-
증강현실로 스마트시대의 미래를 열다!
영화 ‘마이너리티 리포트’에서 허공에 화면이 뜨고 손짓으로 컴퓨터를 조작하는 모습은 단지 상상 속 미래였다. 하지만 이런 일들이 곧 실현될 것으로 보인다. 우리 학교 전기및전자공학과 유회준 교수 연구팀은 세계 최초로 증강현실 전용 프로세서가 내장된 고성능·초저전력 머리 장착형 디스플레이(HMD, Head Mount Display) ‘케이 글래스(K-Glass)’를 개발했다. 연구팀의 전용 프로세서 개발로 기존 상용칩을 활용한 구글 글래스 보다 속도는 30배 이상 빨라지면서 동시에 사용시간은 3배 이상 길어지는 등 실제 사용자에게 불편함이 많이 줄어 증강현실시대를 앞당길 것으로 기대된다. 증강현실이란, 현실 세계와 이를 적절히 변형한 가상 미디어 콘텐츠가 결합한 것이다. 예를 들면, 동화책에 그려진 공룡 그림을 쳐다보면 3차원 공룡이 책 위로 솟아올라 보이며 방향을 바꾸면 공룡의 다른 쪽이 보이게 하는 기술이다. 삼성, 마이크로소프트 등에서는 관련 특허를 출원하고 있고, 특히 구글에서는 2012년 5월 증강현실을 위한 프로젝트 글래스(Project Glass)를 개발했다. 하지만 자연스러운 증강현실을 구현하기에는 성능이 만족할만한 수준은 아니었다. 구글의 기술은 바코드와 같은 표식을 인식해 해당 물체에 가상 컨텐츠를 첨가하는 방식의 증강현실을 구현하는 방식이기 때문에 표식을 설치하기 힘든 야외에는 증강현실을 구현할 수 없는 큰 단점이 있다. 게다가 2시간 정도만 사용할 수 있을 정도로 전력 소비량이 많아 휴대폰과 같은 모바일 기기처럼 일상생활에서 항상 착용하지는 못하는 실정이었다.연구팀이 개발한 K-Glass의 ‘증강현실 전용 프로세서’는 인간 뇌의 시각 집중 모델(Visual Attention Model)에 영감을 받아 제작돼 저전력·고성능을 동시에 달성했다. 시각 집중 모델은 보고 있는 화면에서 의미 있고 중요한 부분을 배경과 같이 인식에 무의미한 영역들로부터 분리한다. 이에 따라 불필요한 연산을 제거할 수 있어 복잡한 증강현실 알고리즘의 연산 속도를 획기적으로 증가시킬 수 있다는 장점이 있다. 또 전력소모를 줄이기 위해 ‘뉴런의 신경망’을 모방한 네트워크 구조를 적용했다. 프로세서 내부에서는 데이터가 활발하게 돌아다니는데 데이터 쏠림현상에 의해 전송에 병목이 발생할 수가 있는데 연구팀은 뉴런의 신경망 구조를 활용해 프로세서 내 데이터를 전송 및 네트워크 병목현상을 효과적으로 극복했다. 개발된 증강현실 전용 프로세서는 65nm(나노미터) 공정에서 제작돼 32㎟ 면적에 1.22TOPS(Tera-Operation per Second, 1초당 1012회 연산속도) 성능을 보인다. 또한 30fps(초당프레임)/720p(픽셀) 비디오 환경의 실시간 동작에서 1.57TOPS/W(와트)의 높은 에너지 효율을 나타내 장시간 동작할 수 있다. 유회준 교수는 “스마트 폰의 뒤를 잇는 차세대 모바일 디바이스로써 HMD에 대한 관심이 급증하고 있다”며 “투과형 HMD는 증강현실을 구현함에 따라 교육 엔터테인먼트 등의 분야에 큰 변화를 가져올 것”이라고 말했다. 또 “K-Glass는 구글의 프로젝트 글래스 등 기존 HMD의 낮은 컴퓨팅 성능을 획기적으로 향상시키는 것은 물론 초저전력 소비를 달성하는데 성공, 미래 모바일 IT분야에서 혁신적인 변화를 주도할 것”이라고 연구 의의에 대해 말했다. 유회준 교수 지도하에 김경훈 박사과정 학생이 주도해 개발한 K-Glass는 이달 미국 샌프란시스코에서 개최된 세계적 반도체 학술대회 ISSCC(국제고체회로설계학회)에서 발표돼 커다란 주목을 받았다. K-Glass 데모 동영상 유튜브 링크 :http://www.youtube.com/watch?v=fzQpSORKYr8&feature=c4-overview&list=UUirZA3OFhxP4YFreIJkTtXw
2014.02.20
조회수 16027
-
뇌신경전달 단백질의 구조와 작동원리 규명
- 생체막 융합 단백질의 구조변화 실시간 측정 -- 퇴행성 뇌질환 연구에 실마리 제공 -
우리 학교 물리학과 윤태영 교수 연구팀이 자기력 나노집게를 이용해 뇌신경세포사이의 신경물질전달에 가장 중추적인 역할을 하는 스네어(SNARE) 단백질의 숨겨진 구조와 작동원리를 단분자 수준에서 밝히는데 성공했다.
스네어 단백질의 세포막 융합기능은 알츠하이머병 같은 퇴행성 뇌질환이나 신경질환과 밀접하게 연관되어 있어 이 같은 질병의 예방과 치료법 개발에 새로운 실마리가 될 것으로 기대된다.
뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 가장 핵심적인 역할을 하는 세포막 융합 단백질이다.
지금까지 학계에서는 스네어 단백질이 신경물질을 주고받는 과정을 조절할 것이라고 추정해 왔지만 그 구조와 기능을 명확하게 밝혀내지 못했다.
연구팀은 자기력 나노집게를 이용해 피코 뉴턴(pN, 1조분의 1뉴턴) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하는 실험기법을 개발했다.
이를 통해 스네어 단백질에 숨겨진 중간구조가 존재하며, 이 구조에 대한 정밀한 측정결과 중간상태가 어떤 구조를 갖는지 정확하게 예측했다.
이와 함께 생체막 사이에 있는 스네어 단백질의 중간구조가 생체막이 서로 밀어내는 힘을 견디고 유지하면서 신경물질을 주고받는 과정을 조절하는 역할을 할 수 있음을 밝혔다.
윤태영 교수는 “생체단백질이 갖는 숨겨진 구조와 작동원리를 힘을 정교하게 조절하는 실험만으로 직접 관찰하는 것과 동일한 획기적 연구 결과를 일궈냈다”며 “이 기술은 생물학의 연구대상을 물리학적인 방법 연구하는데 매우 중요한 기술로 향후 학제적 융합연구에 매우 중요한 기반이 될 것”이라고 말했다.
한편, 이번 연구는 KAIST 물리학과 윤태영 교수와 김기범 연구교수의 주도 아래 KIST 의공학연구소 신연균 교수와 공동연구로 진행됐고, KAIST 물리학과 조용훈 교수, 민두영 박사과정, KIAS 계산과학부 현창봉 교수가 참여했으며, 이번 세계적 과학학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 4월 16일자에 게재됐다.
(a) 뇌의 신경전달은 신경세포 말단 시냅스에서 신경전달물질을 저장하는 포낭 주머니가 세포막에 융합되면서 일어난다. 이 과정에서 스네어 단백질은 신경전달물질 분출에 핵심적인 역할을 한다.
(b) 자기력 나노집게를 이용하여 단분자 수준에서 단백질 구조 변화를 실시간으로 측정방법의 개략도. 피코 뉴톤(pN) 수준의 힘으로 단백질 하나를 정교하게 당겼다 놓으면서 나노 미터수준의 물리적 변화를 실시간으로 측정하여 생체막 융합 단백질의 숨겨진 중간구조와 작동원리를 단분자 수준에서 관찰한다.
2013.05.09
조회수 15912
-
빛을 이용해 뇌로 약물을 전달한다
KAIST 최철희 교수팀, 신경약물전달 신기술 세계 최초 개발
뇌혈관은 혈뇌장벽이라는 특수한 구조로 이루어져 있는데, 레이저로 혈뇌장벽의 투과성을 조절하여 투여된 약물을 뇌로 안전하게 전달하는 기술이 국내 연구진에 의해 세계 최초로 개발됐다.
이번 연구는 교육과학기술부의 ‘21세기 프론티어 뇌기능활용 및 뇌질환 치료기술개발사업단’(단장 김경진)의 지원을 받아 우리학교 최철희(바이오 및 뇌공학과․43) 교수팀 주도로 수행되었다.
혈뇌장벽은 대사와 관련된 물질은 통과시키고 그 밖의 물질은 통과시키지 않는 기능을 함으로써 약물이 뇌로 전달되는 것이 어려웠다.
이런 기능 때문에 우수한 효능을 가진 약물조차 대부분 차단되어 실제로 환자에게 적용할 수 없는 경우가 많아, 약물의 효능을 최대한 유지하면서 혈뇌장벽을 어떻게 통과시키느냐가 이 분야 연구의 핵심과제였다.
원활한 약물 전달을 위해 약물의 구조를 변경하거나 머리에 작은 구멍을 내고 약물을 주사하는 방법도 시도되었지만 고비용과 위험성으로 널리 응용되지 못하고 있었다.
최 교수팀은 기존 기술의 한계를 극복하기 위해 극초단파 레이저빔을 1000분의 1초 동안 뇌혈관벽에 쬐어주는 방법으로 혈뇌장벽의 기능을 일시적으로 차단함으로써 약물을 원하는 부위에 안전하게 도달할 수 있게 하는 신개념 약물전달기술을 개발했다.
레이저 빔을 약물이 들어있는 혈관에 쬐이면 혈뇌장벽이 일시적으로 자극을 받아 수도관이 새는 것 같은 현상을 일으켜 약물이 혈관 밖으로 흘러나와 뇌신경계 등으로 전달된다. 정지된 기능은 몇 분 뒤 다시 제 기능을 되찾는다.
최 교수는 “이번 연구는 새로운 신경약물전달의 원천기술을 확립하였다는 점과, 레이저를 이용한 안정적인 생체 기능 조절 기반기술을 구축하였다는 점에서 커다란 의미가 있다”며, “앞으로 이 기술을 세포 수준으로 영역을 확대하는 한편 후속 임상 연구를 통해 실용화할 계획”이라고 밝혔다.
연구 결과는 신경약물전달 원천기술로서 특허 출원 중이며 세계적 저명 학술지인 미국 국립과학원 회보(2011.05.16자)에 게재됐다.
레이저를 이용하여 뇌혈관의 기능을 조절함으로써 원하는 뇌 부위에 안정적으로 약물을 전달할 수 있는 원천기술
2011.05.26
조회수 15619
-
새로운 생체시계 유전자 기능 밝혀내다
- 최준호 교수팀 4년간의 결실, 네이처지 2월호 게재 -
교육과학기술부(장관 이주호)는 24시간을 주기로 반복적으로 일어나는 행동 유형의 하나인 일주기성 생체리듬을 조절하는 새로운 유전자(투엔티-포, Twenty-four)와 이 유전자의 기능 메커니즘이 국내 연구진에 의해 세계 최초로 밝혀졌다고 발표했다.
투엔티-포는 ‘21세기 프론티어 뇌기능활용 및 뇌질환치료기술개발사업’(사업단장 김경진)의 지원을 받은 KAIST 생명과학과 최준호(58)교수·이종빈(30)박사 팀이 미국 노스웨스턴대학교 신경생물학과 라비 알라다 교수·임정훈 박사 팀과의 국제 공동연구를 통해 발견한 것으로 세계 최고 권위의 과학학술지인 ‘네이처(Nature)" 2월호(2011년2월17일자)에 게재됐다.
동 논문의 공동 주저자인 이종빈, 임정훈 박사는 KAIST에서 수학한 국내박사 출신(지도교수 최준호)으로 현재 박사후 연구원으로 동 연구에 참여하고 있으며, 이번 성과는 국내에서 양성한 신진연구원이 주도했다는 점에서 큰 의의를 지닌다.
연구팀에 따르면 형질 전환 초파리를 대상으로 지난 4년간 행동 유형을 실험한 결과 뇌의 생체리듬을 주관하는 신경세포에서 기존에 알려지지 않은 새로운 유전자인 투엔티-포가 존재한다는 사실을 알아냈다.
기존의 생체리듬에 관여하는 유전자들이 DNA에서 mRNA(전령RNA)로 바뀌는 과정(전사단계 : Transcription)에서 작용하는 것과 달리 투엔티-포는 전사단계의 다음단계인 mRNA가 리보솜에서 단백질로 만들어지는 단계에서 작용한다. 특히 투엔티-포는 생체리듬을 조절하는 중요한 유전자인 피리어드(Period) 단백질*에 영향을 미치는 것으로 밝혀졌다.
* 피리어드(Period) 단백질 : 생체 시계 세포들은 외부 자극없이 스스로 돌아가는 분자적 시계 구조를 신경세포마다 가지고 있는데, 피리어드는 이러한 분자적 시계의 구성 유전자 중 하나임. 피리어드 단백질은 생체 시계의 중심 유전자인 클락(Clock)에 의한 전사 활성을 억제 시키는 역할을 함
이는 유전자의 기능을 밝히는 실험을 통해 이 유전자가 만드는 단백질이 신경세포에서 어떻게 기능을 하는지 과학적으로 증명한 것이다. 이번 발견은 기존의 생체리듬에 관여하는 각종 유전자의 작용 메커니즘과 전혀 다른 것으로 생체리듬의 연구 분야에서는 획기적인 일로 평가받고 있다.
이 연구 결과는 앞으로 인간을 포함한 고등생물체의 수면장애·시차적응·식사활동·생리현상 등 일주기성 생체리듬의 문제를 해소하는 방안을 찾는데 중요한 열쇠가 될 것으로 전망된다.
최준호 교수는 “생체리듬의 조절이 유전자의 번역단계에서도 이루어지고 있음을 밝혀 생체시계의 새로운 작용 메커니즘을 찾아냈다는 점에서 연구 결과의 의미가 크다”고 말했다.
연구팀이 새 유전자의 이름을 투엔티-포(Twenty-four)라고 붙인 것은 일주기성(24시간)에 부합하고 유전자 기호 번호(CG4857)를 합한 숫자가 24라는 점에 착안한 것이다.
2011.02.16
조회수 19272
-
고감도 나노광학측정기술 개발
- 머리카락 단면적의 70만배 보다 작은 나노유체기술과 나노광학기술을 융합한 바이오분석기술.- 신약개발 및 신경질환 조기진단기술로 활용 기대.
우리학교 바이오및뇌공학과 정기훈 교수 연구팀이 소분자 생화합물 (small molecules) 검출을 위한 획기적인 고감도 나노광학측정기술을 개발했다.
소분자 생화합물은 분자량이 작은 생체내 분자들로 다양한 세포의 세포막을 드나들며 세포간의 신호전달 등에 큰 역할을 담당한다. 최근에는 제약업계에서도 소분자 생화합물을 이용한 신약 개발 관련 연구 및 개발에 큰 관심을 기울이고 있다.
그러나 이러한 소분자 생화합물은 대부분 특정 항원-항체 화학 결합반응을 유도하기 힘들어 기존에 많이 사용되는 형광이나 전기화학적인 방법으로 극소량을 분석하는데 어려움이 많았다.
정 교수 연구팀은 사람의 머리카락 단면적의 70만배 보다 작은 나노유체관내 유동특성을 이용해 나노몰(nM) 수준의 농도를 갖는 극미량의 소분자 생화합물의 농도를 국소적으로 증가시켰다. 이후 나노플라즈모닉 광학기술과 접목해 측정하는 빛의 세기를 1만배 이상 향상시켜, 별도의 생화학처리를 사용하지 않은 도파민(Dopamine)과 가바(GABA)와 같은 신경전달물질을 1초 이내에 구별하는 데 성공했다.
이 결과는 현존 세계 최고수준의 검출한계를 수백배 이상 향상시킨 기술로 평가받고 있다.
이번 연구결과는 앞으로 소분자 생화합물을 이용한 다양한 글로벌 신약개발은 물론, 알츠하이머병과 같은 퇴행성 신경질환의 조기진단 및 뇌기능 진단기술에 크게 기여할 수 있을 것이라 기대된다.
한편, 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업과 한국생명공학연구원이 지원하는 오픈이노베이션사업의 일환으로 수행된 이번 연구는 오영재 박사과정 학생 주도하에 진행됐으며, 독일에서 발간되는 나노분야 국제저명학술지인 ‘스몰(Small)’지의 1월 17일자 표지논문으로 게재됐다.
2011.01.26
조회수 17822
-
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다.
시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다.
△카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다.
총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다.
특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다.
또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다.
[그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델]
윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다.
연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다.
윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다.
특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다.
또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다.
생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다.
연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다.
[그림2. 단소포체 형광기법]
윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 25030
-
생명과학과 김재섭 교수팀, '생체시계 뇌신경망 교신 유전자'세계최초로 밝혀
2만5천여 종의 형질전환 초파리 이용, 새로운 생체시계 유전자 발견
수면장애, 생체리듬 장애로 인한 각종 생리질환 치료법 개발 활로 열어
우리 몸은 하루 24시간의 시각 주기를 기억해서 현재 시각이 아침인지 저녁인지 혹은 낮인지 밤인지를 스스로 아는 능력이 있다. 한국에 살던 사람이 미국에 가면 한국에서 기억된 시각주기 때문에 처음 며칠 동안은 밤에는 깨어 있다가 낮이 되면 졸리고 하는 것이 그 일예이다. 우리 몸이 이렇게 하루 24시간 주기의 시간 흐름을 아는 것은 대뇌 아래 시상하부에 존재하는 일부 신경세포가 시계의 기능을 하기 때문인데, 이 시계를 “생체시계”라고 부른다. 정상적으로 생활하던 사람을 하루 종일 어두운 곳에 두어도 아침 시간이 되면 잠에서 깨고, 끼니마다 배가 고파지며, 또 밤 시간이 되면 잠을 자는 이유도 이 생체시계 때문이다.
생체시계의 역할은 시상하부에 위치한 수십 개의 신경세포가 담당한다. 이 생체시계 신경세포 각각의 내부에서 작동하는 유전자들은 그 동안 잘 알려져 있었다. 그러나 정작 각각의 생체시계 신경세포가 어떻게 서로 교신하여 하나의 완벽하고 정교한 생체시계 신경망을 이루어 우리 몸의 시간을 지배하는 지는 베일에 쌓여 있었다. KAIST 생명과학과 김재섭(金在燮, 42) 교수팀이 바이오벤처 제넥셀과의 공동연구로 이번에 그 베일을 세계 최초로 벗겼다.
金 교수팀은 제넥셀이 구축한 2만5천여 종의 형질전환 초파리를 이용, 새로운 생체시계 유전자를 발견하였으며, 그 이름을 “한(Han)"이라고 명명하였다. 金 교수팀에 따르면 “한” 유전자로부터 만들어지는 단백질은 "피디에프(PDF)"라는 리간드 단백질의 수용체로 작용하며, 생체시계 신경 세포들의 표면에 존재한다. 생체시계 신경세포 중에서 마스터(master) 생체시계 신경세포가 하루 24시간의 주기에 따라 각기 다른 양의 “피디에프”를 분비한다. 그러면 뇌의 다른 부위에 존재하는 생체시계 신경세포들은 표면에 있는 “한” 수용체 단백질을 통해 이 신호를 받아서 자기의 생체시계 작동을 마스터 신경세포의 생체시계 시각과 동조화 시킨다. 이렇게 해서 생체시계 신경망을 담당하는 모든 신경세포들 안에 있는 생체시계는 동일한 시각으로 맞춰지게 된다. 즉, “피디에프”와 “한” 단백질을 이용한 생체시계 신경세포들 사이의 교신이 정확하게 이뤄져 생체시계의 시각 결정을 담당하는 모든 신경세포가 특정 시간을 모두 동일한 시간으로 인식하여 일사 분란하게 몸을 조절하는 것이다. 金 교수팀의 이번 연구결과는 뉴론(Neuron)誌 10월호(10.20 발행)에 게재된다. 뉴론誌는 셀지의 자매지로서 네이처 뉴로사이언스와 쌍벽을 이루는 신경과학 분야의 최고 권위지다.
김재섭 교수는 "학문적으로는 생체시계를 담당하는 뇌신경들이 어떻게 서로 교신 하는 지를 알 수 있게 되었으며, 의학적으로는 수면 장애와 생체리듬 장애로 인한 각종 생리 질환 치료법 개발에 새로운 길을 열게 되었다"고 이번 연구 성과의 의의를 밝혔다.
2005.10.20
조회수 18930
-
뇌신경 보호유전자 세계 첫 발견
KAIST 생명과학과 김재섭 교수(43세)팀은 지나친 자극으로부터 신경세포를 보호하는 유전자를 세계 최초로 발견하고, 이 유전자를 열병을 뜻하는 파이렉시아(Pyrexia)라고 명명했다.
이 유전자는 채널 단백질을 만들며, 이 채널은 섭씨 39도 이상의 고온에 의해 작동된다. 특히 이제까지 온도에 의해 작동되는 채널 단백질들은 여러 종류 발견되었으나, 자극으로부터 신경을 보호하는 채널은 파이렉시아가 처음이다. 이 유전자는 신경세포가 고온에 대해 과민하게 흥분하여 스트레스성 반응을 보이고 이로 인해 기능이 손상되는 것을 방지한다.
또한 이 유전자의 기능이 약화되면 섭씨 40도 고온에서 수분 내에 신경기능이 마비되지만, 이 유전자의 기능이 강화되면 이러한 고온에서도 신경세포의 기능이 손상되지 않고 정상적으로 작동한다.
KAIST 김재섭 교수는 "파이렉시아 채널을 인위적으로 작동시키는 약(화합물)을 개발할 경우, 상습적 마약 복용 등으로 신경이 과도하게 자극되어 뇌기능이 손상되는 것을 방지할 수 있는 획기적인 길이 열릴 것이다"라고 말하면서 "이번 연구 결과는 독감을 비롯한 각종 열병에 의해 의식을 잃거나 뇌기능이 영구하게 손상되는 것도 방지할 수 있는 길을 열었다"며 그 의미를 밝혔다.
한편, 이 연구 결과는 미국에 국제특허 출원되었으며, 세계 최고의 유전학 및 인간질병 유전자 권위지인 네이처 제네틱스 (Nature Genetics) 3월호에 논문으로 계제될 예정이다. 또한 네이처 제네틱스는 이 발견의 중요성을 감안하여 이 논문을 1월 31일자로 인터넷 (http://www.nature.com/ng/)에 먼저 공개했다.
이 유전자는 KAIST 생명과학과와 제넥셀(주)가 공동으로 2003년에 완성한 세계 최초의 형질전환초파리 게놈검색시스템을 활용하여 발굴되었으며, KAIST 생명과학과와 제넥셀(주)는 "형질전환초파리 게놈검색시스템"을 활용하여 파이렉시아 이외에도 여러 종류의 인간질병 및 신경관련 유전자를 발굴하여 연구에 박차를 가하고 있다.
2005.01.31
조회수 21301