본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B8%EA%B3%B5%EC%A7%80%EB%8A%A5
최신순
조회순
정확성이 획기적으로 향상된 코로나19 영상 진단 기술 개발
우리 대학 바이오및뇌공학과 예종철 교수 연구팀이 흉부 단순 방사선 촬영 영상으로 신종 코로나바이러스 감염증(이하 코로나19) 진단의 정확성을 획기적으로 개선한 인공지능(AI) 기술을 개발했다. 예 교수 연구팀이 개발한 인공지능 기술을 사용해 코로나19 감염 여부를 진단한 결과, 영상 판독 전문가의 69%보다 17%가 향상된 86%이상의 우수한 정확성을 보였다고 KAIST 관계자는 설명했다. 이 기술을 세계적으로 대유행하는 코로나19 선별 진료(Triage)체계에 도입하면 상시 신속한 진단이 가능할 뿐만 아니라 한정된 의료 자원의 효율적인 사용에 큰 도움을 줄 것으로 기대된다. 오유진 박사과정과 박상준 박사과정이 공동 1저자로 참여한 이 연구 결과는 국제 학술지 `아이트리플이 트랜잭션 온 메디컬 이미징(IEEE transactions on medical imaging)'의 `영상기반 코로나19 진단 인공지능기술' 특집호 5월 8일 字 온라인판에 게재됐다. (논문명 : Deep Learning COVID-19 Features on CXR using Limited Training Data Sets) 현재 전 세계적으로 확진자 500만 명을 넘긴 코로나19 진단검사에는 통상 역전사 중합 효소 연쇄 반응(RT-PCR, Reverse Transcription Polymerase Chain Reaction)을 이용한 장비가 사용된다. RT-PCR 검사의 정확성은 90% 이상으로 알려져 있으나, 검사 결과가 나오기까지는 많은 시간이 걸리며 모든 환자에게 시행하기에 비용이 많이 든다는 단점이 있다. 컴퓨터 단층촬영(CT, Computed Tomography)을 이용한 검사도 비교적 높은 정확성을 보이지만 일반적인 X선 단순촬영 검사에 비해 많은 시간이 소요되고 바이러스에 의한 장비의 오염 가능성 때문에 선별 진료에 사용되기 어렵다. 흉부 단순 방사선 촬영(CXR, Chest X-ray)은 여러 폐 질환에서 표준 선별 검사로 활용되고 있지만 코로나19에는 RT-PCR와 CT 검사에 비해 정확성이 현저하게 떨어진다. 그러나, 최근 팬데믹으로 세계 각국에서 확진자 수가 급증함에 따라 비용이 적게 들어가고 검사방법이 용이한 CXR 검사를 정확성을 높여 활용하자는 요구가 증가하고 있다. 그동안 심층 학습(Deep Learning) 기법을 적용해 CXR 영상을 통해 코로나19를 진단하는 여러 연구사례가 보고되고 있지만 진단 정확성을 높이기 위해서는 많은 양의 데이터 확보가 필수적이며 현재와 같은 비상 상황에서는 일관되게 정제된 대량의 데이터를 수집하기가 극히 어렵다. 예 교수 연구팀은 자체 개발한 전처리(Preprocessing)와 국소 패치 기반 방식(Local Patch-based Approach)을 통해 이런 문제점을 해결했다. 적은 데이터 세트에서 발생할 수 있는 영상 간 이질성(Heterogeneity)을 일관된 전처리 과정으로 정규화한 뒤, 국소 패치 기반 방식으로 하나의 영상에서 다양한 패치 영상들을 얻어냄으로써 이미지의 다양성을 확보했다. 또 국소 패치 기반 방식의 장점을 활용한 새로운 인공지능 기술인 `확률적 특징 지도 시각화(Probabilistic Saliency Map Visualization)' 방식을 활용해 CXR 영상에서 코로나19 진단에 중요한 부분을 고화질로 강조해주는 특징 지도를 만들었는데 이 지도가 진단 영상학적 특징과 일치하는 것을 확인했다. 예종철 교수는 "인공지능 알고리즘 기술을 환자의 선별 진료에 활용하면 코로나19 감염 여부를 상시 신속하게 진단할 수 있고 이를 통해 가능성이 낮은 환자를 배제함으로써 한정된 의료 자원을 보다 우선순위가 높은 대상에게 효율적으로 배분할 수 있게 해줄 것ˮ 이라고 말했다. 한편, 이 연구는 한국연구재단 중견연구자지원사업의 지원을 받아 수행됐다.
2020.05.25
조회수 14633
스스로 그림 그리는 인공지능 반도체 칩 개발
전기및전자공학부 유회준 교수 연구팀이 생성적 적대 신경망(GAN: Generative Adversarial Network)을 저전력, 효율적으로 처리하는 인공지능(AI: Artificial Intelligent) 반도체를 개발했다. 연구팀이 개발한 인공지능 반도체는 다중-심층 신경망을 처리할 수 있고 이를 저전력의 모바일 기기에서도 학습할 수 있다. 연구팀은 이번 반도체 칩 개발을 통해 이미지 합성, 스타일 변환, 손상 이미지 복원 등의 생성형 인공지능 기술을 모바일 기기에서 구현하는 데 성공했다. 강상훈 박사과정이 1 저자로 참여한 이번 연구결과는 지난 2월 17일 3천여 명 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문명 : GANPU: A 135TFLOPS/W Multi-DNN Training Processor for GANs with Speculative Dual-Sparsity Exploitation) 기존에 많이 연구된 인공지능 기술인 분류형 모델(Discriminative Model)은 주어진 질문에 답을 하도록 학습된 인공지능 모델로 물체 인식 및 추적, 음성인식, 얼굴인식 등에 활용된다. 이와 달리 생성적 적대 신경망(GAN)은 새로운 이미지를 생성·재생성할 수 있어 이미지 스타일 변환, 영상 합성, 손상된 이미지 복원 등 광범위한 분야에 활용된다. 또한, 모바일 기기의 다양한 응용 프로그램(영상·이미지 내 사용자의 얼굴 합성)에도 사용돼 학계뿐만 아니라 산업계에서도 주목을 받고 있다. 그러나 생성적 적대 신경망은 기존의 딥러닝 네트워크와는 달리 여러 개의 심층 신경망으로 이루어진 구조로, 개별 심층 신경망마다 다른 요구 조건으로 최적화된 가속을 하는 것이 어렵다. 또한, 고해상도 이미지를 생성하기 위해 기존 심층 신경망 모델보다 수십 배 많은 연산량을 요구한다. 즉, 적대적 생성 신경망은 연산 능력이 제한적이고 사용되는 메모리가 작은 모바일 장치(스마트폰, 태블릿 등)에서는 소프트웨어만으로 구현할 수 없었다. 최근 모바일 기기에서 인공지능을 구현하기 위해 다양한 가속기 개발이 이뤄지고 있지만, 기존 연구들은 추론 단계만 지원하거나 단일-심층 신경망 학습에 한정돼 있다. 연구팀은 단일-심층 신경망뿐만 아니라 생성적 적대 신경망과 같은 다중-심층 신경망을 처리할 수 있으면서 모바일에서 학습도 가능한 인공지능 반도체 GANPU(Generative Adversarial Networks Processing Unit)를 개발해 모바일 장치의 인공지능 활용범위를 넓혔다. 연구팀이 개발한 인공지능 반도체는 서버로 데이터를 보내지 않고 모바일 장치 내에서 생성적 적대 신경망(GAN)을 스스로 학습할 수 있어 사생활을 보호를 가능케 하는 프로세서라는 점에서 그 활용도가 기대된다. 모바일 기기에서 저전력으로 다중-심층 신경망을 가속하기 위해서 다양한 핵심 기술이 필요하다. 연구팀이 개발한 GANPU에 사용된 핵심 기술 중 대표적인 기술 3가지는 ▲적응형 워크로드 할당(ASTM, 처리해야 할 워크로드*를 파악해 칩 상의 다중-심층 신경망의 연산 및 메모리 특성에 맞춰 시간·공간으로 나누어 할당함으로써 효율적으로 가속하는 방법) ▲입출력 희소성 활용 극대화(IOAS, 인공신경망 입력 데이터에서 나타나는 0뿐만 아니라 출력의 0도 예측해 연산에서 제외함으로써 추론 및 학습 과정에서의 속도와 에너지효율 극대화) ▲지수부만을 사용한 0 패턴 추측(EORS, 인공신경망 출력의 0을 예측하기 위한 알고리즘으로 인공신경망 입력과 연결 강도(weight)의 부동소수점 데이터 중 지수 부분만을 사용해 연산을 간단히 수행하는 방법)이다. 위의 기술을 사용함으로써 연구팀의 GANPU는 기존 최고 성능을 보이던 심층 신경망 학습 반도체 대비 4.8배 증가한 에너지효율을 달성했다. 연구팀은 GANPU의 활용 예시로 태블릿 카메라로 찍은 사진을 사용자가 직접 수정할 수 있는 응용 기술을 시연했다. 사진상의 얼굴에서 머리·안경·눈썹 등 17가지 특징에 대해 추가·삭제 및 수정사항을 입력하면 GANPU가 실시간으로 이를 자동으로 완성해 보여 주는 얼굴 수정 시스템을 개발했다.
2020.04.06
조회수 16674
김지한 교수, 인공지능 이용한 다공성 물질 역설계 기술 개발
〈 김지한 교수 연구팀 〉 우리 대학 생명화학공학과 김지한 교수 연구팀이 인공지능을 활용해 원하는 물성의 다공성 물질을 역설계하는 방법을 개발했다. 김백준, 이상원 박사과정이 공동 1 저자로 참여한 이번 연구결과는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 1월 3일 자 온라인판에 게재됐다. (논문명 : Inverse Design of Porous Materials Using Artificial Neural Networks) 다공성 물질은 넓은 표면적과 풍부한 내부 공극(孔劇)을 가지고 있어 촉매, 기체 저장 및 분리, 센서, 약물 전달 등 다양한 분야에서 활용되고 있다. 기존에는 이러한 다공성 물질을 개발하기 위해 반복적인 실험을 통한 시행착오를 거치면서 시간과 비용이 많이 소모됐다. 이러한 낭비를 줄이기 위해 가상 구조를 스크리닝해 다공성 물질 개발을 가속화 하려는 시도들이 있었지만, 데이터베이스에 존재하지 않는 새로운 구조를 발견하지 못한다는 문제가 있었다. 최근에는 인공지능 기반의 역설계로 원하는 물성을 가진 물질을 개발하는 연구가 주목받고 있지만, 지금까지의 연구들은 단순한 소형 분자들 위주로 적용되고 있으며 복잡한 다공성 물질을 설계하는 연구는 보고되지 않았다. 김지한 교수 연구팀은 인공지능 기술과 분자 시뮬레이션 기술을 활용해 다공성 물질의 한 종류인 제올라이트 구조를 설계하는 방법을 개발했다. 연구팀은 인공지능 생성모델인 적대적 생성 신경망(GAN, Generative Adversarial Network)과 기존 분자 시뮬레이션에서 활용되는 3차원 그리드 데이터를 활용해 복잡한 다공성 물질의 특성을 인공지능이 학습하고 생성할 수 있도록 구조를 개발했다. 개발된 인공신경망 생성모델은 3차원 그리드로 이루어진 구조 정보와 흡착 물성 데이터를 같이 학습하게 되며, 학습 과정 안에서 흡착 물성을 빠르게 계산할 수 있다. 이를 통해 에너지 저장 소재의 특성을 효율적으로 학습할 수 있음을 증명했다. 또한, 연구팀은 인공지능 학습 과정에서 기존의 알려진 제올라이트 구조 중 일부를 제외해 학습시켰고, 그 결과 인공지능이 학습하지 않았던 구조들도 생성할 수 있음을 확인했다. 김지한 교수는“인공지능을 이용해 다공성 물질을 설계한 최초의 사례이다”라며 “기체 흡착 용도에 국한된 것이 아니라 다른 물성에도 쉽게 적용할 수 있어 촉매, 분리, 센서 등 다른 분야의 물질 개발에도 활용될 것으로 기대한다”라고 말했다. 이번 연구는 BK21, 한국연구재단 중견 연구자 지원 사업 그리고 에너지 클라우드 사업단의 지원을 받아 수행됐다. □ 그림 설명 그림 1. 인공지능 기반 다공성 물질(제올라이트) 생성 개요도
2020.01.07
조회수 12753
이상완 교수, 신경과학-인공지능 융합연구 통해 인간의 문제해결 과정 규명
우리 대학 바이오및뇌공학과 이상완 교수 연구팀이 신경과학과 인공지능의 융합연구를 통해 인간의 문제해결 과정에서 뇌가 정보를 처리하는 원리를 규명하는 데 성공했다. 연구팀은 신경과학-인공지능 융합연구를 이용해 인간의 문제 해결 과정을 이론적·신경과학적으로 규명하는 데 성공했다. 이번 연구를 통해 인간 지능의 핵심 요소들을 인공지능 알고리즘으로 이식할 가능성을 크게 높일 수 있을 것으로 기대된다. 이상완 교수와 함께 김동재 박사과정과 박건영 석사과정이 주도하고, 미국 캘리포니아 공과대학(Caltech)과의 국제 공동연구를 통해 진행된 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’12월 16일 자 온라인판에 게재됐다. 불확실성과 복잡도가 변하는 상황에서 달성 가능한 목표를 설정하고 계획을 세워 실행 및 전략을 수정해 나가는 과정은 인간이 가진 고유한 문제 해결 능력 중 하나이다. 최근 인공지능 알고리즘이 다양한 분야에서 인간의 작업 수행 능력을 넘어서고 있으나, 이러한 문제 해결 능력에 대한 완벽한 해결방안은 제시하지 못하고 있다. 인간의 문제 해결 과정은 목표설정-전략수립-실행-전략수정을 반복하는 과정으로, 이는 상태 의존적인 복잡한 시간의 함수이다. 일반적으로 인간의 문제 해결 과정은 많은 양의 데이터를 모으기 어렵고 불확실성과 복잡도가 높아 빅데이터 기반의 전통적 딥러닝 설계 방식으로는 구현이 어렵다. 연구팀은 문제 해결을 위해 ‘강화학습 이론 기반 실험 디자인’이라는 기술을 이용해 문제 해결 목표, 문제의 복잡도, 상황 변화의 불확실성이라는 세 가지 변수를 동시에 변화시켜 실제 인간의 문제 해결 과정과 유사한 상황을 구현했다. 이를 이용해 취득한 행동과 뇌 영상 데이터를 바탕으로 문제 해결 과정을 설명할 수 있는 수학적 모델을 찾기 위해 100가지가 넘는 종류의 메타 강화학습 알고리즘을 학습하고 비교 분석했다. 이 과정은 모델 기반 뇌 이미징 분석이라 불리는 기법이다. 연구팀은 더 엄밀한 검증을 위해 ‘정밀 행동 프로파일링’이라는 분석 방법을 적용했다. 이 방법을 이용하면 겉으로 보이는 행동이 인간과 유사할 뿐만 아니라, 실제로 인간과 같은 원리로 문제를 해결하는 모델을 도출할 수 있다. 그 결과로 문제의 불확실성 및 복잡도와 변화하는 상황에서 인간의 학습과 추론 과정을 모사하는 메타 강화학습 모델을 구현했고, 이 모델의 정보처리 과정이 전두엽의 한 부위인 복외측전전두피질의 신경 활성 패턴으로 설명된다는 것을 발견했다. 1 저자인 김동재 박사과정은 “다양한 가설을 엄밀히 검증하는 과정에 많은 시간이 소요됐지만 정밀 행동 프로파일링 방법론을 통해 실제 인간의 행동 원리를 재현하는 모델을 찾아냄으로써 추후 인공지능으로의 이식에도 큰 도움이 될 것이다”라고 말했다. 이상완 교수는 “기존 연구방식은 하나의 퍼즐 조각을 떼어서 다른 퍼즐의 빈자리를 메꾸는 것이라면, 이번 연구는 퍼즐을 푸는 원리를 배워 다른 퍼즐 맞추기에 적용하는 것에 비유할 수 있다”라며 “인간만이 가진 지능의 핵심 요소들을 인공지능 알고리즘으로 이식하는 기술은 이제 첫걸음을 떼었다고 생각한다. 이 기술이 완성되면 궁극적으로는 지능을 공학적으로 분해하고 과학적으로 이해할 수 있을 것으로 기대한다”라고 말했다. 연구팀은 최근 과학기술정보통신부의 재원으로 정보통신기획평가원의 지원을 받아 설립한 KAIST 신경과학-인공지능 융합연구센터에서 이러한 기반 기술을 활용해 인간 지능을 모사한 차세대 인공지능 모델을 개발하고, 아울러 딥마인드, MIT, IBM AI 연구소, 케임브리지 대학 등 해외 관련 연구 기관과의 국제 공동연구를 통해 기술의 파급력을 높여나갈 계획이라고 말했다. 이번 연구는 삼성전자 미래기술육성센터의 지원 및 과학기술정보통신부 정보통신기획평가원의 지원을 받아 수행됐다. □ 그림 설명 그림1. 메타 강화학습 모델과 각 단계의 정보처리 과정에 관여하는 뇌 영역
2019.12.23
조회수 8189
이의진 교수, 차량 대화형서비스 안전성 향상 기술 개발
〈 이의진 교수, 김아욱 박사과정 〉 우리 대학 산업및시스템공학과 이의진 교수 연구팀이 차량용 인공지능이 능동적으로 운전자에게 대화 서비스를 어느 시점에 제공해야 하는지 자동으로 판단할 수 있는 기술을 개발했다. 연구팀은 차량에서 수집되는 다양한 센서 데이터와 주변 환경 정보를 통합 분석해 언제 운전자에게 말을 걸어야 하는지 자동 판단하는 인공지능 기술을 개발했다. 차량 대화형서비스가 가진 문제를 해결하는 데 중점을 둔 이번 연구는 인공지능의 자동판단 기술을 통해 대화형서비스로 인한 운전자 주의분산 문제를 해결함으로써, 부적절한 시점에 운전자에게 대화를 시도하다가 발생할 수 있는 교통사고 등을 방지하는 기반기술이 될 것으로 기대된다. 이번 연구결과는 유비쿼터스 컴퓨팅 분야 국제 최우수학회인 ACM 유비콤(UbiComp)에서 9월 13일 발표됐다. 김아욱 박사과정이 1저자로 참여하고 최우혁 박사과정, 삼성리서치 박정미 연구원, 현대자동차 김계윤 연구원과의 공동 연구로 이뤄졌다. (논문명: Interrupting Drivers for Interactions: Predicting Opportune Moments for In-vehicle Proactive Auditory-verbal Tasks) 차량 대화형서비스는 편의와 안전을 동시에 제공해야 한다. 운전 중에 대화형서비스에만 집중하면 전방 주시에 소홀하거나 주변 상황에 주의를 기울이지 못하는 문제가 발생한다. 이는 운전뿐만 아니라 대화형서비스 사용 전반에도 부정적인 영향을 줄 수도 있다. 연구진은 말 걸기 적절한 시점 판단을 위해 ▲현재 운전상황의 안전도 ▲대화 서비스 수행의 성공률 ▲운전 중 대화 수행 중 운전자가 느끼는 주관적 어려움을 통합적으로 고려한 인지 모델을 제시했다. 연구팀의 인지 모델은 개별 척도를 다양하게 조합해 인공지능 에이전트가 제공하는 대화형서비스의 유형에 따른 개입 시점의 판단 기준을 설정할 수 있다. 일기예보 같은 단순 정보만을 전달하는 경우 현재 운전상황의 안전도만 고려해 개입 시점을 판단할 수 있고, ‘그래’, ‘아니’ 같은 간단한 대답을 해야 하는 질문에는 현재 운전상황의 안전도와 대화 서비스 수행의 성공률을 함께 고려한다. 매우 보수적으로 세 가지 척도를 모두 함께 고려해 판단할 수 있다. 이 방식은 에이전트와 운전자가 여러 차례의 상호작용을 통해 의사결정을 할 때 사용한다. 정확도 높은 자동판단 인공지능 기술 개발을 위해서는 실제 도로 운전 중 에이전트와의 상호작용 데이터가 필요하기 때문에 연구팀은 반복적인 시제품 제작 및 테스트를 수행해 실제 차량 주행환경에서 사용 가능한 내비게이션 앱 기반 모의 대화형서비스를 개발했다. 자동판단을 위해 대화형서비스 시스템과 차량을 연동해 운전대 조작, 브레이크 페달 조작 상태 등 차량 내 센서 데이터와 차간거리, 차량흐름 등 주변 환경 정보를 통합 수집했다. 연구팀은 모의 대화형서비스를 사용해 29명의 운전자가 실제 운전 중에 음성 에이전트와 수행한 1천 3백 88회의 상호작용 및 센서 데이터를 구축했고, 이를 활용해 기계학습 훈련 및 테스트를 수행한 결과 적절 시점 검출 정확도가 최대 87%에 달하는 것을 확인했다. 연구팀의 이번 기술 개발로 대화형서비스로 인한 운전자 주의분산 문제를 해결할 수 있을 것으로 전망된다. 이 기술은 대화형서비스를 제공하는 차량 인포테인먼트 시스템에 바로 적용할 수 있다. 운전 부주의 실시간 진단 및 중재에도 적용될 수 있을 것으로 기대된다. 이의진 교수는 “앞으로의 차량 서비스는 더욱더 능동적으로 서비스를 제공하는 형태로 거듭나게 될 것이다”라며 “자동차에서 생성되는 기본 센서 데이터만을 활용해 최적 개입 시점을 정확히 찾을 수가 있어 앞으로는 안전한 대화 서비스 제공이 가능할 것이다”라고 밝혔다. 이번 연구는 한국연구재단 차세대정보컴퓨팅기술개발사업과 현대NGV의 지원을 통해 수행됐다. □ 그림 설명 그림1. 실차 데이터 수집장비 및 실제 실험 모습 그림2. 모의 대화형서비스 개념도 그림3. 차량 대화형서비스의 안전성 증진 기술 개념도
2019.11.12
조회수 16152
정유성 교수, 인공지능을 통한 소재 역설계 기술 개발
〈 정유성 교수, 노주환 박사과정〉 우리 대학 EEWS대학원/생명화학공학과 정유성 교수 연구팀이 인공지능을 활용해 원하는 물성을 갖는 신소재를 역설계하는 기술을 개발했다. 연구팀은 알고리즘을 통해 수만 개의 물질을 학습시킨 뒤 인공지능을 통해 원하는 물성을 갖는 소재를 역설계하는 방식으로 4종의 신물질을 발견했다. 향후 신소재 개발에 크게 이바지할 수 있을 것으로 기대된다. 노주환 박사과정이 1저자로 참여한 이번 연구 결과는 ‘셀 (Cell)’ 자매지 ‘매터(Matter)’ 10월 2일 자 온라인판에 출판됐다. (논문명 : Inverse Design of Solid State Materials via a Continuous Representation) 소재 연구의 궁극적인 목표는 원하는 물성을 갖는 신소재를 개발하는 것이다. 하지만 현재까지의 신소재 개발은 화학적 직관과 실험적 시행착오를 통한 방법 위주였기 때문에 개발 비용과 시간이 많이 들어 소재 개념화에서부터 상용화에 걸리는 시간이 평균 30년 정도 소요됐다. 기존의 소재 개발 과정은 소재를 시행착오를 통해 합성하고 난 후 물성을 측정해 만들어진 소재가 응용 목적에 맞는 소재인지를 평가하는 방식으로 개발됐다. 정 교수 연구팀은 인공지능 기술과 슈퍼컴퓨터 활용을 융합해 이러한 소재 개발을 기간을 크게 단축할 수 있는 새로운 소재 역설계 방법을 개발했다. 정 교수팀이 개발한 소재 역설계 방법은 기계(알고리즘)로 기존의 수만 개 물질과 그 물질들이 갖는 물성을 학습하게 한 후, 원하는 물성을 갖는 물질을 인공지능 기반 알고리즘이 역으로 생성하는 방식이다. 연구팀이 개발한 소재 역설계 방법은 기존의 컴퓨터 스크리닝을 통해 소재 설계를 가속화 하는 연구와도 차별성이 있다. 스크리닝 기반의 소재 발견 기술은 발견될 물질이 스크리닝 대상이 되는 물질 데이터베이스를 벗어날 수 없다는 한계를 가지고 있다. 따라서 데이터베이스에 존재하지 않는 새로운 형태의 소재를 발견하지 못한다는 단점이 있다. 연구팀이 개발한 신소재 역발견 모델은 인공지능 모델의 한 종류인 생성모델을 이용한 것으로, 생성모델은 이미지 및 음성 처리에 활발하게 활용되고 있는 기술이다. 예를 들어 수천 명의 얼굴들을 기계로 학습하게 해 새로운 사람의 얼굴을 생성해 내는 인공지능 기법이다. 연구팀은 이미지 생성에 주로 쓰이는 생성모델 기반의 인공지능 기법을 알려지지 않은 무기 고체 소재를 생성하는 데 최초로 적용했다. 특히 기존의 생성모델을 고체 소재에 적용하기 위해 역변환이 가능한 3차원 이미지 기반의 표현자를 도입함으로써 현재까지의 소재 역설계 모델의 한계를 극복했고, 이를 iMatGen(image-based Materials Generator) 이라 이름 지었다. 연구팀은 개발된 소재 역설계 기법을 새로운 바나듐 산화물 결정구조를 예측하는데 적용했다. 이 학습 과정에서 기존에 알려진 물질을 제외해 학습하더라도 제외된 물질들을 역으로 재발견할 수 있음을 확인해 개발 모델의 타당성을 검증했다. 최종적으로 개발된 모델을 통해 학습된 연속 잠재공간을 다양한 방법으로 샘플링하고 역변환 함으로써 기존에 존재하지 않는 전혀 새로운 바나듐 산화물 결정구조를 예측할 수 있었다. 정유성 교수는 “이번 연구는 원하는 물성을 갖는 무기 고체 소재를 역으로 설계하는 방법을 데이터 기반 기계학습으로 최초로 보인 예로, 향후 다양한 응용 분야의 신소재 개발에 도움을 줄 수 있을 것으로 기대한다”라고 말했다. 이번 연구 성과는 한국연구재단, 산업통상자원부 산하 에너지기술평가원, 그리고 KISTI의 지원을 통해 수행됐다. □ 그림 설명 그림1. 개발된 소재 역설계 모델
2019.10.07
조회수 10180
이상완 교수, 신경과학-인공지능 융합으로 공학적 난제 해결
〈 (왼쪽부터) 안수진 박사과정, 이지항 박사, 이상완 교수 〉 우리 대학 바이오및뇌공학과 이상완 교수 연구팀이 영국 케임브리지 대학, 구글 딥마인드와의 공동 연구를 통해 차세대 뇌 기반 인공지능 시스템 설계의 방향을 제시했다. 이번 연구는 인간의 두뇌가 기존의 인공지능 알고리즘이 해결하지 못하는 부분을 해결할 수 있다는 사실에 기반한 신경과학-인공지능 융합 연구이다. 성능, 효율, 속도의 균형적 설계와 같은 다양한 공학적 난제를 해결할 수 있는 신경과학 기반 강화학습 이론을 제안한 것으로 새로운 인공지능 알고리즘 설계에 긍정적인 영향을 줄 것으로 기대된다. 이상완 교수와 함께 이지항 박사, 안수진 박사과정이 주도한 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 로보틱스(Science Robotics)’ 1월 16일 자 온라인판에 포커스 형식으로 게재됐다. 최적제어 이론에서 출발한 강화학습은 기계 학습의 한 영역으로 지난 20여 년 동안 꾸준히 연구된 분야이다. 특히 지난 5년 동안은 딥러닝 기술을 발전과 맞물려 급격한 성장을 이뤘다. 딥러닝 기반 강화학습 알고리즘은 최근 알파고와 같은 전략 탐색 문제, 로봇 제어, 응급실 비상 대응 시스템과 같은 의료 진단 등 다양한 분야에 적용되고 있다. 그러나 주어진 문제에 맞게 시스템을 설계해야 하는 점, 불확실성이 높은 환경에서는 성능이 보장되지 않는 점 등이 근본적인 해결책으로 남아있다. 강화학습은 의사 결정 및 계산신경과학 분야에서도 지난 20년간 꾸준히 연구되고 있다. 이상완 교수는 2014년 인간의 전두엽-기저핵 뇌 회로에서 이종 강화학습을 제어한다는 신경과학적 증거를 학계에 발표한 바 있다. 2015년에는 같은 뇌 회로에서 고속 추론 과정을 제어한다는 연구를 발표했다. 연구팀은 이번 연구에서 강화학습 등의 개별 인공지능 알고리즘이 해결하지 못하는 공학적 문제를 인간의 두뇌가 이미 해결하고 있다는 사실에 기반한 ‘전두엽 메타 제어’ 이론을 제안했다. 중뇌 도파민-복외측전전두피질 네트워크에서 외부 환경에 대한 학습의 신뢰도를 스스로 평가할 수 있는 보상 예측 신호나 상태 예측 신호와 같은 정보를 처리하며, 인간의 두뇌는 이 정보들을 경쟁적-협력적으로 통합하는 프로세스를 통해 외부 환경에 가장 적합한 학습 및 추론 전략을 찾는다는 것이 이론의 핵심이다. 이러한 원리를 단일 인공지능 알고리즘이나 로봇설계에 적용하면 외부 상황변화에 강인하게 성능, 효율, 속도 세 조건(performance-efficiency-speed tradeoff) 사이의 균형점을 유지하는 최적의 제어 시스템을 설계할 수 있다. 더 나아가 다수의 인공지능 개체가 협력하는 상황에서는 서로의 전략을 이용함으로 협력-경쟁 사이의 균형점을 유지할 수 있다. 1 저자인 이지항 박사는 “현대 인공지능의 우수한 성능은 사람의 행동 수준 관찰뿐 아니라 두뇌의 저수준 신경 시스템을 알고리즘으로 구현해 적극적으로 발전시킨 결과라고 보고 있다”라며 “이번 연구는 계산신경과학에 기반한 결과로 현대 딥러닝과 강화학습에서 겪는 성능, 효율, 속도 사이의 난제를 해결하는 실마리가 될 수 있고, 새로운 인공지능 알고리즘 설계에 많은 영감을 줄 것이다”라고 말했다. 이상완 교수는 “연구를 하다 보면 우리의 두뇌는 공학적 난제를 의외로 쉽게 해결하고 있음을 알 수 있다. 이 원리를 인공지능 알고리즘 설계에 적용하는 뇌 기반 인공지능 연구는 구글 딥마인드, MIT, 캘리포니아 공과대학, UCL 등 해외 유수 기관에서도 관심을 두는 신경과학-인공지능 융합 연구 분야이다”라며 “장기적으로는 차세대 인공지능 핵심 연구 분야 중의 하나로 자리를 잡을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부 및 정보통신기술진흥센터 연구개발 사업, 삼성전자 미래기술육성센터의 지원을 받아 수행됐다. □ 그림 설명 그림1. 외부 환경에 따라 성능-효율-속도 문제 균형점을 찾는 뇌기반 강화학습 이론 (좌), 이를 최적 제어하는 ‘전두엽 메타 제어’(중) 및 로보틱스 분야 문제 해결 적용 사례 (우)
2019.01.24
조회수 10205
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉 우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다. 이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다. 이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition) 음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다. 그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다. 이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다. 연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다. 이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다. 화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다. 이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다. 이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다. <관련 영상> https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be □ 그림 설명 그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조 그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11839
예종철 교수, 인공지능 블랙박스의 원리 밝혀
〈 예종철 교수, 한요섭 연구원, 차은주 연구원 〉 우리 대학 바이오및뇌공학과 예종철 석좌교수 연구팀이 인공지능의 기하학적인 구조를 규명하고 이를 통해 의료영상 및 정밀분야에 활용 가능한 고성능 인공신경망 제작의 수학적인 원리를 밝혔다. 연구팀의 ‘심층 합성곱 프레임렛(Deep Convolutional Framelets)’이라는 새로운 조화분석학적 기술은 인공지능의 블랙박스로 알려진 심층 신경망의 수학적 원리를 밝혀 기존 심층 신경망 구조의 단점을 보완하고 이를 다양하게 응용 가능할 것으로 기대된다. 예종철 석좌교수가 주도하고 한요섭, 차은주 박사과정이 참여한 이번 연구는 응용수학 분야 국제 학술지 ‘사이암 저널 온 이매징 사이언스(SIAM Journal on Imaging Sciences)’ 4월 26일자 온라인 판에 게재됐다. 심층신경망은 최근 폭발적으로 성장하는 인공지능의 핵심을 이루는 딥 러닝의 대표적인 구현 방법이다. 이를 이용한 영상, 음성 인식 및 영상처리 기법, 바둑, 체스 등은 이미 사람의 능력을 뛰어넘고 있으며 현재 4차 산업혁명의 핵심기술로 알려져 있다. 그러나 이러한 심층신경망은 그 뛰어난 성능에도 불구하고 정확한 동작원리가 밝혀지지 않아 예상하지 못한 결과가 나오거나 오류가 발생하는 문제가 있다. 이로 인해 ‘설명 가능한 인공지능(explainable AI: XAI)’에 대한 사회적, 기술적 요구가 커지고 있다. 연구팀은 심층신경망의 구조가 얻어지는 고차원 공간에서의 기하학적 구조를 찾기 위해 노력했다. 그 결과 기존의 신호처리 분야에서 집중 연구된 고차원 구조인 행켈구조 행렬(Hankel matrix)을 기저함수로 분해하는 과정에서 심층신경망 구조가 나오는 것을 발견했다. 행켈 행렬이 분해되는 과정에서 기저함수는 국지기저함수(local basis)와 광역기저함수(non-local basis)로 나눠진다. 연구팀은 광역기저함수와 국지기저함수가 각각 인공지능의 풀링(pooling)과 필터링(filtering) 역할을 한다는 것을 밝혔다. 기존에는 인공지능을 구현하기 위한 심층신경망을 구성할 때 구체적인 작동 원리를 모른 채 실험적으로 구현했다면, 연구팀은 신호를 효과적으로 나타내는 고차원 공간인 행켈 행렬를 찾고 이를 분리하는 방식을 통해 필터링, 풀링 구조를 얻는 이론적인 구조를 제시한 것이다. 이러한 성질을 이용하면 입력신호의 복잡성에 따라 기저함수의 개수와 심층신경망의 깊이를 정해 원하는 심층신경망의 구조를 제시할 수 있다. 연구팀은 수학적 원리를 통해 제안된 인공신경망 구조를 영상잡음제거, 영상 화소복원 및 의료영상 복원 문제에 적용했고 매우 우수한 성능을 보임을 확인했다. 예종철 교수는 “시행착오를 반복해 설계하는 기존의 심층신경망과는 달리 원하는 응용에 따라 최적화된 심층신경망구조를 수학적 원리로 디자인하고 그 영향을 예측할 수 있다”며 “이 결과를 통해 의료 영상 등 설명 가능한 인공지능이 필요한 다양한 분야에 응용될 수 있다”고 말했다. 이번 연구는 과학기술정보통신부의 중견연구자지원사업(도약연구) 및 뇌과학원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 수학적인 원리를 이용한 심층신경망의 설계 예시 그림2. 영상잡음제거 결과 그림3. 영상에서 80% 화소가 사라진 경우 인공신경망을 통해 복원한 결과
2018.05.10
조회수 17398
이상엽, 김현욱 교수, 약물 상호작용 예측기술 DeepDDI 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 김현욱 교수 공동 연구팀이 약물-약물 및 약물-음식 간 상호작용을 정확하게 예측하기 위해 딥 러닝(deep learning)을 이용해 약물 상호작용 예측 방법론인 딥디디아이 (DeepDDI)를 개발했다. 김현욱 교수, 류재용 연구원이 공동 1저자로 참여한 이번 연구는 국제학술지 ‘미국 국립과학원 회보(PNAS)’ 4월 16일자 온라인판에 게재됐다. 기존의 약물 상호작용 예측 방법론은 약물-약물 간의 상호작용 가능성만을 예측할 뿐, 두 약물 간의 구체적인 약리작용에 대한 정보는 제공하지 못했다. 이러한 이유로 맞춤형 약물 처방, 식이요법 등 응용 연구에서 체계적인 근거를 제시하거나 가설을 세우는 데에 한계가 있었다. 연구팀은 딥 러닝(deep learning) 기술을 적용해 19만 2천 284개의 약물-약물 상호작용을 아우르는 86가지의 약물 상호작용을 92.4%의 정확도로 예측하는 시스템 딥디디아이 (DeepDDI)를 개발했다. 딥디디아이는 두 약물 A, B 간의 상호작용에 대한 예측 결과를 다음과 같이 사람이 읽을 수 있는 영문 문장으로 출력한다 : “The metabolism of Drug B can be decreased when combined with Drug A (약물 A를 약물 B와 함께 복용 시 약물 B의 약물 대사가 감소 될 수 있다)” 연구팀은 딥디디아이를 이용해 두 약물 복용 시 일어날 수 있는 유해반응의 원인, 보고된 인체 부작용을 최소화시킬 수 있는 대체 약물, 특정 약물의 약효를 떨어뜨릴 수 있는 음식 및 음식 성분, 지금껏 알려지지 않은 음식 성분의 활성 등을 예측했다. 이번 연구성과로 약물-약물 및 약물-음식 상호작용을 정확하게 예측할 수 있는 시스템을 활용하는 것이 가능해졌으며 이는 신약개발, 복합적 약의 처방, 투약시의 음식조절 등을 포함해 헬스케어, 정밀의료 산업 및 제약 산업에 중요한 역할을 할 것으로 기대된다. 이상엽 특훈교수는 “이번 연구결과는 4차 산업혁명 시대의 정밀의료를 선도할 수 있는 기반 기술을 개발한 것이다”며, “복합 투여되는 약물들의 부작용을 낮추고 환자 맞춤형 약물 처방과 식이요법 제안을 통한 효과적인 약물치료 전략을 수립할 수 있다. 특히 고령화 사회에서 건강한 삶을 유지하는데 필요한 약-음식 궁합에 대한 제안을 해 줄 수 있는 시스템으로 발전해 나갈 것이다”고 말했다. 이 연구성과는 과학기술정보통신부의 바이오리파이너리를 위한 시스템대사공학 연구사업, KAIST의 4차 산업혁명 인공지능 플래그십 이니셔티브 연구사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 딥디디아이 (DeepDDI)의 모식도 및 예측된다양한 약물-음식성분의 상호작용들의 시각화
2018.04.18
조회수 16218
김문철 교수, 인공지능 통해 풀HD영상 4K UHD로 실시간 변환
〈 김 문 철 교수 〉 우리 대학 전기및전자공학부 김문철 교수 연구팀이 딥러닝 기술을 이용해 풀 HD 비디오 영상을 4K UHD 초고화질 영상으로 초해상화 변환할 수 있는 기술을 개발했다. 이 기술은 인공지능의 핵심 기술인 심층 콘볼루션 신경망(Deep Convolutional Neural Network, DCNN)을 하드웨어로 구현했다. 초당 60프레임의 초고해상도 4K UHD 화면을 실시간으로 생성할 수 있는 알고리즘 및 하드웨어 개발을 통해 향후 프리미엄 UHD TV, 360 VR, 4K IPTV 등에 기여할 것으로 기대된다. 이번 연구는 KAIST 전기및전자공학부 김용우, 최재석 박사과정 등이 주도했고 현재 특허 출원을 준비 중이다. 최근 영상 화질 개선 연구에 인공지능의 핵심 기술인 심층 콘볼루션 신경망을 적용시키려는 노력이 활발히 이뤄지고 있다. 그러나 이러한 심층 콘볼루션 신경망 기술은 연산 복잡도와 매우 높고 사용되는 메모리가 커 작은 규모의 하드웨어를 통해 초고해상도 영상으로 실시간 변환하는 데 한계가 있다. 기존의 프레임 단위로 영상을 처리하던 방식은 DRAM과 같은 외부 메모리 사용이 필수적인데 이로 인해 영상 데이터를 처리할 때 지나친 외부 메모리 접근으로 인한 메모리 병목현상과 전력 소모 현상이 발생했다. 김 교수 연구팀은 프레임 단위 대신 라인 단위로 데이터를 처리할 수 있는 효율적인 심층 콘볼루션 신경망 구조를 개발해 외부 메모리를 사용하지 않고도 작은 규모의 하드웨어에서 초당 60 프레임의 4K UHD 초해상화를 구현했다. 연구팀은 기존 소프트웨어 방식의 심층 콘볼루션 신경망 기반의 고속 알고리즘과 비교해 필터 파라미터를 65% 정도만 적용하고도 유사한 화질을 유지했다. 이는 딥러닝 기술을 이용한 고해상도 영상 변환 기술이 활발히 진행되는 가운데 초당 60프레임의 4K UHD 초해상화를 하드웨어로 실현한 첫 사례로 꼽힌다. 김 교수는 “이번 연구는 심층 콘볼루션 신경망이 작은 규모의 하드웨어에서 초고품질 영상 처리에 실질적으로 응요 가능한 기술임을 보인 매우 중요한 사례다”며 “현재 프리미엄 UHD TV 및 UHD 방송 콘텐츠 생성, 360도 VR 콘텐츠, 4K IPTV 서비스에 매우 효과적으로 적용할 수 있다”고 말했다. 이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) ICT 기초연구실지원사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 AI(딥러닝) 기반 고속 초고해상도 업스케일링 기술 그림2.심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 (FPGA) 그림3. 심층 신경망 AI 기반 4K UHD 60fps 실시간 초해상화 하드웨어 시연
2018.01.16
조회수 17079
박현욱 교수, 머신러닝 통해 MRI 영상촬영시간 단축기술 개발
우리 대학 전기및전자공학부 박현욱 교수 연구팀이 머신러닝 기반의 영상복원법을 이용해 자기공명영상장치(이하 MRI)의 영상 획득시간을 6배 이상 단축시킬 수 있는 기술을 개발했다. 이번 연구를 통해 MRI의 영상획득시간을 대폭 줄임으로써 환자의 편의성을 높일 뿐 아니라 의료비용 절감 효과를 기대할 수 있을 것으로 보인다. 권기남 박사과정이 1저자로 참여한 이번 연구는 국제 학술지 ‘메디컬 피직스(Medical Physics)’ 12월 13일자에 게재됐고 그 우수성을 인정받아 표지 논문에 선정됐다. MRI는 방사능 없이 연조직의 다양한 대조도를 촬영할 수 있는 영상기기이다. 다양한 해부학적 구조 뿐 아니라 기능적, 생리학적 정보 또한 영상화 할 수 있기 때문에 의료 진단을 위해 매우 높은 빈도로 사용되고 있다. 하지만 MRI는 다른 의료영상기기에 비해 영상획득시간이 오래 걸린다는 단점이 있다. 따라서 환자들은 MRI를 찍기 위해 긴 시간을 대기해야 하고 촬영 과정에서도 자세를 움직이지 않아야 하는 등의 불편함을 감수해야 한다. 특히 길게 소요되는 영상획득시간은 MRI의 비싼 촬영 비용과 직접적인 연관이 있다. 박 교수 연구팀은 MRI의 영상획득시간을 줄이기 위해 데이터를 적게 수집하고 대신 부족한 데이터를 기계학습(Machine Learning)을 이용해 복원하는 방법을 개발했다. 기존의 MRI는 주파수 영역에서 여러 위상 인코딩을 하면서 순차적으로 한 줄씩 얻기 때문에 영상획득시간이 오래 걸린다. 획득 시간을 단축시키기 위해 저주파 영역에서만 데이터를 얻으면 저해상도 영상을 얻게 되고 듬성듬성 데이터를 얻으면 영상에서 인공물이 생기는 에일리어싱 아티팩트 현상이 발생한다. 이러한 에일리어싱 아티팩트를 해결하기 위해 다른 민감도를 갖는 여러 수신 코일을 활용한 병렬 영상법과 신호의 희소성을 이용한 압축 센싱 기법이 주로 활용됐다. 그러나 병렬 영상법은 수신 코일들의 설계에 영향을 받기 때문에 시간을 많이 단축할 수 없고 영상 복원에도 시간이 많이 걸린다. 연구팀은 MRI의 가속화에 의해 발생하는 에일리어싱 아티팩트 현상을 없애기 위해 라인 전체를 고려한 인공 신경망(Deep Neural Networks)을 개발했다. 연구팀은 위 기술과 함께 기존 병렬 영상법에서 이용했던 복수 수신 코일의 정보를 활용했고, 이 방식을 통해 직접적으로 영향을 주는 부분만을 연결해 네트워크의 효율성을 높였다. 기존 방법들의 경우 서브 샘플링 패턴에 많은 영향을 받았지만 박 교수 연구팀의 기술은 다양한 서브샘플링 패턴에 적용 가능하며 기존 방법대비 복원 영상의 우수함을 보였고 실시간 복원 또한 가능하다. 박 교수는 “MRI는 환자 진단에 필요한 필수 장비가 됐지만 영상 획득 시간이 오래 걸려 비용이 비싸고 불편함이 많았다”며 “기계학습을 활용한 방법이 MRI의 영상 획득 시간을 크게 단축할 것으로 기대한다”고 말했다. 이번 연구는 과학기술정보통신부의 인공지능 국가전략프로젝트와 뇌과학원천기술개발사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 국제 학술지 ‘메디컬 피직스 (Medical Physics)’12월호 표지 그림2. 제안하는 네트워크의 모식도 그림3. MRI의 일반적인 영상 획득 및 가속 영상 획득 모식도
2017.12.29
조회수 17557
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
>
다음 페이지
>>
마지막 페이지 9