-
중증 코로나19 환자의 사이토카인 폭풍 원인 찾았다
우리 대학 의과학대학원 신의철 교수와 생명과학과 정인경 교수 연구팀이 서울아산병원 김성한 교수·연세대 세브란스병원 최준용·안진영 교수, 충북대병원 정혜원 교수와의 공동연구를 통해 중증 코로나19 환자에서 나타나는 과잉 염증반응을 일으키는 원인을 발견했다.
과잉 염증반응이란 흔히 '사이토카인 폭풍'이라고도 불리는 증상인데 면역 물질인 사이토카인(cytokine)이 과다하게 분비돼 이 물질이 정상 세포를 공격하는 현상이다.
☞ 사이토카인(cytokine): 면역세포로부터 분비되는 단백질 면역조절제로서 자가분비형 신호전달(autocrine signaling), 측분비 신호전달(paracrine signaling), 내분비 신호전달(endocrine signaling) 과정에서 특정 수용체와 결합하여 면역반응에 관여한다. 세포의 증식, 분화, 세포사멸 또는 상처 치료 등에 관여하는 다양한 종류의 사이토카인이 존재하며, 특히 면역과 염증에 관여하는 것이 많다. 세포를 의미하는 접두어인 ‘cyto’와 그리스어로 ‘움직이다’를 의미하는 ‘kinein’으로부터 cytokine이 명명됐다.
☞ 사이토카인 폭풍(cytokine storm): 인체에 바이러스가 침투하였을 때 면역 물질인 사이토카인이 과다하게 분비되어 정상 세포를 공격하는 현상
빠르게 확산하고 있는 코로나19 바이러스는 전 세계적으로 이미 1,300만 명 이상이 감염됐고 이 중 50만 명 이상이 사망했다. 코로나19 바이러스에 감염된 환자들은 경증 질환만을 앓고 자연적으로 회복되는 경우가 많으나, 어떤 환자들은 중증 질환으로 발전해 심한 경우 사망하기도 한다. 흔히 사이토카인 폭풍 때문에 중증 코로나19가 유발된다는 사실이 널리 알려져 있다. 하지만 어떤 이유에서 과잉 염증반응이 일어나는지 구체적인 원인은 아직도 알려지지 않아 중증 코로나19 환자의 치료에 많은 어려움을 겪고 있다.
우리 대학 의과학대학원 이정석 연구원 및 생명과학과 박성완 연구원이 주도한 이번 연구에서 공동연구팀은 중증 및 경증 코로나19 환자로부터 혈액을 얻은 후 면역세포들을 분리하고 단일 세포 유전자발현 분석이라는 최신 연구기법을 적용해 그 특성을 상세히 분석했다. 그 결과, 중증 또는 경증을 막론하고 코로나19 환자의 면역세포에서 염증성 사이토카인의 일종인 종양괴사인자(TNF)와 인터류킨-1(IL-1)이 공통으로 나타나는 현상을 발견했다. 연구팀은 특히 중증과 경증 환자를 비교 분석한 결과, 인터페론이라는 사이토카인 반응이 중증 환자에게서만 특징적으로 강하게 나타남을 확인했다.
☞ 인터페론(interferon): 사이토카인(cytokine)의 일종으로 숙주 세포가 바이러스, 세균, 기생균 등 다양한 병원체에 감염되거나 혹은 암세포 존재 하에서 합성되고 분비되는 당단백질이다. 일반적으로 바이러스에 감염된 세포에서 분비되는 제 1형 인터페론이 많이 알려져 있으며 주변 세포들이 항바이러스 방어 효과를 나타낼 수 있도록 돕는다.
지금까지 인터페론은 항바이러스 작용을 하는 착한(?) 사이토카인으로 알려져 있으나, 공동연구팀은 인터페론 반응이 코로나19 환자에서는 오히려 과도한 염증반응을 촉발하는 원인이 될 수 있다는 사실을 다양한 방법을 통해 이를 증명했다.
삼성미래기술육성재단과 서경배과학재단의 지원을 받아 수행한 공동연구팀의 이번 연구결과는 면역학 분야 국제 학술지인 사이언스 면역학(Science Immunology)誌 7월 10일 字에 게재됐다(논문명: Immunophenotyping of COVID-19 and Influenza Highlights the Role of Type I Interferons in Development of Severe COVID-19).
연구팀은 중증 코로나19 환자의 과잉 염증반응 완화를 위해 현재에는 스테로이드제와 같은 비특이적 항염증 약물이 사용하고 있는데 이번 연구 성과를 계기로 인터페론을 표적으로 하는 새로운 치료방법도 고려할 수 있음을 보여준다며 중증 코로나19 환자 치료에 새로운 패러다임을 제시한 획기적인 연구라고 이 연구에 대한 의미를 부여했다.
관련 학계와 의료계에서도 코로나19의 재확산 등 팬데믹이 지속되는 현 상황에서 KAIST와 대학병원 연구팀이 긴밀한 협력을 통해 코로나19의 면역학적 원리를 밝히고 새로운 치료전략을 제시한 이번 연구를 중개 연구(translational research)의 주요 성과로 높게 평가했다.
공동연구팀은 현재 중증 코로나19 환자의 과잉 염증반응을 완화해 환자 생존율을 높일 수 있는 약물을 시험관 내에서 효율적으로 검색하고 발굴하는 방법을 개발하는 후속연구를 진행중에 있다.
이번 연구를 주도한 이정석 연구원은 내과 전문의로서 의과학대학원 박사과정에 재학 중인데 "중증 코로나19 환자의 의료적 문제를 해결하기 위해 정인경 교수 연구팀과 함께 이번 연구를 긴박하게 시작했는데 서울아산병원과 연세대 세브란스병원·충북대병원의 적극적인 지원에 힘입어 불과 3개월 만에 마칠 수 있게 됐다ˮ고 말했다.
정인경 교수는 "코로나19와 같은 신규 질환의 특성을 신속하게 규명하는데 있어 최신 단일세포 전사체 빅데이터 분석법이 매우 효과적ˮ이었음을 밝혔다.
신의철 교수도 "이번 연구는 코로나19 환자의 면역세포에서 어떤 일이 벌어지는지 상세히 연구함으로써 향후 치료전략을 설계할 수 있는 토대를 마련했다는 점에서 매우 중요하고 의미가 있는 연구ˮ라고 평가했다.
신의철 교수와 정인경 교수는 이와 함께 "중증 코로나19 환자의 생존율을 높일 수 있도록 새로운 면역기전 연구 및 환자 맞춤 항염증 약물 사용에 관한 연구를 지속적으로 수행할 것ˮ이라고 강조했다.
2020.07.14
조회수 30798
-
육종민 교수팀, 살아있는 세포의 전자현미경 관찰 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다.
이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다.
신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils)
전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다.
수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다.
그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다.
최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다.
육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다.
육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다.
한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.06.29
조회수 20928
-
이효철 교수 연구팀, 분자가 탄생하는 모든 순간(35펨토 초) 포착
우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장) 연구팀은 원자가 결합하여 분자가 탄생하는 모든 과정을 실시간으로 관찰하는데 성공했고 이번 성과가 세계 최고 권위의 학술지 네이처(Nature, IF 43.070)誌 온라인 판에 6월 25일 0시(한국시간) 게재됐다고 밝혔다.
연구진은 펨토 초(1/1,000조 초)의 순간을 관측하기 위해 특수 광원인 포항 4세대 방사광가속기의 X-선자유전자레이저(펨토 초 엑스선 펄스*)를 이용하여 화학결합을 형성하는 분자 내 원자들의 실시간 위치와 운동을 관측하는데 성공했다.
* 펄스는 짧은 시간동안 만 빛이 방출되는 형태로, 펨토 초 엑스선 펄스는 X선이 펄스의 형태로 생성되고 그 시간 길이가 펨토 초 정도일 때를 말함
물질을 이루는 기본 단위인 원자들이 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토 초에 옹스트롬(1/1억 cm) 수준만 움직이기 때문에 그 움직임을 실시간으로 포착하기는 어려웠다.
연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015) 분자의 구조를 원자 수준에서 관측한 바 있으며, 이번에 세계 최초로 화학반응의 시작부터 끝까지 전 과정의 원자의 움직임을 관찰하는데 성공했다.
화학반응의 시작인 반응물과 끝인 생성물은 상대적으로 오랫동안 구조를 유지하지만, 반응과정의 전이상태(transition state)의 경우 매우 짧은 시간 동안만 형성되기 때문에 관찰이 더 까다로웠다.
연구진은 기존보다 더 빠른 움직임을 볼 수 있도록 향상시킨 실험기법과 구조 변화 모델링 분석기법으로 금 삼합체(gold trimer)* 분자의 형성과정을 관찰했다. 그 결과, 세 개의 금 원자를 선형으로 잇는 두 개의 화학결합이 동시에 형성되는 것이 아니라, 한 결합이 35펨토 초 만에 먼저 빠르게 형성되고, 360펨토 초 뒤 나머지 결합이 순차적으로 형성됨을 규명했다.
* 세 개의 금 원자로 이뤄진 화합물(화학식 : [Au(CN)2-]3)로, 수용액 상에서 가까운 곳에 흩어져 있다가 빛(레이저)을 가하면 반응하여 화학결합을 시작하는 특징이 있다.
또한, 화학결합이 형성된 후 원자들이 같은 자리에 머물지 않고 원자들 간의 거리가 늘어났다가 줄어드는 진동 운동을 하고 있음도 관측했다.
연구진은 앞으로 단백질과 같은 거대분자에서 일어나는 반응뿐만 아니라 촉매분자의 반응 등 다양한 화학반응의 진행 과정을 원자 수준에서 규명해 나갈 계획이다.
제1 저자인 김종구 IBS 선임연구원(우리 대학 화학과 박사과정 졸업생)은 “장기적 관점에서 꾸준히 연구한 결과, 반응 중인 분자의 진동과 반응 경로를 직접 추적하는 ‘펨토초 엑스선 회절법’을 완성할 수 있었다”며 “앞으로 다양한 유‧무기 촉매 반응과 체내에서 일어나는 생화학적 반응들의 메커니즘을 밝혀내게 되면, 효율이 좋은 촉매와 단백질 반응과 관련된 신약 개발 등을 위한 기초정보를 제공할 수 있을 것”이라고 포부를 밝혔다.
2020.06.26
조회수 24560
-
전해액 사용량을 4배 줄인 리튬-황 전지 개발
우리 연구진이 리튬-황 전지를 경제적으로 설계하되 성능은 획기적으로 개선한 기술개발에 성공해 차세대 배터리 기술개발에 한 발 더 다가섰다.
우리 대학 생명화학공학과 김희탁 교수팀이 기존 대비 전해액의 함량을 4배 이상 줄인 리튬-황 전지를 개발했다고 25일 밝혔다. 리튬-황 전지는 차세대 배터리 기술 중 연구개발이 가장 활발하게 이뤄지는 기술이다. 리튬-황 전지는 휴대용 전자기기와 전기자동차에 사용되는 리튬이온전지에 비해 에너지 밀도가 2~3배 높아서 이를 사용하면 전기동력 기체 무게를 크게 줄일 수 있기 때문이다.
리튬-황 전지는 가벼운 황과 리튬금속을 활물질(화학적으로 반응하여 전기에너지를 생산하는 물질)로 이용하기 때문에 중금속 기반인 리튬이온전지에 비해 경량화가 가능하다. 특히 지구에 풍부하게 존재하는 황을 활용해 저가의 전지를 구현할 수 있다는 점 때문에 산업계와 학계로부터 그동안 많은 주목을 받아왔다. 다만 리튬-황 전지는 리튬이온전지와 달리 매우 높은 전해액 함량을 갖고 있다. 전지 무게의 40%에 달하는 과량의 전해질 사용은 전지 무게 증가로 인해 그동안 리튬-황 전지의 고에너지밀도 구현에 큰 걸림돌이 돼왔다. 리튬-황 전지는 황이 방전되고 난 후의 산물인 `리튬 폴리 설파이드(Lithium poly sulfide)'가 전해액에 용해된 상태에서 빠른 충 ‧ 방전 특성을 갖는다.
이 전해액 양을 낮추면 리튬 폴리 설파이드의 용해량이 감소해 용량 및 출력이 저하되는 문제가 발생한다. 또 리튬금속 음극이 전해액을 분해해 전해액이 고갈되는 문제는 낮은 전해 액체량에서 더욱 심해져 결국 전지 수명을 떨어뜨린다.
김희탁 교수 연구팀은 이번 연구를 통해 리튬 나이트레이트 염과 같이 높은 전자공여(다른 화합물에 전자를 주는 성질) 능력이 있는 염을 전해질에 주입하면 폴리 설파이드의 용해도를 증가시킴과 동시에 리튬금속에서 전해질 분해를 억제할 수 있음을 규명했다. 리튬이온과 결합력이 강한 나이트레이트 음이온이 리튬이온의 `용매화 껍질(Solvation Shell)' 역할을 수행함으로써 리튬 폴리 설파이드의 해리도를 증가시켜 결과적으로 용해도가 향상된다는 사실도 증명했다. 아울러 용매화 껍질 구조변화가 전해액 용매 분자와 리튬금속과의 접촉을 낮춰 분해반응을 억제하는 현상도 확인했다.
김희탁 교수팀은 이번 연구를 통해 전해액 성분 중 리튬 염 물질 하나만을 교체하는 간단한 방법으로 에너지 밀도를 높이면서 고가의 전해액 사용량을 4배 이상 줄여 가격을 대폭 절감하는 성과를 거뒀다. 김희탁 교수는 "이번 연구는 황 양극과 리튬금속 음극의 성능을 동시에 높일 수 있는 전해액 설계원리를 제시했다는 점에서 의미가 크다ˮ면서 "차세대 전지 전해액 설계산업 전반에 걸쳐 넓게 응용되기를 기대한다ˮ고 말했다.
KAIST 생명화학공학과 석사졸업생인 추현원 학생(現 MIT 박사과정 재학 중)과 정진관 박사과정이 공동 제1 저자로 참여한 이번 연구결과는 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced energy materials)' 6월 2일 字 표지논문으로 실렸다. (논문명: Unraveling the Dual Functionality of High-Donor-Number Anion in Lean-Electrolyte Lithium-Sulfur Batteries)
한편, 이번 연구는 LG화학, KAIST 나노융합연구소, 과학기술정보통신부 기후변화대응과제의 지원을 받아 수행됐다.
2020.06.25
조회수 23340
-
자기장과 자성체 없이 전기로만 작동 가능한 그래핀 스핀 트랜지스터 돌파구 마련
우리 대학 물리학과 조성재 교수 연구팀이 그래핀으로 자기장, 자성체 없이 스핀 전류를 생성, 검출하는 실험에 성공해 차세대 그래핀 스핀 트랜지스터 개발의 돌파구를 마련했다.
차세대 신소재로 주목받는 그래핀은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)로서 전기전도성, 탄성, 안정성이 높아 ‘꿈의 나노 물질’이라고 불린다. 이 그래핀은 전자의 스핀 확산 거리가 길어, 전자스핀을 정보화하는 분야인 스핀트로닉스 응용에 큰 기대를 받아왔다. 하지만 그래핀은 전자의 스핀과 전자의 궤도가 상호작용하는 스핀-궤도 결합 에너지가 매우 약하다는 이유로 스핀 전류를 직접 생성하거나 검출할 수 없다는 한계가 있었다.
조성재 교수 연구팀은 그래핀에 스핀-궤도 결합이 매우 큰 전이금속이자 디칼코게나이드 물질인 2H-TaS2를 접합시켜서 그 인접효과로 그래핀의 스핀-궤도 결합을 100배 이상 증가시키는 데 성공했고 이어 ‘라쉬바 효과’를 유도하는 데 성공했다.
‘라쉬바 효과’란 강한 스핀 궤도 결합으로 그래핀과 같은 2차원 물질 내부의 전기장이 자기장으로 전환되는 효과를 말한다. 이것을 이용해 스핀 전류를 생성, 검출하는 효과를 ‘라쉬바-에델스타인 효과’라고 부르는데 이번 연구에서는 이 효과를 그래핀에서 최초로 구현했다.
리준리 박사후 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 나노 (ACS Nano)’ 4월 8일 字 온라인판에 게재됐다. (논문명 : Gate-Tunable Reversible Rashba−Edelstein Effect in a Few-Layer Graphene/2H-TaS2 Heterostructure at Room Temperature).
라쉬바 효과가 그래핀에 유도되면, 라쉬바-에델스타인 효과에 의해 전하 전류와 스핀 전류가 상호 전환이 가능하다. 다시 말해, 자기장이나 자성체 없이 그래핀에 전류를 흘려줌으로써 스핀 전류를 생성시킬 수 있고, 그래핀 층에 흘러들어오는 스핀 전류를 전하 전류 혹은 전압 측정을 통해 검출할 수 있다.
조 교수 연구팀은 또 트랜지스터의 단자 사이에 인가되는 전압인 게이트 전압으로 그래핀 이종접합에 생성되는 스핀 전류의 크기와 방향을 제어하는 데 성공했다. 이는 추후 자기장, 자성체 없이 동작 가능한 그래핀 스핀 트랜지스터의 초석을 마련한 획기적인 연구성과로 평가받는다.
조성재 교수는 “이번 연구는 그래핀 이종접합에 자기장, 자성체 없이 전기적으로만 스핀 전류를 생성, 검출, 제어할 수 있음을 보인 최초의 연구로서 전기적으로만 작동 가능한 그래핀 스핀 트랜지스터의 개발로 이어질 것”이라며 “특히, 상온에서 실험이 성공했기 때문에 응용 가능성이 매우 크기 때문에 향후 우리나라 비메모리 산업뿐 아니라 세계적으로 스핀트로닉스 관련 물리학 및 산업에 응용할 수 있는 효과를 기대할 수 있어 의미가 매우 크다”고 강조했다.
한편, 이번 연구는 한국연구재단 미래반도체 신소자원천기술개발사업의 지원을 받아 수행됐다.
2020.05.18
조회수 17508
-
광 투과 방식의 웨어러블 유연 인장 센서 개발
기계공학과 박인규 교수 연구팀이 신체 동작 및 자세 모니터링에 활용이 가능한 탄소 나노튜브–탄성 중합체 복합소재 광 투과 방식의 웨어러블 유연 인장 센서를 개발했다.
이번 기술을 통해 인체의 다양한 관절 굽힘 동작, 자세, 맥박 및 표정 등 다양한 생체 동작을 연속적으로 측정해, 운동 시 관절부 움직임 자세 교정 및 맥박 측정을 통한 헬스케어 모니터링 시스템 등에 활용할 수 있을 것으로 기대된다.
구지민 박사과정이 1 저자로 참여한 이번 연구는 나노기술 분야 국제 학술지 ‘ACS Applied Materials & Interfaces’ 3월 4일 자 표지 논문에 게재됐다. (논문명: Wearable Strain Sensor Using Light Transmittance Change of Carbon Nanotube Embedded Elastomer with Microcrack)
최근 헬스케어에 대한 관심이 커짐에 따라 웨어러블 유연 센서 개발이 활발히 진행되면서 인체에 적용하는 센서로서의 유연 소재를 기반으로 다양한 전기저항식, 정전용량 방식의 플랫폼을 이용한 인장 센서가 많이 개발되고 있다.
그러나 기존의 전기저항식 센서는 장시간 반복 신호 안정성, 선형성에 한계를 보이며, 정전용량식 센서의 경우 외부 전기장의 영향에 취약하고 센서 민감도가 낮다. 이러한 점을 보완하기 위해 광학 방식의 유연 인장 센서가 개발됐으나 여전히 민감도가 낮다는 한계점이 있다.
문제 해결을 위해 연구팀은 탄소 나노튜브가 함침된 탄성중합체의 인장에 따른 광 투과도 변화 현상을 활용해 수 퍼센트에서 400%에 달하는 넓은 범위의 인장률을 안정적으로 측정할 수 있는 유연 인장 센서를 개발했다.
연구팀이 개발한 센서는 외부 인장에 따라 탄성중합체에 함침된 탄소 나노튜브 필름에 틈이 형성돼 광 투과도를 크게 변화시켜 기존의 광학 방식 인장 센서에 비해 10배 이상의 높은 감도를 가진다. 또한, 1만 3천 회 이상의 인장 변형에도 안정적인 신호 회복을 보이고, 다양한 환경 요인(온도, 습도)에도 안정적인 감지 성능을 보여 웨어러블 기기로 활용할 수 있는 큰 가능성을 보였다.
연구팀은 이러한 성능을 바탕으로 손가락 굽힘 동작을 측정해 이를 로봇 조종에 활용했으며, 3축 센서로 패키징 해 인체 자세 모니터링에 활용했다. 또한, 경동맥 근처의 맥박 모니터링과 발음할 때의 입 주변 근육 움직임 등 미세한 동작도 관찰하는 데 성공했다.
박인규 교수는 “이번 연구에서는 기존의 전기저항식, 정전용량식 및 광학 방식의 유연 인장률 센서가 갖는 한계점을 극복할 수 있는 새로운 플랫폼을 개발했다”라며 “헬스케어, 엔터테인먼트, 로보틱스 등 다양한 분야에 널리 활용할 수 있는 우수한 성능의 웨어러블 센서를 실현했다”라고 말했다.
이번 연구는 한국연구재단의 중견 연구 과제(올인원 스마트 스킨을 위한 웨어러블 멀티센서 시스템 핵심기술 연구)와 선도연구센터지원 사업(초정밀 광 기계기술 연구센터)의 지원을 통해 수행됐다.
2020.04.02
조회수 20475
-
50년 만에 스핀구름 존재 규명
물리학과 심흥선 교수 연구팀(응집상 양자 결맞음 선도연구센터)이 금속과 반도체 안에서 불순물의 자성을 양자역학적으로 가리는 스핀 구름의 존재를 규명하는 데 성공했다.
이는 50년 동안 입증되지 않아 논란이 있던 스핀 구름의 존재를 밝힌 것으로, 향후 차세대 양자정보 소자 개발 등에 활용할 수 있을 것으로 기대된다.
일본이화학연구소(RIKEN), 홍콩성시대학(City University of Hong Kong)과 공동으로 수행하고 KAIST 물리학과 심정민 박사과정 학생이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처(Nature)’ 3월 12일 자에 게재됐다. (논문명 : Observation of the Kondo screening cloud)
도체나 반도체 내의 잉여 전하는 주위 자유 전자들의 전하 구름에 의해 가려진다. 이와는 근본적으로 원리가 다르지만, 도체나 반도체 내 불순물이 스핀을 가질 때, 이 스핀은 주위의 자유 전자들에 의해 생성된 스핀 구름에 의해 가려진다고 알려져 있다. 콘도 효과 (Kondo effect)라고 불리는 이 현상은 충분히 낮은 온도에서 발현되는 양자역학적 현상으로 대표적 자성 현상이다.
콘도 효과의 여러 특성들은 대부분 규명됐으나 스핀 구름의 존재가 입증되지 않은 채 남아있었다. 지난 50년 동안 다양한 시도들이 꾸준히 있었으나 스핀 구름은 발견되지 않았고, 이에 따라 스핀 구름이 실제로 존재하는 것인가에 대한 논쟁이 있었다. 스핀 구름이 다양한 자성 현상에서 중요한 역할을 할 것으로 예측됐기 때문에, 스핀 구름을 발견하고 제어하는 것은 관련 학계에서 성배를 찾는 것과 같은 정도의 중요성으로 비유됐다.
심 교수 연구팀은 일본 이화학연구소와 홍콩성시대학의 연구진들과 공동 연구를 통해 콘도 스핀 구름을 최초로 발견했다. 발견한 스핀 구름의 크기는 마이크로미터(10-6 미터)에 달한다.
연구팀은 스핀 구름을 전기 신호를 이용해 관측하는 방법을 2013년에 선행연구로 제안한 바 있다. 이 선행연구에서는 전기장을 스핀 구름 내부에 가한 경우와 외부에 가한 경우에 각각 서로 다른 전류가 발생함을 예측했고, 이를 이용해 스핀 구름 공간 분포의 관측을 제안했다.
심 교수 연구팀의 제안에 따라 일본이화학연구소와 홍콩성시대학의 연구팀은 양자점을 이용해 반도체에 불순물 스핀을 인위적으로 생성하고, 생성된 불순물 주변에 서로 다른 여러 곳에 전기장을 인가할 수 있는 양자 소자를 제작하는 실험을 수행했다.
100mK(밀리켈빈)의 낮은 온도에서 관측된 소자의 전기 신호를 심 교수 연구팀에서 분석한 결과, 발견된 스핀 구름의 크기와 공간 분포는 이론 예측과 일치했고 그 크기는 수 마이크로미터(10-6 미터)로 확인됐다.
심흥선 교수는 “스핀 구름의 존재 입증은 학계의 숙원으로, 이번 연구에서 스핀 구름이 발견된 만큼 스핀 구름에 대한 후속 연구들이 활성화될 것으로 기대된다”라며, “스핀 구름을 전기적으로 제어해 미해결 자성 문제들을 이해하는 데에 활용할 수 있을 뿐 아니라, 스핀 구름의 양자 얽힘 특성을 기반으로 해 차세대 양자정보 소자를 개발할 수 있다”라고 말했다.
이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
2020.03.13
조회수 14875
-
OLED에 적용 가능한 새 스트레처블 기판 개발
전기및전자공학부 최경철 교수 연구팀이 높은 신축성을 갖는 유연한 기둥과 멤브레인 형태가 결합한 새로운 스트레처블 기판을 개발했다. 스트레처블 전자 소자의 핵심 부품 기술이 될 수 있는 이 기술을 활용해 연구팀은 스트레처블 OLED(유기발광다이오드)를 제작해 높은 유연성과 신축성을 갖는 새로운 스트레처블 디스플레이 기술을 개발했다.
임명섭 박사와 남민우 박사과정 주도한 이번 연구는 나노 분야 국제학술지 ‘나노 레터스(Nano Letters)’ 1월 28일 자 온라인판에 게재됐다. (논문명 : Two-dimensionally stretchable organic light-emitting diode with elastic pillar arrays for stress-relief)
스트레처블 디스플레이 기술은 한 방향으로 구부리거나 접는 기존의 플렉서블 OLED 디스플레이의 기술을 뛰어넘어 두 방향 이상으로 변환할 수 있다. 이에 따라 웨어러블, 사물인터넷, 인공지능, 차량용 디스플레이에 적합한 차세대 디스플레이 기술로 주목받고 있다. 최근 자유롭게 늘어날 수 있도록 OLED 소자와 디스플레이에 신축성을 주는 방법이 연구돼왔다. 하지만 모든 재료를 신축성 있는 재료로 바꾸는 방식은 효율이 낮아 상용화가 어렵고 패턴을 형성하기 어렵다는 한계가 있다. 기판을 먼저 늘리고 난 뒤 다시 원래대로 복원해 얇은 주름을 형성하는 방식의 스트레처블 OLED는 효율이 높고 안정적이지만 주름의 형태가 일정하지 않고 신축에 따른 화면의 왜곡이 있다.
최 교수 연구팀은 높은 휘도와 신축성을 가지는 디스플레이 구현을 위해, 단단하게 패턴화된 기판과 신축 시 이 기판에 가해지는 힘이 최소화할 수 있는 기둥구조가 형성된 유연 기판의 결합을 통해 새로운 형태의 핵심 부품 기술인 스트레처블 기판을 개발했다. 연구팀은 개발된 스트레처블 구조 기판과 기존 공정을 그대로 활용해 신축성 있는 OLED 디스플레이를 구현했다. 기존 공정을 그대로 활용하더라도 새로운 스트레처블 기판 부품 기술을 활용하면 스트레처블 디스플레이를 구현할 수 있다는 것을 증명했다. 이는 기존의 스트레처블 디스플레이 기술이 기존 공정을 활용할 수 없다는 단점을 극복한 것이다.
개발된 신축성 OLED 디스플레이는 실제 소자에 걸리는 기계적 스트레스가 거의 없어, 화면의 왜곡이나 급격한 휘도 변화 없이 안정적인 소자 구동이 가능하다. 또한, 발광 빛의 각도 의존성이 없어 다양한 스트레처블 디스플레이 응용 분야에 적용이 가능할 것으로 기대된다. 남민우 연구원은 “새로운 물질의 개발이 아닌 상용화된 공정 및 물질을 사용해 새로운 스트레처블 기판 위에 OLED 디스플레이를 구현했다”라며 “기존의 스트레처블 디스플레이 연구가 가지는 단점들을 뛰어넘어, 상용화될 수 있는 스트레처블 부품 기술을 개발하고자 했다”라고 말했다.
최경철 교수는 “제작된 스트레처블 기판을 활용하면 스트레처블 OLED, 마이크로LED, 센서 등이 구현 가능하며, 바이오 및 의료 분야와 결합한 다양한 치료 분야에 적용할 수 있다”라며 “스트레처블 및 웨어러블 전자 소자 및 전자약 기술 발전에 도움이 되기를 바란다”라고 말했다.
2020.02.25
조회수 17087
-
조광현 교수, 암세포를 정상세포로 되돌리는 초기 원천기술 개발
우리대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 대장암세포를 일반적인 정상 세포로 되돌리는 초기 원천기술을 개발하는 데 성공했다.
연구팀은 대장암세포와 정상 대장 세포의 유전자 조절 네트워크를 분석해 대장암세포를 정상 대장 세포로 변환하는데 필요한 핵심 인자를 규명하고, 이를 통해 암세포의 정상 세포화라는 새로운 치료 원리를 개발했다.
KAIST 이수범 연구원, 황채영, 김동산 박사, 한영현 박사과정, 서울삼성병원의 이찬수 박사, 홍성노 교수, 김석형 교수 등이 참여한 이번 연구결과는 미국암학회(AACR)에서 출간하는 국제저널 ‘분자암연구(Molecular Cancer Research)’ 1월 2일 자 표지논문으로 게재됐으며, 하이라이트 특집 기사도 함께 출판됐다. (논문명: Network inference analysis identifies SETDB1 as a key regulator for reverting colorectal cancer cells into differentiated normal-like cells).
현재 항암치료로 가장 널리 사용되는 항암 화학요법은 빠르게 분열하는 암세포를 공격해 죽임으로써 암세포의 증식을 억제하는 방식이다. 이 기술은 신체 내 정상적으로 분열하고 있는 세포들까지도 함께 사멸시켜 구토, 설사, 탈모, 골수 기능장애, 무기력 등의 부작용을 일으킨다.
게다가 암세포들은 항암제에 본질적인 내성을 갖거나 새로운 내성을 갖게 돼 약물에 높은 저항성을 가지는 암세포로 진화하게 된다. 따라서 현재의 항암치료는 내성을 보이는 암세포를 없애기 위해 더 많은 정상 세포의 사멸을 감수해야만 하는 문제를 갖는다.
이를 극복하기 위해 암세포만을 특이적으로 없애는 표적 항암요법과 우리 몸의 면역시스템을 활용한 면역 항암요법이 주목을 받고 있으나 각각 효과와 적용대상이 매우 제한적이며 장기치료 시 여전히 내성 발생의 문제가 보고되고 있다. 이처럼 현재 개발된 항암요법들은 암세포를 죽여야 하는 공통적인 조건 때문에 근본적인 한계를 가진다.
문제 해결을 위해 연구팀은 암세포를 정상 세포로 변환하는 새로운 방식의의 치료전략을 제안했다. 암세포가 정상 세포로 변환되는 현상은 20세기 초부터 간혹 관찰됐지만, 그 원리가 연구되지 않았으며 또한 이를 인위적으로 제어하는 기술도 연구된 바 없었다.
1907년 스위스 병리학자 막스 아스카나지(Max Askanazy)가 난소의 기형종(테라토마)이 정상 세포로 분화되는 현상을 발견한 이래로 다양한 암종에서 정상 세포로 변화되는 현상들이 산발적으로 보고됐고, 이러한 보고에서는 암세포가 돌연변이를 지닌 상태에서 주변 미세환경의 변화나 특정 자극 때문에 정상 세포의 상태로 되돌아가는 현상만이 관찰됐다.
조 교수 연구팀은 시스템생물학 연구방법을 통해 대장암세포를 정상 대장 세포로 변환할 수 있는 핵심조절인자를 탐구했고, 그 결과 다섯 개의 핵심전사인자(CDX2, ELF3, HNF4G, PPARG, VDR)와 이들의 전사 활성도를 억제하고 있는 후성유전학적 조절인자인 SETDB1을 발견했다.
연구팀은 이번 연구를 통해 SETDB1을 억제함으로써 암세포를 효과적으로 정상 세포로 변환할 수 있음을 분자세포실험을 통해 증명했다. 대장암세포에서 SETDB1을 억제했을 때 세포가 분열을 중지하고 정상 대장 세포의 유전자 발현패턴을 회복하는 것을 확인했다.
이번 연구에 따르면 암세포에서는 암 특이적으로 활성화된 후성유전학적 조절인자 SETDB1이 정상 세포의 핵심전사인자를 억제해 암세포가 정상 세포로 변환하는 것을 차단하고 있는 것으로 밝혀졌다. 즉, SETDB1을 조절함으로써 다시 원래의 정상 세포 상태로 되돌릴 수 있음을 증명한 것이다.
조 교수 연구팀은 서울삼성병원과의 협동 연구를 통해 SETDB1이 높게 발현되는 대장암세포를 가진 환자들에게서 더 안 좋은 예후가 나타남을 확인했으며, 환자 유래 대장암 오가노이드(3차원으로 배양한 장기유사체)에서 SETDB1의 발현을 억제했을 때 다시 정상 세포와 같은 형태로 변화함을 관찰했다.
이번 연구에서 찾아낸 타겟 단백질의 활성을 억제할 수 있는 저분자화합물은 아직 개발된 바 없으며 추후 신약개발과 전임상실험을 통해 암세포의 정상 세포화라는 새로운 치료 기술이 본격적으로 실현될 수 있을 것으로 보인다.
이러한 새로운 개념의 치료전략이 적용된다면 현재 항암치료의 많은 부작용과 내성 발생을 모두 최소화함으로써 환자의 고통을 완화해 삶의 질을 크게 높일 수 있을 것으로 기대된다.
조 교수는 “그동안 암은 유전자 변이 축적에 의한 현상이므로 되돌릴 수 없다고 여겨졌으나 이를 되돌릴 가능성을 보여줬다”라며 “이번 연구는 암을 당뇨나 고혈압과 같은 만성질환으로서 잘 관리하면서 삶의 질을 유지할 수 있도록 하는 새로운 항암치료의 서막을 열었다”라고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, KAIST Grand Challenge 30 사업의 지원으로 수행됐다.
□ 그림 설명
조광현 교수 연구팀은 SETDB1 단백질이 대장암세포가 정상대장세포로 분화하는 것을 차단하는 후성유전학적 장애물을 형성하고 있다는 사실을 밝히고 이를 억제함으로써 대장암세포를 정상대장세포로 효과적으로 분화시킬 수 있음을 증명하였다.
□ 분자암연구 표지 이미지
2020.01.09
조회수 19071
-
신병하 교수, 홀 효과 한계 보완한 새 반도체 분석기술 개발
〈 신병하 교수, 배성열 박사과정 〉
우리 대학 신소재공학과 신병하 교수와 IBM 연구소의 오키 구나완(Oki Gunawan) 박사 공동 연구팀이 반도체 특성 분석의 핵심 기술인 홀 효과(Hall effect)의 한계를 넘을 수 있는 새로운 반도체 정보 분석 기술을 개발했다.
이번 연구는 140년 전에 처음 발견된 이래로 반도체 연구 및 재료 분석의 토대가 된 홀 효과 측정에 대한 새로운 발견으로 향후 반도체 기술 개발에 이바지할 수 있을 것으로 기대된다.
신병하 교수와 오키 구나완 박사가 교신 저자로, 배성열 박사과정이 2 저자로 참여한 이번 연구 결과는 국제 학술지‘네이처(Nature)’ 10월 07일 자 온라인판에 게재됐으며 11월 07일 정식 게재됐다. (논문명: Carrier-Resolved Photo Hall Effect)
1879년 에드윈 홀(Edwin Hall)이 발견한 홀 효과는 물질의 전하 특성(유형, 밀도, 이동성 또는 속도)에 대한 중요한 정보를 제공한다. 이는 반도체 소자를 이해하고 설계하는 데 필요한 가장 기본적인 특성들이다.
이러한 이유로 홀 효과는 지난 100년이 넘는 시간 동안 가장 일반적인 반도체 특성 분석 기법의 하나며 전 세계의 반도체 연구기관에서 보편적으로 사용되고 있다.
그러나 현재까지의 분석 기법으로는 홀 효과를 통해 다수 운반체(Majority carrier)와 관련한 특성만 파악할 수 있고, 태양 전지와 같은 소자의 구동 원리 파악에 필수인 소수 운반체(Minority carrier) 정보는 얻을 수 없다는 한계를 가지고 있었다.
연구팀은 문제 해결을 위해 ‘포토 홀 효과(Carrier-Resolved Photo-Hall" (CRPH))’ 기술을 개발했다. 이 기술을 사용하면 한 번의 측정으로 다수 운반체 및 소수 운반체에 대한 많은 정보를 동시에 추출할 수 있다.
기존 홀 측정에서는 세 가지 정보를 얻을 수 있었다면 연구팀의 새로운 기술은 실제 작동 조건을 포함한 여러 광도에서 광여기 전하의 농도, 다수 운반체 및 소수 운반체의 전하 이동도, 재결합 수명, 확산 거리 등 최대 일곱 개의 중요한 정보를 얻을 수 있다.
연구팀의 이 기술은 태양 전지, 발광 다이오드와 같은 광전자 소자 분야에서 사용 가능한 신소재 개발 및 최적화에 핵심적인 역할을 할 것으로 기대된다.
신 교수는 “지난 2년간의 연구가 좋은 결심을 맺게 되어 기쁘고, 이 기술을 통해 새로운 광소자 물질의 전하 수송 특성을 이해하고 더 나은 소자를 개발하는 데 큰 도움이 되리라 믿는다”라고 말했다.
이번 연구는 한국연구재단 기후변화대응기술개발사업, 산업통상자원부와 한국에너지기술평가원(KETEP) 에너지기술개발사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포토 홀 효과 개념도
2019.11.14
조회수 15170
-
정재웅 교수, 상황에 따라 딱딱해지고 유연해지는 전자기기 개발
〈 정재웅 교수, 변상혁 박사과정, 이주현 석사과정 〉
우리 대학 전기및전자공학부 정재웅 교수 연구팀이 사용 목적과 신체 적용 여부에 따라 딱딱한 형태와 부드러운 형태를 하나의 전자기기에서 선택적으로 구현함으로써 기기의 모양과 유연성을 변화시킬 수 있는 기술을 개발했다.
연구팀이 개발한 기술은 딱딱한 형태의 전자기기와 유연 기기의 경계를 허물어 활용도, 사용 편의성, 휴대성, 생체적합성을 모두 극대화할 수 있어 소비 전자제품뿐 아니라 생체의학, 로봇 공학 등의 다양한 분야에 혁신적 변화를 일으킬 것으로 기대된다.
변상혁 연구원과 한국전자통신연구원의 심주용 박사가 1저자로 참여하고 이주현, 라자 콰지(Raza Qazi) 연구원 등이 참여한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 11월 1일 자에 게재됐다. (논문명: Mechanically transformative electronics, sensors, and implantable devices).
일반적으로 전자기기는 사용 목적에 따라 특정 강성을 갖도록 설계된다. 스마트폰, 노트북은 딱딱한 형태로 손에 쥐거나 테이블 위에 놓고 사용하기 적합하고, 최근 활발히 개발되는 유연 신축성 전자기기는 착용성이 뛰어나 웨어러블 형태로 활용되고 있다.
하지만 딱딱한 형태의 전자기기는 신체에 착용 시 각종 불편함을 일으키고, 생체이식 시 조직 파괴나 염증 등을 유발할 수 있다. 반면 유연 신축성 전자기기는 외력을 견디지 못하고 쉽게 모양이 변하기 때문에 몸에서 탈착 시 일반적인 전자기기와 같이 편리하게 사용하기 어렵다는 단점을 가진다.
연구팀은 갈륨(Gallium)과 중합체(polymer)를 이용한 합성물질을 제작해 온도에 따라 강성률 변화가 가능한 전자 플랫폼을 구현했다. 이를 유연 신축성 전자회로와 결합해 강성률이 변화 가능한 새로운 형태의 전자기기를 구현했다.
갈륨은 이번 연구의 핵심 소재로, 금속임에도 불구하고 생체 온도(29.8℃)에서 녹는점을 가져 신체 탈부착 시 고체와 액체 간의 상태 변화가 가능하다. 이러한 점에 기반해 갈륨을 중합체에 내장해 온도에 따라 강성률 변화가 가능한 전자 플랫폼을 제작했다.
연구팀은 전자기기의 강성도를 변화시킬 수 있는 특징을 활용해 다양한 적용 분야에서 기존 전자기기가 갖는 한계점을 극복할 수 있음을 증명했다. 예를 들어, 이 기술을 휴대용 전자기기에 적용해 평상시에는 딱딱한 형태로 손에 쥔 상태나 책상 위에서 이용하고, 이동 시 몸에 부착해 부드러운 웨어러블 기기 형태로 만듦으로써 휴대성을 높일 수 있음을 보여줬다.
또한, 강성을 변환시킬 수 있는 압력 센서를 개발해 목적에 따라 민감도와 압력 감지의 범위를 조절하는 데 성공했다. 그뿐만 아니라, 뇌 조직에 이식 시 부드럽게 변화하는 뇌 탐침을 개발해 기존 딱딱한 탐침 대비 뇌 손상 및 염증 반응을 최소화할 수 있었다.
이렇게 변형 가능한 전자기기 기술은 웨어러블, 임플랜터블, 센싱기기 및 로봇 등에 적용돼 다양한 목적과 상황에 유동적으로 사용될 수 있는 다목적 전자기기 시스템 개발을 이끌 수 있을 것으로 기대된다.
정 교수는 “평상시 딱딱한 형태의 전자기기로 쓰이나 몸에 부착 시 혹은 내부 장기에 이식 시 우리 신체 조직처럼 부드럽고 신축성 있게 변환될 수 있는 기기 플랫폼 기술 개발을 통해, 일반적인 전자기기와 유연 기기가 갖는 단점은 없애면서 사용 목적에 따라 각각의 장점을 극대화할 수 있는 전자기기를 개발했다”라며 “이 기술을 이용하면 전자기기의 활용 폭을 크게 넓힐 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업 및 기초연구실 지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 개발된 강성률 변화 가능한 전자기기의 개념도와 실제 구현사진
그림2. 딱딱한 모바일 기기와 부드러운 웨어러블 기기 간 변환이 가능한 전자기기 및 활용 예시
그림3. 압력 측정 민감도-동작 범위 튜닝이 가능한 압력 센서
그림4. 강성률 변화 가능 플랫폼을 활용한 뉴럴 프로브
그림5. 디바이스 개념을 보여주는 인포그래픽
2019.11.06
조회수 10927
-
심흥선 교수, 전자 움직임 포착할 수 있는 나노셔터 개발
〈 심흥선 교수, 류성근 연구원〉
우리 대학 물리학과 심흥선 교수팀(응집상 양자 결맞음 선도연구센터)이 나노 전기소자 내에서 전자 파동함수의 피코초(1조분의 1초) 수준의 초고속 움직임을 관찰하는 방법을 개발했다.
일본전신전화주식회사(NTT) 연구소, 영국국가표준기관(NPL) 연구소와 공동으로 수행하고 우리 대학 물리학과 류성근 연구원이 1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 11월 4일 자 온라인판에 게재됐다. (논문명 : Picosecond coherent electron motion in a silicon single-electron source)
움직이는 물체를 관찰하기 위해서는 카메라를 이용해 연속적으로 촬영하면 된다. 그러나 이 방법은 셔터의 작동 속도보다 더 빠른 물체의 움직임을 포착할 수 없다는 한계가 있다.
이러한 문제점은 나노 전기소자에도 동일하게 적용된다. 10기가헤르츠(GHz) 보다 더 빠른 전기 신호를 실시간으로 관측하는 것은 현재 기술로 불가능해 서브 마이크론 길이 내에서 104-105 m/sec의 속력으로 빠르게 움직이는 전자의 움직임을 기존 기술로는 포착할 수 없다.
심 교수 연구팀은 ‘나노 셔터’를 나노 전기소자 옆에 부착해 이 문제점을 해결할 수 있다는 이론을 제시했다. 여기서 나노 셔터는 공명 상태(resonance state)를 갖는 불순물로, 나노 전기소자 내의 전자가 불순물 근처에 도달할 때 전자는 공명 상태를 통해 소자 바깥으로 나오게 돼 전류 신호로 관측된다.
전자 에너지와 공명 상태 에너지가 같을 때만 바깥으로 나올 수 있으므로 공명 상태 에너지를 시간에 따라 변화시켜 나노 셔터를 빠르게 열거나 닫을 수 있다. 나노 셔터를 여는 시간을 바꾸면서 전류를 측정하면 전자가 불순물 근처에 도달한 시점 정보를 얻게 돼 나노 전기소자 내의 전자 움직임을 포착할 수 있다.
심 교수 연구팀의 이론적 해결책에 따라 일본 NTT 연구소는 영국의 국가표준기관인 NPL과 협력을 통해 나노 셔터 구현에 성공했다. 실험 연구팀이 이용한 나노 전기소자는 양자점 전자 펌프(quantum dot single-electron pump)로, 이 소자는 단일 전자를 정해진 주기로 발사하는 역할을 하며 전류의 표준을 연구할 때 사용된다.
양자점 전자 펌프의 출구에 불순물 공명 상태를 구현해 양자점 전자 펌프 내에서 전자 파동함수가 공간적으로 진동하고 있음을 관찰했다. 진동수는 무려 250기가헤르츠로 시간으로 환산하면 수 피코초 수준의 진동이다. 10 GHz 이상의 진동수의 전자 움직임을 포착한 것은 이번 연구가 처음이다.
심흥선 교수는 “양자역학 상태를 제어해 기존 기술의 한계를 돌파할 수 있음을 보여줬다”라며, “개발한 나노 셔터는 전자의 양자역학 근본원리를 탐구하는 데에 활용될 뿐 아니라 전류 표준, 초정밀 전자기장 센서, 초고속 큐빗 제어 등 차세대 양자정보 소자에 응용될 것이다”라고 말했다.
이 연구는 한국연구재단의 기초과학 선도연구센터 지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 실리콘 기반 양자점 전자 펌프
그림2. 나노 전기소자 내에서 초고속으로 움직이는 전자 측정법
2019.11.05
조회수 9352