본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%A0%EC%86%8C%EC%9E%AC%EA%B3%B5%ED%95%99%EA%B3%BC
최신순
조회순
압력과 인장을 구분하는 무선통신 전자 소자 개발
우리 대학 신소재공학과 스티브 박, 김상욱 교수 공동 연구팀이 신물질을 이용해 압력과 인장(늘이기)을 구분할 수 있는 무선통신 소자를 개발했다고 22일 밝혔다. 공동 연구팀은 무선통신에 활용되고 있는 전기 공진기(electrical resonator)가 여러 정보를 전달할 수 있다는 사실에 주목했다. 원거리에서 여러 자극을 측정할 수 있는 효과적인 정보처리시스템의 경우 최근 주목받고 있는 웨어러블과 임플란터블(체내이식형) 소자 등 다양한 분야에서 폭넓게 활용되고 있다. 특히 수동형 소자들로 만들어지는 전기 공진기는 원거리 통신이 가능할 뿐만 아니라 다양한 기능성 재료(생분해성 물질, 자가치유 물질)로 구현이 가능해 웨어러블·임플란터블 소자 분야에서 연구가 활발히 진행되고 있다. 전기 공진기의 무선통신 신호는 2개의 요소, 즉 공진기의 정전용량에 의해 결정되는 '공진주파수'와 공진기에 저장된 전자기파 에너지에 의해 결정되는 '품질 인자(quality factor)'에 의해 결정된다. 따라서 최소 두 가지 정보를 포함할 수 있다. 기존에는 공진기의 신호를 변화시킬 수 있는 메커니즘과 관련된 물질의 특성 및 소자의 구조에 대한 전반적인 이해가 부족했기 때문에 효과적인 신호처리를 위한 시스템 구축에는 많은 제약이 따랐다. 특히, 공진주파수와 품질 인자의 변화를 분화하기 위해서는 공진기의 저장된 전자기파를 차폐할 수 있는 신물질이 필요한데 공동 연구팀은 2차원 신물질인 '맥신(MXene)'을 사용했다. 연구팀은 '맥신(MXene)'이 사용할 수 있는 합성 재료 중 가장 우수한 전자기장 차폐능력을 갖췄다고 판단했기 때문이다. 연구팀은 우선 압력에 따라서 기공이 닫히는 다공성 탄성체에 Ti3C2Tx 조성의 맥신을 코팅해 외부 자극에 따라 공진기의 저장된 에너지를 변형시킬 수 있는 센서로 활용했다. 이때 탄성체와 맥신 사이에 나노 접착제 역할을 하는 *폴리도파민을 도입해 2,000번 이상의 반복적인 수축과 이완에도 신뢰성 있게 작동할 수 있도록 소자를 만들었다. ☞ 폴리도파민(poly-dopamine): 바다생물 홍합이 물속에서 바위에 몸을 붙일 때 내는 접착 물질을 도파민이라고 하고, 이를 고분자화하여 중합체 형태로 만든 물질. 나아가, 연구팀은 딥러닝 기법을 적용해 미리 학습됐던 압력과 인장 자극을 구분해 정확하게 맞추고, 학습되지 않은 새로운 압력과 인장 자극도 약 9%의 오차 이내로 맞출 수 있는 시스템을 구현하는 데 성공했다. 연구팀이 개발한 소자는 무선으로 기계적 자극을 구분해 측정할 수 있고, 생체친화적이며 가볍기 때문에 웨어러블 소자로 활용이 가능한 게 장점이다. 공동 연구팀은 이 밖에 새로 개발한 소자를 기반으로 정형외과 수술 이후 재활 치료를 하는 과정에서 부상을 방지할 수 있는 모니터링 시스템을 개발, 구축했다. 스티브 박 교수는 "최근 주목받고 있는 무선통신 소자의 신호처리에 대해 새로운 방향을 제시하고 신물질인 맥신의 다양한 적용 가능성을 보여준 의미있는 연구성과"라면서 "헬스케어를 위한 웨어러블, 임플란터블 모니터링 전자소자에 활용될 것으로 기대된다" 라고 말했다. 우리 대학 신소재공학과 이건희, 이강산 박사과정 학생이 공동 제1 저자로 참여한 연구논문은 국제 학술지 'ACS Nano' 8월 19일 字 온라인 버전에 게재됐다. (논문명 : Deep-Learning-Based Deconvolution of Mechanical Stimuli with Ti3C2Tx MXene Electromagnetic Shield Architecture via Dual-Mode Wireless Signal Variation Mechanism) 한편 이번 연구는 KAIST 석박사모험 연구사업, KAIST 글로벌 특이점 연구사업, 과학기술정보통신부 리더연구자 지원사업인 다차원 나노조립제어 창의연구단의 지원을 받아 수행됐다.
2020.09.22
조회수 30208
귀금속 사용량을 50% 감소시킨 친환경 수소 생산 전극 개발
화석 에너지 사용에 따른 기후변화를 극복하기 위해 최근 전 세계적으로 재생에너지 발전량이 증가하는 추세에 따라 수소가 재생에너지를 효율적으로 저장할 수 있는 미래 에너지원으로 주목받고 있다. 우리 정부도 작년 1월 '수소 경제 활성화를 위한 로드맵'을 발표한 바 있다. 이에 우리 대학 신소재공학과 에너지 변환 및 저장재료 연구실 조은애 교수 연구팀이 촉매로 사용되는 귀금속 사용량을 50% 저감한 수전해 전극을 개발했다고 15일 밝혔다. 수전해는 물을 전기분해하여 수소를 생산하는 장치인데 수소 생산과정에서 이산화탄소를 배출하지 않는 친환경 그린 수소 생산 기술이다. 그러나 매장량이 백금의 10분의 1에 불과한 귀금속인 이리듐을 촉매로 사용하기 때문에 수소 생산단가가 높다는 단점이 있다. 이에 따라 조은애 교수팀이 개발한 기술을 사용하면 이리듐 사용량을 절반으로 줄일 수 있어 그린 수소 생산단가를 크게 낮출 수 있을 것으로 기대가 크다. 수전해는 수소 경제 구현을 위한 핵심 기술 중 하나다. 조 교수 연구팀은 티타늄과 몰리브데넘 산화물 담지체를 개발해, 이리듐 나노 입자의 분산도를 높여 기존 사용되고 있는 이리듐 촉매와 대비해 성능과 내구성을 2배 이상 높이는 데 성공했다. 연구팀 관계자는 "이리듐과 산화물 담지체 사이의 전자이동으로 인해 이리듐의 전자구조가 산소 발생 반응에 최적화돼 있어 성능과 내구성이 크게 향상됐다"고 설명했다. 조은애 교수도 "기존에 개발된 대부분의 수전해 촉매들이 실제 시스템에서는 성능을 제대로 구현하지 못하는데 이번 연구에서 개발한 촉매를 사용해 실제 수전해 시스템을 제작한 결과, 이리듐 사용량을 50%나 줄였음에도 불구하고 상용 촉매와 동일한 성능을 보여줬다는데 큰 의미가 있다ˮ고 말했다. 조 교수는 이어 "앞으로도 그린 수소 생산 실용화를 위해 고활성·고내구성 전극 촉매개발을 위한 연구를 이어갈 계획ˮ이라고 포부를 밝혔다. 우리 대학 신소재공학과 김엄지 박사과정이 제1 저자로 참여한 이번 연구결과는 촉매 분야 국제 학술지인 '어플라이드 카탈리시스 B: 인바이러멘탈 Applied Catalysis B: Environmental' 8월 25일 字 온라인판에 게재됐다. (논문명: Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction) 한편 조 교수팀이 수행한 이번 연구는 한국연구재단의 수소에너지혁신기술개발사업과 미래소재디스커버리사업, 산업통상지자원부와 한국산업기술진흥원의 수소연료전지차 부품실용화 및 산업기반육성사업의 지원을 받아 이뤄졌다.
2020.09.15
조회수 24659
고접착 패브릭 기반 웨어러블 에너지 하베스팅 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 *핫프레싱 기술을 이용해 가격 경쟁력과 내구성이 높은 패브릭(천) 기반 웨어러블 압전 *에너지 하베스터 제조 방법을 개발하는 데 성공했다고 9일 밝혔다. ☞ 핫프레싱(hot pressing): 온도와 압력을 가해 두 물체를 단단히 점착시키는 공법 ☞ 에너지 하베스팅(energy harvesting): 버려지는 에너지를 수집(수확)해 전기로 바꿔 쓰는 기술. 압전 에너지 하베스팅이란 압전체라는 물질을 이용, 생활 주변에서 버려지는 압력과 진동 같은 에너지를 사용 가능한 전기에너지로 변환해주는 것을 말한다. 홍 교수 연구팀 소속 김재규 박사과정 학생이 제1저자로 참여한 이번 연구는 지난 2019년 12월 23일 국내 특허 등록이 됐고, 국제 학술지 '나노 에너지(Nano Energy)' 이번 9월호에 게재됐다(5월 22일 온라인판에 게재). 이번 연구는 DGIST 에너지공학전공 이용민 교수팀과 우리 대학 신소재공학과 노광수·기계공학과 유승화 교수팀과의 협업을 통해 수행됐다. (논문명: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester) 오늘날 웨어러블 소자는 센서, 원동기, 디스플레이에서 에너지 하베스팅에 이르기까지 다양한 응용 분야에서 사용되고 있으며, 4차 산업혁명 도래 이후 소형에서 내장형으로 더욱 급속히 발전하고 있다. 이러한 흐름과 맞물려 기존 옷에 내장형으로 사용될 수 있고, 편안하고 내구성 좋은 패브릭(천)에 기반한 웨어러블 소자가 주목받고 있다. 이러한 장점에도 불구하고, 기존 패브릭 기반 웨어러블 소자는 복잡한 제조 방법과 설비 시설에 따른 공정 및 가격 측면에서 한계를 가져 아직 실용화 단계에 이르지 못하고 있다. 또한, 소자 내의 패브릭과 실제 구동 파트 사이의 결합력 및 효율 테스트의 부재는 소자의 내구성에도 의문을 갖게 한다. 이러한 문제를 보완하기 위해 간단하고 값싼 공정과 재료, 새로운 기계적 특성 분석 기술 등에 관한 연구가 활발히 진행되고 있다. 이번 연구에서는 복잡한 공정 및 설비 시설 대신 비교적 간단한 방법인 핫프레싱을 이용해 전도성 폴리에스터 패브릭과 압전 고분자 필름(Poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE))이 결합된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 방법을 개발했다. 또한, 기존의 내구성 테스트 방법인 굽힘(bending) 테스트와 더불어 새롭게 도입한 `표면 및 계면 절단 분석시스템(SAICAS, Surface and Interfacial Cutting Analysis System)'을 이용해 패브릭과 고분자 필름 사이 계면 결착력을 측정함으로써 웨어러블 소자의 높은 기계적 내구성을 증명했다. 연구진이 개발한 제조 방법에서 제시하는 핫프레싱은 배터리나 연료전지 셀 제작에 주로 쓰이는 방법으로 2~3분 안에 완료될 정도로 빠르고 간단하며 동시에 높은 접착력을 얻을 수 있는 공정이다. 결정화 온도 근처 이하에서 고분자 필름을 패브릭에 접착시키면, 고분자 필름 표면이 *비정질화되면서 접촉면이 넓은 울퉁불퉁한 패브릭 표면에 빽빽이 접착되고, 날실과 씨실 사이로 새어 나와 못과 같은 형태로 되어 높은 계면 결합력을 가질 수 있게 된다. 이러한 핫프레싱을 이용해 개발된 웨어러블 소자는 기존 의류에 접착할 수 있는 응용 가능성을 가지고 있어 공정 단가를 낮출 수 있을 것으로 기대된다. ☞ 비정질(amorphous): 고체 물질로, 균일한 조성은 가지고 있으나, 원자 배열이 액체와 같이 흐트러져 있는 물질. 유리, 고무, 수지 따위가 있으며 반도체, 자성체, 고강도 재료 따위로 쓴다. 한편, SAICAS를 이용한 계면 결착력 분석은 마이크로 스케일에서 칼날을 이용해 정량적 및 정성적으로 힘을 측정하는 방법으로, 기존 계면 결착력 측정 방법(박리 테스트, 테이프 테스트, 마이크로신축성 테스트)보다 훨씬 정확한 분석 기법으로, 본 연구에서 처음으로 웨어러블 소자에 도입됐다. SAICAS를 이용한 계면 결착력 분석은 향후 고분자를 이용한 웨어러블 소자 내구성 테스트의 새로운 방법으로 쓰일 수 있을 것으로 기대된다. 홍승범 교수는 "본 연구에서 개발된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 기술은 패브릭 기반 소자의 실용화 가능성을 한 단계 높였고, 계면 결착력 분석을 통해 고내구성 웨어러블 소자의 디자인 방향을 제시했다ˮ며 "이 기술은 패브릭과 고분자를 이용한 다른 소자의 제조 공정 및 분석에도 새로운 기틀을 마련할 수 있을 것으로 전망한다ˮ라고 말했다. 이번 연구는 KAIST HRHRP 사업, 과학기술정보통신부 재원 한국연구재단 지원 기초연구사업과 중견연구사업, 웨어러블 플랫폼소재 기술센터 지원 및 KAIST 글로벌 특이점 연구사업 지원으로 수행됐다.
2020.09.09
조회수 27372
스스로 납작해지는 똑똑한 2차원 그래핀 섬유 개발
그래핀(Graphene)은 탄소 원자가 벌집 모양으로 이루어진 2차원 물질(원자만큼 얇은 물질)이다. 이론적으로 강철보다 100배 강하고 열·전기 전도성이 뛰어나기 때문에 꿈의 신소재로 불린다. 최근에는 그래핀 마스크, 그래핀 운동화, 그래핀 골프공 등 다양한 응용제품들이 출시되고 있지만, 아직까지는 소량의 그래핀이 첨가된 것들이 대부분이다. 우리 대학 신소재공학과 김상욱 교수 연구팀이 그래핀의 기존 응용범위와 한계를 뛰어넘는 새로운 형태의 그래핀 섬유를 개발하는데 성공했다고 13일 밝혔다. 김상욱 교수 연구팀이 개발한 이 기술은 연필심 등에 쓰이는 값싼 흑연으로부터 손쉬운 용액공정을 통해 얻을 수 있고 기존 탄소섬유보다 값이 싸며 유연성 등 차별화된 물성을 지니고 있어 경제성까지 갖췄다는 게 가장 큰 특징이다. 김상욱 연구팀의 이번 성과가 높게 평가받는 이유는 100% 그래핀으로 이뤄진 섬유가 만들어지는 과정에서 스스로 납작해져서 벨트와 같은 단면을 갖는 현상을 세계 최초로 발견했다는 점이다. 통상적으로 일반섬유는 그 단면이 원형으로 이루어져 있는 반면 원자단위의 평평한 2차원 소재인 그래핀으로 이루어진 섬유는 단면이 납작한 형태가 안정적인 구조라는 점을 김 교수 연구팀이 규명한 것이다. 연구팀이 개발한 납작한 벨트형 그래핀 섬유는 내부에 적층된 그래핀의 배열이 우수해 섬유의 기계적 강도와 전기전도성이 대폭 향상됐다. 연구팀은 원형 단면을 갖는 일반섬유와 대비해 각각 기계적 강도는 약 3.2배(320%), 전기전도성은 약 1.5배(152%) 향상된 결과를 얻었다. 또 납작한 면 방향으로 매우 쉽게 구부러지는 유연한 섬유를 만들 수 있어 플렉시블 소자(유연 소자)나 웨어러블 소자 등에 유용하게 쓰일 수 있다고 연구팀 관계자는 설명했다. 연구책임자인 김상욱 교수는 "그래핀과 같은 2차원 소재로 섬유를 만들면 납작한 벨트 형태가 이상적인 배열구조다ˮ라고 말하면서 "납작한 그래핀 섬유는 납작한 면 방향으로 유연한 성질을 가지고 있어 기존의 잘 부러지는 탄소섬유의 문제를 해결할 수 있고 최근의 이슈인 마스크의 필터 소재로도 유용하게 사용할 수 있다ˮ고 덧붙였다. 우리 대학 신소재공학과 정홍주 박사과정이 제1 저자로 참여한 이번 연구는 종합화학 분야 저명 국제학술지인 `ACS 센트럴 사이언스(ACS Central Science, IF: 12.685)' 6월 11일 字 온라인판에 게재됐다. (논문명: Self-Planarization of High-Performance Graphene Liquid Crystalline Fibers by Hydration) 또 연구성과의 중요성을 인정받아 7월 22일 字로 발간된 동 학술지 7월호 표지논문(Front cover)으로 선정되는 한편 에디터에 의해 하이라이트 됐다. (First Reaction: High-Performance Graphene Fibers Enabled by Hydration) 이번 연구는 한국연구재단 리더연구자지원사업인 창의연구지원사업(다차원 나노조립제어 창의연구단)과 나노·소재원천기술개발사업의 지원을 통해 수행됐다.
2020.08.13
조회수 28624
청량음료가 치아 건강에 해롭다는 사실을 과학적으로 뒷받침하다
우리 연구진이 여름철 자주 찾는 청량음료가 치아 건강에 해롭다는 사실을 과학적으로 뒷받침하는 논문을 발표했다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 청량음료가 치아에 미치는 기계적 특성, 즉 거칠기(roughness)와 탄성 계수(elastic modulus) 변화를 원자간력 현미경(AFM, Atomic Force Microscopy)으로 관측하고 이를 영상화하는 데 성공했다고 21일 밝혔다. ☞ 원자간력 현미경(AFM): 대표적인 주사형 프로브 현미경(SPM, Scanning Probe Microscope, SPM)의 하나로, 캔틸레버(cantilever) 끝에 설치돼있는 뾰족한 프로브와 시료 표면 간에 작용하는 원자간력을 이용해 시료 표면의 삼차원 상을 얻는 장치 ☞ 거칠기: 재질 표면에 나 있는 규칙 또는 불규칙한 요철의 정도 ☞ 탄성 계수: 인장력 또는 압축력에 대한 재료의 저항 정도 원자간력 현미경은 나노미터(nm, 100만분의 1 밀리미터) 수준의 탐침으로 재료의 표면을 스캔해 표면형태나 상태를 관측하는 장비로 주로 활용된다. 이 현미경은 또 탐침을 이용해 물질 표면에 힘을 가해 변형되는 정도 등 여러 기계적인 특성(거칠기, 탄성 계수 등)에 대한 측정이 가능하다. 최근 인구의 고령화에 따라 사람들의 건강에 관한 관심이 다방면으로 급증하고 있다. 그중 치아는 치료 비용도 비싸고, 손상됐을 때 복구하기가 쉽지 않다. 또 제대로 치료가 되지 않으면 다른 질환의 발병률도 높여 삶의 질을 크게 떨어뜨린다. 이 때문에 치아에 관한 관심이 날로 증가하는 추세며 치아 건강을 위한 다양한 의료 기술의 개발과 건강한 치아를 유지하기 위한 예방법들도 많이 소개되고 있다. 치아는 다양한 구조로 이뤄져 있는데, 이중 가장 바깥쪽에 있는 곳을 치아 법랑질(에나멜, enamel)이라고 한다. 법랑질은 치아의 구성분 중에서 가장 단단해 음식을 씹을 때 치아의 손상을 방지하고, 외부 환경으로부터 치아를 보호하는 역할을 한다. 하지만 치아 법랑질이 손상되면 보호막 역할을 할 수 없어 일반적인 음식을 먹을 때에도 극심한 통증을 유발하게 된다. 따라서 치아 법랑질의 손상을 예방할 방법뿐만 아니라 손상 원인 및 손상 과정을 규명하는 연구가 필요하다. 홍승범 교수 연구팀은 치아 법랑질이 청량음료에 노출됐을 때, 노출된 시간에 따라서 치아 법랑질 표면이 받는 영향을 원자간력 현미경의 다양한 기능을 활용해 분석했다. 청량음료는 현대 사회에서 빼놓을 수 없는 기호 식품이며, 연령대와 성별을 가리지 않고 많이 소비되고 있다. 홍 교수팀은 이번 연구에서 주변에서 손쉽게 구할 수 있는 콜라·사이다·오렌지주스 등 3종의 청량음료를 사용했다. 3종의 청량음료에 치아를 각각 담갔다가 꺼내서 부식된 정도를 나타내는 표면의 거칠기와 재료(물질)에 힘을 가했을 때 변형된 정도를 나타내는 탄성 계수의 변화를 시간대별로 측정했다. 연구팀은 우선 청량음료에 노출된 치아 법랑질을 노출된 시간별로 초기 상태부터 10분까지 거칠기의 변화와 5분까지의 탄성 계수 변화를 측정했다. 치아 법랑질의 표면 거칠기는 청량음료에 노출된 시간이 10분이 됐을 때, 초깃값보다 약 5배 정도 거칠어졌고 탄성 계수는 노출된 지 5분 동안 약 5배 정도나 떨어지는 결과를 얻었다. 연구팀은 특히 원자간력 현미경으로 영상화한 사진을 통해 치아 법랑질의 부식 과정을 분석했는데 흠집이 있는 치아의 경우 부식속도가 훨씬 빠르게 진행된다는 사실도 확인했다. 치아 법랑질의 부식 정도와 청량음료에 노출된 시간이 상호 밀접한 관계가 있음을 밝힌 이번 연구 결과는 청량음료가 치아 건강에 해롭다는 기존 학설을 원자간력 현미경을 이용한 실험과 영상관찰을 통해 증명하고 제시했다는 점에서 주목을 받고 있다. 홍승범 교수는 "원자간력 현미경을 이용해 청량음료에 의해 치아 법랑질이 부식됨에 따라 표면 성질이 변하는 과정을 영상화했다ˮ라며 "실제 치아의 부식 과정은 구강 환경이나 보호막 역할을 하는 침에 의해 연구 결과만큼 심각하지 않을 수 있지만, 장시간 청량음료에 노출된 치아는 부식에 의해 표면이 거칠어지고 또 탄성 계수 등 기계적 특성 또한 저하될 수 있다ˮ고 말했다. 신소재공학과 판판 리(Panpan Li) 연구원과 오충익 연구원이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `Journal of the Mechanical Behavior of Biomedical Materials'誌 지난달 29일 字에 게재됐다. (논문명: Nanoscale effects of beverages on enamel surface of human teeth: An atomic force microscopy study) 한편 이번 연구는 한국연구재단 해외우수신진연구자유치사업, 과학기술정보통신부 G-CORE 연구사업, 한국과학기술원 KUSTAR-KAIST 교육연구원 국제공동연구의 지원으로 이뤄졌다. 또 KAIST 클리닉의 조수빈 치과의사와 캐나다 치과병원 Smile Well Dental 소속 신상민 박사, 서울대학교 치의학 대학원 김각균 교수로부터 각각 자문을 받았다.
2020.07.22
조회수 23678
100배 이상 해상도 높인 차세대 퀀텀닷 프린팅 기술 개발
우리 대학 신소재공학과 정연식 교수 · 전덕영 명예교수 공동 연구팀이 차세대 퀀텀닷 LED(QLED) 기반 디스플레이 실현에 핵심적인 기술인 풀 컬러(적·녹·청) 퀀텀닷 패터닝 프린팅 기술 개발에 성공했다고 6일 밝혔다. 퀀텀닷이란 별도의 장치가 없어도 크기와 전압에 따라 스스로 다양한 빛을 내는 수 나노미터(1 나노미터는 100만분의 1 밀리미터) 크기의 반도체 입자다. 연구팀은 풀 컬러 퀀텀닷 배열의 해상도를 최대 14,000ppi(인치당 픽셀 수) 까지 구현하는데 성공했다. 이 해상도는 현재 8K 디스플레이의 해상도인 117ppi 보다 약 100배 이상에 달한다. 연구팀은 또 기존 퀀텀닷 나노 패턴 구현 방법과는 원리가 다른 초 저압 전사 프린팅 방법을 세계 최초로 개발해, 패턴의 해상도와 프린팅 수율 및 퀀텀닷 발광소자 성능을 극대화하는 데도 성공했다. 우리 대학 신소재공학과 남태원 박사과정이 제1 저자로, 김무현 박사과정이 제2 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스 (Nature Communications)' 6월 16일 字 온라인판에 게재됐다. (논문명: Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution) 작년 10월 삼성디스플레이가 퀀텀닷 중심의 차세대 디스플레이 양산라인 구축 및 기술개발에 2025년까지 약 13조 원 규모의 투자계획을 발표하는 등 이제 퀀텀닷 소재는 디스플레이용 핵심 소재로 부상하고 있다. 하지만 퀀텀닷 소재는 OLED 발광 소재와는 달리 용매에 녹아 분산돼 있는 형태로 존재하기 때문에 기존 디스플레이 패터닝 기술을 적용하기 어려웠다. 이를 해결하기 위해 잉크젯 프린팅이나 리소그래피와 같은 공정을 적용하고 있지만, 양산성 및 해상도 측면에서 제한적이거나 공정 과정 중에 퀀텀닷의 효율이 크게 떨어지는 문제가 발생한다. 연구팀은 이런 문제해결을 위해 퀀텀닷의 용매 성분을 미세하게 조절해 수 나노미터에서 수천 나노미터급 주형에 선택적으로 스스로 조립하는 원리에 착안해 적용했다. 또한 조립된 퀀텀닷 미세 패턴을 분리한 후, 초 저압 방식으로 프린팅하는 기술을 개발해 풀 컬러 나노미터급 패턴을 100%에 달하는 수율로 구현했다. 특히 QLED용 퀀텀닷 패턴은 극도로 얇아서 외부 압력에 매우 민감하기 때문에 초 저압 전사 프린팅 기술을 활용해 패턴의 손상을 방지했는데 그 결과 QLED 소자의 성능이 기존 전사 프린팅 방식 대비 약 7배나 증가하는 결과를 확인했다. 연구팀 관계자는 "이번 연구 결과를 활용할 경우 적·녹·청 퀀텀닷 픽셀이 개별적으로 발광할 수 있는 초고해상도를 지닌 차세대 능동형 퀀텀닷 LED (Active Matrix QLED) 디스플레이 구현도 가능할 것ˮ이라고 내다봤다. 정연식 교수는 특히 "단일 퀀텀닷 크기를 갖는 극한 해상도 수준의 패턴도 구현이 가능해서 차세대 디스플레이 분야만 아니라 높은 민감도를 갖는 센서나 광학 소자로의 응용까지 기대된다ˮ라고 말했다. 한편, 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래 소재 디스커버리 사업(단장 최성율)의 지원을 받아 수행됐다.
2020.07.06
조회수 19911
육종민 교수팀, 살아있는 세포의 전자현미경 관찰 성공
우리 대학 신소재공학과 육종민 교수 연구팀이 경북대학교(총장 김상동) ITA 융합대학원 한영기 교수 연구팀과 공동연구를 통해 살아 있는 세포를 전자현미경을 통해 실시간으로 관찰하는 데 성공했다고 29일 밝혔다. 이번 연구를 통해 살아 있는 다양한 세포의 실시간 분자 단위 관찰이 가능해져, 그동안 관찰하지 못했던 살아 있는 세포의 전이·감염에 관한 전 과정을 규명할 수 있게 돼 신약 개발 등을 더욱 촉진할 수 있을 것으로 기대된다. 신소재공학과 구건모 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `나노 레터스(Nano Letters)' 5월 5일 字 온라인판에 게재됐으며 6월 호 표지논문으로 선정됐다. (논문명: Live-Cell Electron Microscopy Using Graphene Veils) 전 세계적으로 대유행하고 있는 코로나바이러스감염증(COVID-19) 등은 수십~수백 나노미터(nm, 1 나노미터는 100만 분의 1밀리미터) 크기의 바이러스로 인해 일어나는 질병이다. 바이러스의 전이·감염 과정을 분석하고 이에 대처하는 신약 개발을 위해서는 바이러스의 미시적인 행동을 실시간으로 관찰하는 것이 매우 중요하다. 수십~수백 나노미터 크기의 바이러스 등을 비롯해 세포와 세포를 이루는 기관들은 가시광선을 이용하는 일반 광학현미경으로는 관찰이 어려워 해상력이 매우 높은 전자선을 이용하는 전자현미경 기술을 이용한다. 그렇지만 전자현미경 기술은 효율적인 작동을 위해 매우 강력한 진공상태가 필요하며 또 가시광선보다 수천 배 이상 높은 에너지를 가지는 전자를 이용하기 때문에 관찰 시 세포의 구조적인 손상이 불가피하다. 따라서 현재로서는 2017년 노벨화학상을 수상한 기술인 극저온 전자현미경을 통해 고정 작업 및 안정화 작업을 거친 표본만 관찰이 가능하다. 최근 학계에서는 사멸해 고정된 것이 아닌 온전한 상태의 살아 있는 세포등 다양한 생체물질을 전자현미경을 이용해 분자 단위로 관찰 가능한지에 대한 논쟁이 전개되고 있다. 육 교수 연구팀은 지난 2012년 개발한 그래핀 액상 셀 전자현미경 기술을 응용해 전자현미경으로도 살아있는 대장균 세포를 관찰하는데 성공했고, 이를 재배양시킴으로써 전자와 진공에 노출됐음에도 불구하고 대장균 세포가 생존한다는 사실을 밝혀냈다. 육 교수 연구팀이 이번 연구에서 활용한 그래핀은 층상 구조인 흑연에서 분리하는 등의 방법으로 얻어내는 약 0.2 나노미터(nm) 두께의 원자 막이다. 여러 분야에서 차세대 소재로 주목받고 있는 그래핀은 강철보다 200배 강한 강도와 높은 전기 전도성을 가지며, 물질을 투과시키지 않는 성질을 가진다. 육 교수 연구팀은 이러한 그래핀 성질을 이용, 세포 등을 액체와 함께 감싸주면, 고진공의 전자현미경 내부에서 탈수에 의한 세포의 구조변화를 막아줄 수 있음을 밝혀냈다. 뿐만 아니라, 그래핀이 전자빔에 의해 공격성이 높아진 활성 산소들을 분해하는 효과도 지니고 있어 그래핀으로 덮어주지 않은 세포보다 100배 강한 전자에 노출되더라도 세포가 활성을 잃지 않는다는 결과를 확인했다. 육 교수는 "이번 연구 결과는 세포보다 더 작은 단백질이나 DNA의 실시간 전자현미경 관찰로까지 확대될 수 있어, 앞으로 다양한 생명 현상의 기작을 근본적으로 밝힐 수 있을 것이라 기대한다ˮ고 밝혔다. 한편, 이번 연구는 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
2020.06.29
조회수 19637
뼈의 단단함을 모사해 광학적 특성을 매우 증대시킨 신물질 개발
우리 연구진이 동물 뼈가 그의 구성성분인 단백질보다 수천 배 단단할 수 있는 생체역학적 원리를 모사해 광학적 비선형성이 기존 물질 대비 수천에서 수십억 배나 큰 신물질을 개발했다. 비선형성이란 입력값과 출력값이 비례관계에 있지 않은 성질인데 광학에서 큰 비선형성을 확보할 경우, 빛의 속도로 동작하는 인공 신경망이나 초고속 통신용 광 스위치 등의 광소자를 구현할 수 있다. 우리 대학 신소재공학과 신종화 교수 연구팀은 벽돌을 엇갈려 담을 쌓는 것과 같이 나노 금속판을 3차원 공간에서 엇갈리게 배열하면 물질의 광학적 비선형성이 매우 크게 증대될 수 있음을 확인했다. 신종화 교수 연구팀이 이번 연구를 통해 발견한 비선형성 증대원리는 광학뿐만 아니라 역학, 전자기학, 유체역학, 열역학 등 다양한 물리 분야에도 적용이 가능하다. KAIST 신소재공학과 장태용 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `커뮤니케이션즈 피직스(Communications Physics)' 5월 8일 字 온라인판에 게재됐다. (논문명 : Mimicking bio-mechanical principles in photonic metamaterials for giant broadband nonlinearity). 영화 스타워즈의 광선 검처럼 잘 제어된 빛을 만드는 것이나 빛만으로 구동되는 광컴퓨터를 만드는 것은 비선형성을 이용할 때 가능한데, 아직 실현되지 않고 있는 이유는 강한 비선형성을 가진 소재가 없기 때문이다. 자연 물질의 작은 비선형성으로도 초고속 광소자, 3차원 광식각 공정, 초 고분해능 현미경 등의 기술들이 구현될 수 있지만, 이들은 크고 비싼 고출력 레이저를 사용하거나, 큰 장비 혹은 소자가 필요하다는 공통적인 한계를 지니고 있다. 이를 극복하기 위해 기존에는 미세한 인공 구조체를 설계해서 그 틈에 빛을 모으는 방법이 많이 시도돼왔다. 비선형성은 빛의 세기에 비례하기 때문에 이 같은 방법을 이용하면 같은 부피의 자연 물질 대비 작은 빛의 세기로 비슷한 수준의 비선형 효과를 얻을 수 있다. 그러나 최대로 얻을 수 있는 비선형 효과의 크기는 결국 달라지지 않기 때문에 응용하는데 한계가 있다. 신 교수 연구팀은 물질의 근본적인 전기적 특성인 유전분극(물체가 전기를 띠는 현상)을 매우 크게 조절하는 방법을 고안했다. 나노 금속판이 3차원에서 엇갈려 배열돼있으면 국소분극이 공간을 촘촘하게 채우면서, 마치 시냇물이 모여서 강이 되듯, 전체적으로 매우 큰 분극을 만들게 된다는 점에 착안했다. 빛의 세기가 아닌 분극의 크기를 조절해 큰 비선형성 및 비선형 효과를 얻는 방법은 이번 신 교수 연구팀이 이번 연구에서 처음 제시한 개념인데 비선형 광학이 60년 동안 달성하고자 했던 고효율의 작은 비선형 광소자 개발에 한 발 더 다가선 것으로 평가되고 있다. 연구팀은 이번에 고안한 메타물질(자연계에 존재하지 않는 특성을 구현하기 위해 매우 작은 크기로 만든 인공 원자의 주기적인 배열로 이루어진 물질)이 시간적으로 짧은 광신호에 대해서도 큰 비선형 효과를 얻을 수 있음을 통해 기존보다 효율적이면서도 더 빠른 광소자 구현이 가능함을 확인했다. 이 연구에서 활용된 소자는 비슷한 신호 시간을 가지는 기존 소자보다는 에너지 효율이 약 8배나 뛰어나고 비슷한 에너지 효율을 가지는 기존 소자보다도 신호 시간은 약 10배 정도 짧다. 즉, 신호의 시간과 소요되는 에너지의 곱으로 표현되는 성능 기준으로 보면, 이 소자는 현재까지 개발된 광소자 중 가장 우수한 성능을 보였다. 연구팀은 또 고안한 메타물질이 광학 이외의 물리 현상에도 적용될 수 있음을 입증했다. 연구팀은 단백질의 단단함 대비 뼈의 단단함을 설명하는 모델이 이번 연구에서 고안한 광학적 비선형성 증대원리와 수학적으로 매우 유사함을 증명했다. 따라서 유체역학에서의 물질전달률, 열역학에서의 열전도율 등의 증대에도 신 교수 연구팀의 연구방법이 적용될 수 있을 것으로 기대된다. 신종화 교수는 "올해는 지난 1960년 레이저가 발명된 지 60년이 되는 해로, 레이저의 발명이 `센 빛'을 최초로 만든 것이라면 이번 연구성과는 `센 물질', 즉 광대역에서 매우 큰 유전분극 증대율을 보이는 물질을 최초로 발견하고 증명한 연구라는 점에서 의미가 크다ˮ며 "기계학습을 위한 초고속 인공 신경망 등 다양한 광 응용 소자의 구현을 위해 후속 연구를 진행 하고 있다ˮ고 말했다. 한편 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다.
2020.06.09
조회수 14886
이산화탄소를 고부가가치 물질로 효율적 전환하는 새로운 실마리를 찾았다
우리 대학 연구진이 지구온난화의 주범 기체인 이산화탄소를 에틸렌이나 에탄올, 프로판올과 같이 산업적으로 고부가가치를 지닌 다탄소화합물로의 효율적 전환이 가능한 새로운 실마리를 찾아냈다. 이산화탄소 농도조절만을 통해 다탄소화합물 선택도를 크게 높인 이 기술이 실용화되면 `산업의 쌀'이라 불리는 에틸렌이나 살균, 소독용이나 바이오 연료로 사용되는 에탄올, 화장품과 치과용 로션이나 살균·살충제에 사용되는 프로판올 등을 생산하는 기존 석유화학산업의 지형에 큰 변화를 불러올 것으로 기대가 크다. 우리 대학 신소재공학과 오지훈 교수 연구팀은 이산화탄소 전기화학 환원 반응 시, 값싼 중성 전해물(전해질)에서도 다탄소화합물을 선택적으로 생성할 수 있는 공정을 개발했다. KAIST에 따르면 오 교수 연구팀은 중성 전해물을 사용해 구리(Cu) 촉매 층 내부의 이산화탄소 농도를 조절한 결과, 기존 공정과 비교해 각각 이산화탄소 전환율은 5.9%에서 22.6%로, 다탄소화합물 선택도는 25.4%에서 약 62%까지 대폭 높아진 공정과 촉매 층 구조를 개발했다. 탄잉촨 박사 후 연구원과 이범려 석사과정이 제1 저자, 송학현 박사과정 학생이 제2 저자로 참여한 이번 연구 결과는 셀프레스(Cell press)에서 발간하는 에너지 분야 국제 학술지 `줄(Joule)' 5월호에서 편집자에게 높은 평가를 받은 특집논문(Featured article)으로 게재됐다.(논문명 : Modulating Local CO2 Concentration as a General Strategy for Enhancing C—C coupling in CO2 Electroreduction) 세계 각국은 지구온난화의 주요 원인인 이산화탄소를 적극적으로 줄이기 위해, 이를 고부가가치의 물질로 전환하는 연구가 최근 들어 활발하게 진행되고 있다. 이산화탄소를 전기화학적으로 환원 반응시키면, 수소, 일산화탄소, 메탄 등 다양한 물질이 동시에 생성되는데, 그중 2개 이상의 탄소로 구성된 다탄소화합물이 산업적으로 중요한 가치로 인해 주목을 받고 있다. 기존 연구는 탄소화합물의 선택도를 높이기 위해, 주로 알칼리성 전해물에 의존해 새로운 촉매 개발에 집중해왔다. 다만 알칼리성 전해물은 부식성과 반응성이 크기 때문에, 이를 적용한 기존 공정은 유지비용이 비싸고, 촉매 전극의 수명도 짧다는 단점이 있다. 오 교수 연구팀은 기존과 달리 역발상적 생각으로 연구를 시작했다. 구리 촉매 층 내부의 이산화탄소 농도를 오히려 감소시켰는데 성능이 떨어진다고 여겨왔던 중성 전해물에서도 기존에 보고된 연구 성과를 뛰어넘는 고성능을 보여줬다. 특히, 이번 연구에서는 중성 전해물을 사용했음에도 불구하고 사용된 전극은 놀랍게도 10시간이 넘도록 일정하게 높은 다탄소화합물의 선택도와 생성량을 유지한 것으로 나타났다. 연구팀은 또 이산화탄소의 물질이동 모사 모델의 결과를 활용해 구리 촉매 층의 구조와 이산화탄소 공급 농도, 유량을 제어한 결과, 촉매 층 내부의 이산화탄소 농도를 조절하는 데에도 성공했다. 그 결과, 내부의 농도가 최적일 때 다탄소화합물의 선택도가 높아짐을 확인할 수 있었다. 오 교수는 "연구팀이 발견한 촉매 층 내부의 이산화탄소 농도와 다탄소화합물의 선택도 간의 관계는 그동안 촉매 특성에 치우쳐있던 연구에 새로운 방향을 제시하고, 동시에 산업적 활용에서 공정 유지비용 절감은 물론 촉매 전극 수명 연장에 이바지할 것으로 기대된다ˮ 고 설명했다. 제1 저자인 탄잉촨 박사 후 연구원도 "촉매 특성을 바꾸지 않고, 단순히 이산화탄소 농도만 바꿔도 다탄소화합물의 선택도를 크게 개선할 수 있었다ˮ면서 "이번 연구에서 밝힌 이산화탄소의 새로운 전기화학적 전환 기술은 기존 석유화학산업에 새로운 변화를 가져오는 전환점이 될 것ˮ 이라고 말했다. 이번 연구는 한국연구재단 미래소재디스커버리사업의 지원을 받아 수행됐다.
2020.06.04
조회수 15176
공기중 산소로 충전되는 차세대 배터리용 에너지 저장 소재 개발
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다. 우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다. 연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다. 이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다. KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries) 리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다. 또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다. 강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다. 한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
2020.06.01
조회수 14791
원자간력 현미경(AFM)을 이용한 배터리 전극의 구성 성분 분포 영상화 기법 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 원자간력 현미경(AFM, Atomic Force Microscope)을 이용해 배터리 전극의 구성성분 분포를 파악하는 영상화 기법을 개발하는 데 성공했다. 관련 기술은 차세대 배터리로 주목받는 전고체전지 설계를 용이하게 할 수 있고 다른 전기화학 소재에도 제조 공정을 크게 혁신하는 토대가 될 것으로 기대된다. 김홍준 연구원이 제1 저자로 참여한 이번 연구는 국제 학술지 `ACS 어플라이드 에너지 머티리얼스(ACS Applied Energy Materials)'지 4월 27일 字에 게재됐다. (논문명: Visualization of Functional Components in a Lithium Silicon Titanium Phosphate-Natural Graphite Composite Anode) 리튬이온전지는 휴대용 장비와 전기자동차 등 여러 분야에서 강력한 전기 에너지저장장치(ESS)로 사용되고 있다. 그러나 액체나 젤 형태의 전해질을 사용하는 리튬이온전지는 충격이나 압력으로 인한 발화 가능성이 크고 충전소요 시간이 길어지는 취약점을 안고 있다. 따라서 지난 13일 국내 1, 2위 대기업인 삼성그룹과 현대차 그룹 수장들이 첫 단독 회동을 통해 협업을 논의한 사례에서 보듯 고체 전해질을 이용한 전고체전지가 가장 유망한 차세대 배터리로 주목을 받고 있다. 전고체전지는 양극과 음극 사이의 전해질을 액체가 아닌 고체로 대체한 전지다. 전고체전지는 특히 부피를 절반으로 줄이면서 대용량 구현이 가능해 완전 충전 시 최대 주행거리가 800Km에 달하기 때문에 글로벌완성차 업체와 배터리 업체를 중심으로 기술 상용화를 위한 연구개발(R&D) 움직임이 활발하다. 다만 전고체전지가 차세대 배터리로 확고히 자리를 잡기 위해서는 낮은 이온전도도와 전극-전해질 계면의 접합성 문제를 해결해야 한다. 이를 위해 리튬이온전도체가 분산된 복합 전극에 관한 연구가 활발히 진행되고 있다. 또 전지 구동 성능에 큰 영향을 미치는 복합 전극의 재료적 특성을 이해하기 위해서는 미시적 규모로 혼합된 활물질, 이온전도체, 바인더 그리고 도전재와 같은 구성성분들의 형상과 분포를 파악할 수 있는 기술이 필요하다. 홍승범 교수 연구팀이 개발한 영상화 기법은 이러한 문제점들을 거시·미시적 다중 스케일에서 전기화학 변위 현미경과 횡력 현미경 등 원자간력 현미경의 다양한 기능을 활용해 위치에 따른 검출 신호의 감도 차이로 구성성분들의 영역을 구별해 해결했다. 기존 전극과 복합 전극을 비교해서 결과를 제시했으며, 영역들의 구별뿐만 아니라 단일 영역 내에서 나노 스케일의 이온 반응성 세기 분포와 마찰력 세기 분포의 상관관계 파악을 통해 바인더 구성 비율이 이온 반응성에 미치는 영향을 파악했다. 또 기존 전자 현미경을 이용해 관찰할 경우, 진공 환경이 필수적으로 필요하고, 분석을 위한 시편 제작 시 매우 얇은 막 형태로 제작 및 백금 입자를 코팅해야 하는 등 특별한 사전처리 절차가 필요했다. 반면 홍 교수 연구팀이 이번 연구를 통해 제시한 관찰 방법은 일반적인 환경에서 수행할 수 있고, 특별한 사전처리 절차가 필요하지 않다. 이와 함께 다른 영상화 장비보다 관찰의 준비 과정이 편리하며, 공간 분해 능력과 검출 신호의 세기 분해 능력이 월등하고, 성분 관찰 시에는 3차원 표면 형상 정보가 제공된다는 장점이 있다. 홍승범 교수는 "원자간력 현미경을 이용해 개발된 분석 기법은 복합 소재 내의 각 구성성분이 물질의 최종적인 성질에 기여하는 역할을 정량적으로 이해하는 데 유리하다ˮ 면서 "이 기술은 차세대 전고체전지의 설계 방향을 다중 스케일에서 제시할 뿐만 아니라, 다른 전기화학 소재의 제조 공정에도 혁신의 기틀을 마련할 수 있을 것으로 기대된다ˮ 고 강조했다. 한편 이번 연구는 과학기술정보통신부·한국연구재단 거대과학연구개발사업, 웨어러블 플랫폼 소재 기술센터 지원 기초연구사업 및 KAIST 글로벌특이점연구 지원으로 수행됐다.
2020.05.19
조회수 13254
빛 투과율 조절하는 능동형 광학 필름 개발
우리 대학 연구진이 기존 창호시스템을 교체하지 않고서도 투과율을 큰 폭으로 자유롭게 조절할 수 있는 에너지 절감형 스마트 윈도우 등으로 활용이 가능한 새로운 광학 필름 제작 기술을 개발했다. 우리 대학 신소재공학과 전석우 교수와 건설및환경공학과 홍정욱 교수·신소재공학과 신종화 교수 공동연구팀이 3차원 나노 복합체를 이용, 에너지의 효율적인 신축변형을 통해 세계 최고 수준의 가시광 투과율 조절이 가능한 능동형 광학 필름을 개발하는데 성공했다고 14일 밝혔다. 전석우 교수와 홍정욱 교수가 교신 저자로, 조동휘 박사과정 학생과 신라대학교 심영석 교수가 공동 1저자로 참여한 이번 연구는 재료 분야의 세계적인 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 4월 26일 字 온라인판에 게재됐다. (논문명: High-Contrast Optical Modulation from Strain-Induced Nanogaps at Three-Dimensional Heterogeneous Interfaces) 해당 연구진들은 정렬된 3차원 나노 네트워크에 기반한 신축성 나노 복합체를 이용해, 가시광 투과율을 최대 90%에서 16%까지 조절 가능한 넓은 면적의 광학 필름 제작에 필요한 원천 기술을 확보했다. 약 74%의 범위를 갖는 이는 평균적으로 46%의 범위를 가졌던 기존 2차원 필름의 수준을 훨씬 뛰어넘는 세계 최고 수준의 기술이다. 최근 제로 에너지 빌딩, 스마트 윈도우, 사생활 보호 등 에너지 저감/감성 혁신 응용에 대한 관심이 급증함에 따라, 능동형 광학 변조 기술이 주목받고 있다. 기존 외부 자극 (전기/열/빛 등)을 이용한 능동형 광학 변조 기술은 느린 반응속도와 불필요한 색 변화를 동반하고 낮은 안정성 등의 이유로 선글라스, 쇼케이스, 광고 등 매우 제한적인 분야에 적용돼왔기 때문에 현재 새로운 형태의 광학 변조 기술 개발이 활발히 진행 중이다. 에너지 효율적인 신축 변형을 이용한 광학 변조 기술은 비교적 간단한 구동 원리와 낮은 에너지 소비로 효율적으로 투과율을 제어할 수 있는 장점을 지녀 그동안 학계 및 관련 업계에서 집중적인 관심을 받아왔다. 그러나 기존 연구에서 보고된 광 산란 제어를 유도하는 구조는 대부분 광학 밀도가 낮은 2차원 표면 구조에 기반하기 때문에 좁은 투과율 변화 범위를 갖고, 물 등 외부 매질과 인접할 때 광학 변조기능을 잃는 문제를 가지고 있다. 특히, 비 정렬 구조에 바탕을 두고 있어 광학 변조 특성이 균일하지 못해서 넓은 면적으로 만들기도 힘들다. 연구팀은 정렬된 3차원 나노구조 제작에 효과적인 근접장 나노패터닝 (PnP, Proximity-field nanopatterning) 기술과 산화물 증착(증기를 표면에 얇은 막으로 입힘)을 정교하게 제어할 수 있는 원자층 증착법 (ALD, Atomic layer deposition)을 이용했다. 이에 주기적인 3차원 나노쉘 (nanoshell) 구조의 알루미나 (alumina)가 탄성중합체에 삽입된 신축성 3차원 나노복합체 필름을 현존하는 광학 변조 필름 중 가장 큰 면적인 3인치×3인치 크기로 제작하는 데 성공했다. 광학 필름을 약 60% 범위에서 당겨 늘리는 경우, 산화물과 탄성중합체의 경계면에서 발생하는 수없이 많고 작은 구멍에서 빛의 산란 현상이 발생하는데 연구진은 이를 이용해 세계 최고 수준의 가시광 투과율 조절 범위인 약 74%를 달성했다. 동시에 10,000회에 걸친 반복적인 구동 시험과 굽힘과 뒤틀림 등 거친 변형, 70℃ 이내 고온 환경에서의 구동, 물속에서의 구동 특성 등을 확인한 결과 높은 내구성과 안정성을 확인했다. 이와 함께 재료역학적‧광학적 이론 해석을 바탕으로 경계면에서 발생하는 광 산란 현상 메커니즘도 규명하는 데 성공했다. 전 교수 공동연구팀이 개발한 이 기술은 기존 창호 시스템 교체 없이도, 간단한 얇은 필름 형태로 유리 표면에 부착함으로써 투과율 조절이 가능한 에너지 절감형 스마트 윈도우로 활용이 가능하다. 이 밖에 두루마리 타입의 빔프로젝터 스크린 응용 등 감성 혁신적인 폭넓은 응용이 가능할 것으로 기대된다. 이번 연구는 한국연구재단 원천기술개발사업의 다부처 공동사업과 글로벌 프론티어 사업, 그리고 이공분야기초개발사업의 지원을 통해 수행됐다.
2020.05.14
조회수 18667
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
6
7
8
9
10
>
다음 페이지
>>
마지막 페이지 17