘에 테라헤르츠파 파장(약 300㎛) 보다 작은 80~120㎛ 크기의 구멍을 반도체 양산방법인 광식각공정으로 만들었다. 렌즈 가장자리로 갈수록 홀 사이즈는 크게 만들었다. 테라헤르츠파를 쪼이자 공기와 실리콘 중 공기 비율이 높은 가장자리는 굴절률이 낮았으며, 상대적으로 공기의 비율이 낮은 가운데는 굴절률이 높았다. 평평한 소재를 광학특성을 공학적으로 설계해 빛을 모으는 볼록렌즈와 같은 기능을 한 것으로 신기루 현상과 같은 물리적 효과와 같다. 이번 연구를 주도한 정기훈 교수는 “자연현상에서 착안해 자연계에 존재하지 않는 다양한 광학특성을 띄는 메타물질을 인공적으로 만든 것”이라며 “물질적 제약으로 인해 다양한 광학소자개발이 더딘 테라헤르츠파 기술 진보에 상당한 도움이 될 것”이라고 연구의의를 밝혔다. 미래창조과학부가 지원하는 한국연구재단의 도약연구자지원사업, 그린나노기술개발사업, 글로벌프론티어사업의 일환으로 수행된 이번 연구는 미국물리협회에서 발간하는 귄위 있는 국제학술지인 ‘어플라이드 피직스 레터(Applied Physics Letter)’에 9월자 특집논문 및 표지논문(제1저자 박상길 박사과정)으로 게재됐다. 그림1. 유전체 메타물질을 이용한 실리콘 굴절률 분포형 렌즈. 머리카락 굵기(80~120µm) 수준의 구멍이 실리콘 기판에 서로 다른 크기로 형성돼 있다. 그림2. 굴절률 분포형 렌즈 원리 그림3. 신기루 현상신기루는 아스팔트 도로 위에서 흔하게 나타나는 대기 굴절 현상이다. 이 현상은 도로면이 물체를 반사하는 것처럼 보이게 하는데 이 때문에 도로면에 물웅덩이가 있는 것처럼 착각하게 된다. 아래 사진에는 멀리서 다가오는 차의 상이 도로면을 통해 보인다. <사진 : 경기북과학고등학교 조영우 선생님 제공> 그림4. 논문표지
2014.09.24
조회수 20103
활성산소에 대한 세포반응 원리 규명 - 암과 노화 극복의 실마리 제공
우리 학교 연구진이 활성산소* 농도에 따라 세포의 운명이 어떻게 달라지는지 그 원리를 규명해냈다. 활성산소는 세포의 성장을 돕는 한편 세포손상을 일으켜 노화 등을 촉진하는 것으로 알려져 있었다. 이처럼 세포를 죽게도 하고 살리기도 하는 활성산소의 상반된 역할을 설명할 수 있는 실마리가 찾아진 것이다. * 활성산소(ROS) : 인체 대사활동에 의해 발생되는 산소 부산물로 세포의 성장과 분화를 돕고 염증을 억제하는 유익한 기능을 하는 한편 세포손상을 유발하여 암, 당뇨 등 여러 질병을 일으키고, 노화를 촉진시키는 것으로 알려져 있다. 우리 대학 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 이호성 박사과정 연구원(제1저자), 황채영 박사(공동 제1저자), 신성영 박사가 참여하였으며, 한국생명공학연구원 권기선 박사(교신저자)가 공동으로 수행한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약)과 바이오·의료기술개발사업의 지원으로 수행되었고 연구결과는 사이언스(Science) 자매지인 사이언스 시그널링(Science Signaling)지 6월 3일자에 게재되었다. * 논문명 : MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species 연구팀은 활성산소의 농도에 따라 세포의 증식 또는 세포의 사멸이라는 운명을 가르는 분자스위치가 MLK3* 중심의 피드백회로임을 알아냈다. * MLK3 : 루신-지퍼 구조의 인산화효소로 세포 사멸에 관여하는 단백질이다. 적절한 스트레스가 주어지는 환경에서는 세포가 분열하도록 신호를 보내는 반면 과도한 스트레스 상황에서는 오히려 세포분열을 멈추고 세포가 죽도록 유도하는 결정적 단백질회로가 밝혀짐에 따라 향후 활성산소와 관련된 인체질환 연구의 실마리가 될 것으로 기대된다. 연구팀은 활성산소 농도가 낮을 때는 세포증식에 관여하는 ERK* 단백질이 활성화되는 반면 활성산소 농도가 높아지면 세포사멸에 관여하는 JNK** 단백질이 활성화 되는 것을 알아냈다. * ERK(Extracellular signal-regulated kinases) : 세포의 생존 및 증식에 관여하는 대표적인 신호전달 분자 ** JNK(c-Jun N-terminal kinases) : 세포의 스트레스 반응 및 사멸에 관여하는 대표적인 신호전달 분자 나아가 수학모델링과 컴퓨터시뮬레이션 분석, 그리고 분자세포생물학 실험을 융합한 시스템생물학 연구를 통해 MLK3 중심의 피드백회로가 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 핵심적인 분자스위치임을 밝혀내었다. 조 교수는 “IT와 BT의 융합연구인 시스템생물학 연구를 통해 수수께끼로 남아있던 활성산소에 대한 상반된 세포반응의 원리를 규명한 것으로 향후 활성산소로 인한 노화나 암을 극복하기 위한 연구에 활용될 것으로 기대된다”고 밝혔다. 연구 개요도. (A, B) 낮은 농도의 활성산소에 대해서는 세포 증식에 관여하는 단백질인 ERK가 높은 활성도를 보이는 반면, 높은 농도의 활성산소에 대해서는 세포 사멸에 관여하는 단백질인 JNK가 높은 활성도를 보인다는 것을 실험을 통해 확인하였다. 이 실험 결과는 ERK와 JNK가 활성산소의 농도에 따른 상반된 세포 반응을 유발할 수 있음을 시사한다. (C) 대규모 컴퓨터 시뮬레이션 분석을 통해 MLK3을 매개하는 양성피드백 회로와 MKPs를 통한 ERK와 JNK 간 상호소통이 활성산소의 농도에 따른 ERK와 JNK의 상반된 활성화를 일으키는 핵심회로임을 밝혀내었다. (D) MLK3을 매개하는 양성피드백회로는 활성산소에 대한 ERK와 JNK 경로 간의 신호흐름 균형을 조절하여 세포 반응을 결정하는 분자스위치 역할을 한다.
2014.06.09
조회수 17408
대장조직의 숨겨진 암발생 억제 메커니즘 규명
KAIST 연구진이 대장조직에 숨겨진 암발생 억제 메커니즘을 규명해냈다. 대장조직에 내재된 방어 메커니즘이 밝혀짐에 따라 대장암 발병에 대한 이해를 돕는 계기가 될 것으로 기대된다. 우리 학교 바이오및뇌공학과 조광현 석좌교수(교신저자)가 주도하고 송제훈 박사과정 연구원(제1저자)이 참여하였으며, 영국 암연구소 오웬 삼손 박사와 데이비드 휴웰, 레이첼 리지웨이, 아일랜드 연구소 보리스 콜로덴코, 월터 콜치 박사가 참여한 이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업(도약연구)의 지원으로 수행되었고 연구결과는 셀(Cell) 자매지 셀 리포트(Cell Reports)지 온라인판 3월 28일자에 게재되었다. * 논문명 : The APC network regulates the removal of mutated cells from colonic crypts 생명체는 손상된 조직을 스스로 복구할 수 있지만 복구를 위한 세포분열 과정에서 암을 일으킬 수 있는 유전자 변이가 생길 수 있다. 이는 빠른 세포분열 속도와 소화과정에서의 독성물질 때문에 유전자 변이 확률이 높은 대장의 장샘*에서 특히 문제가 된다. * 장샘(crypt) : 대장 표면을 형성하는 약 2000여개의 세포로 구성된 동굴모양의 상피 연구팀은 유전자 변이로 발암 가능성이 높아진 세포를 대장의 장샘에서 빨리 내보내는 방식으로 대장조직이 빠르고 빈번한 조직재생과정에서 암 발생을 억제한다는 것을 알아냈다. 변이된 세포의 장샘 체류시간을 줄여 비정상적 세포분열을 억제하는 방어 메커니즘이 대장에 내재되어 있다는 것이다. 수학모델을 만들고 이에 대한 방대한 컴퓨터 시뮬레이션 분석을 수행한 결과 유전자 변이에 의해 윈트신호전달*이 강화된 변이세포는 정상세포에 비해 접착력이 높아지면서 장샘의 위쪽으로 더욱 빠르게 이동, 장샘을 벗어나 장내로 배출되기 쉬운 것으로 나타났다. * 윈트 신호전달(Wnt Signaling) : 세포의 증식과 분화에 관여하는 신호전달 경로로 배아발달이나 성체조직의 항상성 관리에 특히 중요하다. 세포 외부에서 윈트 신호가 들어오면 베타 카테닌을 분해시켜 농도를 낮게 유지해 주는 분해복합체가 억제되면서 세포증식을 돕는 표적 유전자들이 발현되어 세포증식이 일어나게 된다. 유전자 변이로 윈트 신호전달회로의 핵심인자인 베타 카테닌이 분해되지 못하면 축적된 베타 카테닌이 세포증식을 활성화시키는 한편세포 접착력을 높이게 되는데, 장샘 조직의 특수한 환경과 비슷한 접착력을 가진 세포들이 모이려는 성질로 인해 결국 변이된 세포를 배출시켜 조직의 항상성을 유지한다는 것이다. 실제 생쥐모델에서도 비정상적인 장샘 조직의 경우 증식이 활발한 세포가 오히려 느리게 이동하는 것으로 나타나 이같은 시뮬레이션 결과를 확인할 수 있었다. 조 교수는 “본 연구는 컴퓨터 시뮬레이션으로 다세포 생명체가 비정상적 세포 변이에도 불구하고 조직의 항상성을 유지하도록 정교하게 설계되어 있음을 규명한 것으로 IT와 BT의 융합연구인 시스템생물학 연구를 통해 복잡한 생명현상의 숨겨진 원리를 파악할 수 있음을 보인 것” 이라고 밝혔다. 이 연구를 통해 대장의 장샘조직이 조직 내 암의 진화를 애초에 억제할 수 있는 메커니즘을 내재하고 있다는 놀라운 사실을 밝힘으로써 대장암 발생에 대한 이해를 한 단계 높이게 되었다. 또한 이번 연구결과는 대장암을 치료하기 위한 신약개발의 개발 방향에 대한 새로운 통찰을 제시하였다 주요그림 1 설명. 연구개요 모식도: 세포의 자가복구는 다세포생명체가 손상된 조직을 재생하기 위한 필수적인 과정이지만동시에 암을 일으킬 수 있는 체세포 변이의 위험성을 수반한다. 그렇다면 어떻게 이런 딜레마가 생체조직 내에서 해결될 수 있는 것인가? 이 문제는 재생속도가 빠르고 다양한 변이인자에 노출이 많은 대장조직에서 특히 중요하다. 연구팀은 대장 장샘의 세포증식과 이동에 관한 수학모델의 대규모 컴퓨터시뮬레이션과 생물학 시험을 결합한 시스템생물학(Systems Biology) 연구를 통해 그 분자적 메커니즘을 최초로 규명하였다. 장샘 조직 상단으로 이동하는 단일세포의 동역학 특성을 분석함으로써 암의 발생을 방지하는 장샘의 숨겨진 메커니즘을 밝힌 것이다. 그림은 실험용 생쥐에서 추출한 대장조직의 현미경 사진 위에 규명한 메커니즘을 그림으로 도식화 한 것이다. 주요그림 2 설명. 컴퓨터시뮬레이션 결과와 동물모델 실험을 통한 검증: (A) 야생형 장샘(첫째 행) 및 에이피시 유전자 변이된 장샘(둘째 행), 베타카테닌 유전자 변이된 장샘(셋째 행)에서, 이질적 세포군집에 의한 세포 재배치의 효과를 조사하는 컴퓨터 시뮬레이션이 수행되었다. 여기서 이질성은 균등하게 취해진 100개의 표본세포(첫째와 둘째 열)에 대해서 가해진 랜덤 노이즈를 노이즈가 없는 기준 분자 프로파일(파랑 파선)에 추가함으로써 모사된다. 표본세포들의 초기위치들은 세포 재배치에 의해서 최종위치로 변경된다. 이러한 세포재배치가 가져오는 윈트신호전달 및 세포접착의 분포(셋째와 네째 열)가 변화되는 양상이 조사되었다. 빨강 점 및 초록 점들은 기준 분자 프로파일에 대한 양과 음의 편차를 각각 가리키고, 빨강 및 초록 화살표들은 빨강과 초록 점들의 이동 방향을 각각 가리킨다. (B,C) 동형 에이피시 유전자 변이와 동형 및 이형 베타카테닌 변이들을 가지도록 유전자 조작된 생체모델(실험용 마우스)을 사용하였다(B,C). APCfl/fl(동형) 및 β-cateninexon3/+(이형), β-cateninexon3/exon3(동형) 유전자변이 실험용 마우스 (B, 첫째 행)의 대장 조직에 대해서, BrDU주입 후 2시간 이후에 BrDU 양성으로 마크된 세포들은 장샘의 증식영역(주로 아랫부분)에 한정된다. BrDU 주입 후 48시간 이후 장샘의 BrDU양성 세포들은 장샘의 윗쪽 방향으로 이동하였음을 가리킨다(B, 둘째 열). 에이피시 유전자 변이의 경우에는 동형 변이를 가진 생체모델이 사용되었다 (C, 둘째 열). 베타카테닌 변이의 경우에는 이형 변이(C, 셋째 열) 및 동형 변이(C, 넷째 열)를 가진 생체모델이 사용되었다. 본 연구팀은 BrDU 주입 후 2시간 및 48시간 후 BrDU가 마크된 세포들을 관측하였다. BrDU가 주입 후 2시간 이전에 DNA내에 포함되어지기 때문에 2시간에서의 BrDU마크는 증식영역의 위치를 가리킨다. BrDU 주입 후 48시간에서 장샘 내 세포의 이동과 증식이 관찰되었다. 본 연구팀은 증식성 세포들의 위치와 개수를 정량화하였고(C, 좌측) BrDU 표식 된 세포군집의 이동을 측정하기 위하여 누적빈도를 계산하였다(C, 우측). (C)의 화살표는 BrDU 표식된 세포군집의 이동거리를 가리킨다. 표본 마우스마다 50개의 ½장샘이 기록되었는데, 여기서 유전자 형마다 적어도 3개의 다른 실험용 마우스가 사용되었다.
2014.04.02
조회수 18703
실시간 조직검사 하는 초소형 현미경 개발
지난해 대장내시경 검사를 받은 34살 직장인 문 모씨는 5mm 크기의 용종이 발견돼 제거수술을 받았다. 대장암 가족병력이 있어 일주일 후 조직검사 결과가 나온다는 말에 초초한 마음으로 밤잠을 설쳤다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀은 내시경에 장착해 실시간 조직검사를 할 수 있는 초소형 현미경을 개발, 광학분야 세계적 학술지인 옵틱스 익스프레스(Optics Express) 3월 5일자 온라인판에 게재됐다. 지름이 3.2mm에 불과한 이 현미경은 20f/s(초당 프레임 수)의 속도로 3mm 깊이까지 3차원으로 스캔할 수 있다. 분해능(최소 식별 거리)은 머리카락 두께(100μm)의 약 1/6인 17μm(마이크로미터, 100만분의 1미터)로 암세포, 정상세포, 염증세포 등을 정확하게 구별해 낼 수 있다. 이 기술 개발로 △보통 2~3일 걸리던 조직검사를 실시간으로 수행할 수 있고 △불필요한 조직검사 횟수를 줄일 수 있으며 △점막절제술 시 정확한 위치에 대한 시술이 가능해져 합병증을 감소시킬 수 있을 것으로 기대된다. 이와 함께 현재 전 세계 의료용 내시경장비는 일본 업체들이 독점하고 있어 진입장벽이 매우 높지만 정 교수 연구팀의 초소형 현미경 개발로 우리 기술이 새로운 의료기기 시장에 진입할 수 있을 것으로 기대된다. 기존 내시경 조직검사는 의심되는 병변부위를 절제한 후 현미경으로 조직검사를 수행하기 때문에 실시간 진단이 불가능하다. 또 조직검사 과정에서 세포 염색 등을 위한 시간이 오래 걸려 정확도가 떨어진다. 이러한 문제점을 극복하기 위해 물리적인 절개 없이 실시간으로 조직을 진단하는 광간섭단층촬영술(OCT, Optical Cohrence Tomography) 등 차세대 영상기법을 내시경에 접목하는 연구가 최근 활발히 진행 중이다. 소화기 내시경(지름 약 11mm)에 최신 영상기술을 접목하기 위해서는 직경 3.5mm이내의 한정된 공간에 초소형 현미경을 구현하는 것이 핵심이다. 최근에는 압전소자와 광섬유를 이용해 직접 스캐닝하는 방식이 주로 사용됐다. 그러나 기존 광섬유 스캐너는 광섬유의 대칭적 구조로 인해 발생하는 물리적 간섭현상에 매우 취약해 임상용 의료내시경 개발에 한계가 있었다. 연구팀은 미세전자기계기술(MEMS, Micro Electro Mechanical Systems)을 이용해 문제점을 해결했다. 연구팀은 광식각공정 및 심도반응성 이온기술을 이용해 미세 실리콘 보조 구조물을 제작했다. 이를 광섬유와 결합해 구동특성을 변조함으로써 간섭현상을 해결하고 광섬유 스캐너의 안정성을 크게 향상시켰다. 또 스캔 패턴을 변화시켜 시간에 따라 연속적으로 해상도를 높일 수 있는 이미지 복원방법을 구현했다. 그 결과 관찰한 부분의 3차원 구조를 최소 0.5초 내에 측정할 수 있었다. 스캔 시간이 늘어남에 따라 연구팀은 좀 더 정밀한 이미지를 얻을 수 있었다. 정기훈 교수는 “국내 내시경 업체 및 병원과 긴밀한 협력을 통해 시제품 제품 개발에 박차를 가하고 있다”며 “동물실험 및 임상실험을 거쳐 수년 내 상용화 될 것”이라고 제품 출시에 대한 기대감을 내비쳤다. 그림1. (A)광섬유 스캐너의 구동특성 변조를 위한 미세 실리콘 구조물의 제작공정 모식도 (B),(C)제작된 미세 실리콘 구조물 이미지 (D)미세 실리콘 구조물이 결합된 광섬유 스캐너 그림2. 현미내시경이 장착된 의료용 내시경 그림3. (A)내시현미경의 광간섭단층촬영 이미지 (B),(C),(D)개략적인 전체 구조의 파악 후 시간에 따라 정밀한 이미지를 얻을 수 있음. (E),(F)제작된 내시현미경을 통해 0.5초간 측정한 동물조직의 3차원 단층 이미징 그림4. 기존 광섬유(좌측)와 개발된 광섬유 스캐너의 1·2차원 구동 패턴(우측). 물리적 간섭현상으로 인해 깨끗한 라인스캐닝이 어려우며 나선형 스캐닝만 가능했으나 미세 실리콘 보조구조물을 이용해 간섭현상을 해결하고 스캔 패턴을 변형시킴.
2014.03.27
조회수 16953
최명철 교수팀 연구 성과, 사이언스지 퍼스펙티브에 소개
우리 학교 바이오및뇌공학과 최명철 교수팀이 최근 발표한 ‘마이크로튜불의 새로운 구조’에 관한 논문이 과학 분야 가장 권위 있는 학술지인 사이언스(Science) 퍼스펙티브(Perspective)에 지난달 28일 소개됐다. 퍼스펙티브는 전 세계의 학술지 중 가장 영향력 있는 논문을 선정해 재조명하는 섹션이다. KAIST 송채연 박사와 최명철 교수, 미국 UC Santa Barbara의 Safinya교수와 Wilson교수, 이스라엘 Hebrew University의 Raviv교수로 구성된 국제 공동연구팀은 가속기 엑스선 산란장치(synchrotron x-ray scattering)와 전자현미경을 이용해 마이크로튜불의 초미세구조를 이해하고, 이를 제어하는 스위치를 발견해 새로운 단백질 나노튜브 구조를 최초로 밝힌 연구결과를 네이처 머티리얼즈(Nature Materials)에 발표한 바 있다. 튜불린(마이크로튜불의 기본 단위체)의 형태 변화가 마이크로튜불의 구조 형성에 결정적인 영향을 미친다.연구진은 이 형태 변화를 제어하는 스위치를 찾음으로써 마이크로튜불의 새로운 크기와 형태의 구조를 발견했다. 사이언스 홈페이지
2014.03.11
조회수 16129
유방암 세포의 자살을 유도하는 최적의 약물조합 발견
조광현 교수 - Science 자매지 표지논문 발표,“IT와 BT의 융합연구로 세포내 분자조절네트워크 제어를 통해 가능”- 국내 연구진이 대다수 암 발생에 직접 관여하는 것으로 알려진 암억제 유전자(p53)의 분자조절네트워크를 제어하여 유방암 세포의 사멸을 유도하는 최적의 약물조합을 찾아내, 향후 신개념 암치료제 개발에 새로운 단초를 열었다. 특히 이번 연구는 IT와 BT의 융합연구인 시스템 생물학 연구로 가능했다는 점에서 의미가 크다. 우리 학교 바이오및뇌공학과 조광현 석좌교수가 주도하고 최민수 박사과정생, 주시 박사, 정성훈 교수 및 시첸 박사과정생이 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약/도전연구)과 기초연구실사업의 지원으로 수행되었다. 연구결과는 세계 최고 과학전문지인 ‘사이언스’의 첫 번째 자매지로서 세포신호전달분야의 권위지인 ‘Science Signaling’지 최신호(11월 20일자) 표지논문으로 선정되었고, 사이언스지의 ‘편집자의 선택(Editor"s Choice)’에 하이라이트 특집기사로 소개되는 영예를 얻었다. (논문명: Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage) 유방암은 미국이나 유럽 등 선진국에서 발병하는 여성암 중 가장 흔한 암으로, 40~55세 미국 여성의 사망원인 1위를 차지한다. 지난 10월 15일에는 영국 일간지 ‘데일리메일’이 2040년까지 유방암 환자 수가 현재의 3배가 넘는 168만 명으로 늘어나 일명 “유방암 대란”이 일어날 수도 있다는 충격적인 연구결과를 보도하기도 하였다. 우리나라 보건복지부 자료에 따르면, 국내에서도 미국 등과 같이 유방암 발병빈도가 매년 증가하는 추세인데, 이것은 서구식 식습관과 저출산, 모유수유 기피 등 생활패턴의 변화에 기인한 것으로 알려져 있다. p53은 ‘유전자의 수호자’로도 잘 알려진 암 억제 단백질로서 33년 전 처음 발견된 후 지금까지 암 치료를 위해 집중적으로 연구되는 분자이다. p53은 세포의 증식 조절과 사멸 촉진 등 세포의 운명을 결정하는데 중요한 역할을 한다. 우리 몸의 세포가 손상되거나 오작동하면, p53은 세포주기의 진행을 중단시켜 손상된 DNA의 복제를 억제하고, 손상된 세포의 복구를 시도한다. 이 때 만일 세포가 복구될 수 없다고 판단되면, p53은 세포가 스스로 자살하도록 유도한다. 그러나 암세포는 이러한 p53의 기능이 정상적으로 작동되지 않아 이를 인위적으로 조절하여 암 치료에 응용하려는 시도가 꾸준히 이어져왔다. 그러나 지금까지 임상실험에서는 기대와는 달리 효과가 미미하거나 부작용이 발생하는 등 여러 문제점들이 나타났다. 이는 p53이 단독으로 작동하는 것이 아니라 복잡한 신호전달 네트워크 속에서 다수의 양성과 음성 피드백(positive and negative feedbacks)에 의해 조절되고 있었으나, 지금까지 p53만을 단독으로 집중 연구했기 때문이다. 즉, 다양한 피드백 조절에 의해 p53의 동역학적(dynamics) 변화와 기능이 결정되므로, 네트워크 전체를 이해하고 제어하는 시스템 생물학적 접근이 반드시 필요하다. 조광현 교수가 이끈 융합 연구팀은 p53을 중심으로 관련된 모든 실험 데이터를 집대성하여 p53의 조절 네트워크에 대한 수학모형을 구축하였다. 또한 대규모 컴퓨터 시뮬레이션 분석을 통해 p53의 동역학적 변화 특성에 따른 세포의 운명(증식 또는 사멸) 조절과정을 밝혀내고 이를 효과적으로 제어할 수 있는 방법을 찾아냈다. 그리고 이 방법을 적용한 시뮬레이션 결과를 단일세포실험으로 검증하였다. 조광현 교수팀은 수많은 피드백으로 복잡하게 얽혀 있는 p53 조절 네트워크의 다양한 변이조건에 따른 컴퓨터 시뮬레이션 분석과 세포생물학실험으로, p53의 동역학적 특성과 기능을 결정하는 핵심 조절회로를 발견하고, 이와 같은 p53의 동역학적 특성 변화에 따라 세포의 운명이 달라질 수 있음을 규명하였다. 또한 유방암 세포의 네트워크 모형에서, 위의 분석결과로부터 찾아낸 핵심회로를 억제하는 표적약물(Wip1 억제제)과 기존의 표적항암약물(뉴트린, nutlin-3)을 조합하면 유방암 세포의 사멸을 매우 효율적으로 유도할 수 있음을 발견하였다. 그리고 실제 유방암 세포(MCF7)를 이용한 세포실험을 통해 직접 확인하였다. 조광현 교수는 “세포내 중요한 역할을 담당하는 분자들은 대부분 복잡한 조절관계 속에 놓여있기 때문에 기존의 직관적인 생물학 연구로 그 원리를 밝히는 것은 근본적인 한계가 있다. 이번 연구는 시스템 생물학으로 그 한계를 극복할 수 있음을 보여주는 대표적인 사례로, 특히 암세포의 조절과정을 네트워크 차원에서 분석하여 새로운 치료법을 개발할 수 있는 가능성을 제시하였다”고 연구의의를 밝혔다. 한편, 조 교수의 이번 연구 논문은 23일자 사이언스 편집자의 선택(Editors" Choice)으로 선정되는 영예를 얻기도 했다. 여러 양성 및 음성 피드백으로 복잡하게 구성된 p53 조절네트워크
2012.11.23
조회수 15478
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 10