-
김희탁 교수, 이론용량 92% 구현한 리튬-황 전지 개발
〈 추현원 석사과정, 김희탁 교수 〉
우리 대학 생명화학공학과/나노융합연구소 차세대배터리센터 김희탁 교수 연구팀이 이론용량의 92%를 구현하고 높은 용량 밀도 (4mAh/cm2)를 가지는 고성능, 고용량 리튬-황 전지를 개발했다.
추현원 석사과정과 노형준 박사과정이 1 저자로 참여한 이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 1월 14일 자 온라인판에 게재됐고 우수성을 인정받아 에디터스하이라이트에 선정됐다. (논문명 : Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions) ( https://www.nature.com/ncomms/editorshighlights )
리튬-황 전지는 리튬-이온 전지보다 약 6~7배 높은 이론 에너지밀도를 갖고 원료 물질인 황의 가격이 저렴해 리튬-이온 전지를 대체할 차세대 리튬 이차전지로 주목받고 있다.
그러나 리튬-황 전지는 구동 중 방전 생성물인 황화 리튬이 전극 표면에 쌓이고 전극 표면에서 전자전달을 차단해 리튬-황 전지의 이론용량 구현이 불가능하다는 한계를 갖는다.
이러한 전극 부동화의 문제를 완화하기 위해 과량의 도전제를 전극에 도입해 왔으나 이는 리튬-황 전지의 에너지 밀도를 크게 낮추는 문제를 발생시키며, 이론용량 구현이 70%를 넘지 못하는 한계를 보였다.
연구팀은 문제 해결을 위해 기존 리튬-황 전지의 전해질에 사용하던 리튬 염을 대체해 높은 전자기여도를 가지는 음이온 염을 이용했다. 이 전해질 염은 전지 내부의 황화리튬의 용해도를 높여 전극 표면에 3차원 구조의 황화리튬 성장을 유도하고 이는 전극의 부동화를 효율적으로 억제해 높은 용량을 구현할 수 있게 한다.
연구팀은 이 전해액 기술을 바탕으로 기존 리튬-이온 전지와 동등한 수준의 면적당 용량 밀도를 갖는(4mAh/cm2) 고용량 황 전극에 대해 이론용량 92%인 수준을 구현해 기존 리튬-황 전지 기술의 한계를 넘었다. 또한 리튬 음극 표면에 안정한 부동피막을 형성해 100 사이클 이상 구동 시에도 안정적인 수명을 구현했다.
특히 새로운 전해질 설계를 통한 황화리튬의 구조 제어 기술은 다양한 구조의 황 전극 및 구동 조건에서 적용 가능해 산업적으로도 큰 의미를 지닐 것으로 보인다.
김희탁 교수는 “리튬-황 전지의 한계를 돌파하기 위한 새로운 물리 화학적 원리를 제시했다”라며 “리튬-황 전지의 이론용량의 90% 이상을 100 사이클 이상 돌리면서도 용량 저하 없이 구현했다는 점에서 새로운 이정표가 될 것으로 기대한다”라고 말했다.
이번 연구는 나노융합연구소, 한국연구재단 및 LG화학의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 전해질에 따른 전극 위 리튬 설파이드 성장 구조 및 축적 메커니즘
그림2. 리튬황전지의 사이클 용량 및 수명 특성
2019.01.31
조회수 14578
-
이진우 교수, 다공성 구조의 기능성 황 담지체 개발
〈 이진우 교수, 임원광 연구원 〉
우리 대학 생명화학공학과 이진우 교수 연구팀이 서로 다른 크기의 기공을 갖는 구조의 무기소재 합성을 통한 황 담지체를 개발해 리튬-황 이차전지의 성능을 높이는 데 성공했다.
연구팀은 다차원 상분리 현상을 동시에 유도해 각기 다른 두 종류, 크기의 기공을 갖는 티타늄질화물을 합성했고 이를 황 담지체로 활용해 우수한 수명 안정성과 속도를 갖는 리튬-황 이차전지를 구현했다.
포스텍 화학공학과 한정우 교수와 공동으로 진행하고 임원광 석박사통합과정이 1저자로 참여한 이번 연구는 재료 분야 국제 학술지 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 1월 15일자 표지논문에 게재됐다. (논문명 : Approaching Ultrastable High-Rate Li-S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation, 다차원 상분리를 활용한 계층형 다공성 구조의 티타늄질화물 합성 및 이를 통한 우수한 안정성과 높은 속도 특성의 리튬-황 이차전지 개발)
전기 자동차, 스마트 그리드 등의 기술은 대용량 에너지를 제어해야 하는 시스템으로 이를 효율적으로 활용하기 위한 차세대 이차전지 개발의 필요성이 더욱 커지고 있다.
리튬-황 이차전지는 이론적으로 기존 리튬 이온 이차전지보다 약 7배 이상 높은 에너지 밀도 특성을 보인다. 또한 황의 저렴한 가격은 전지 생산 단가를 급격히 낮춰줄 수 있을 것으로 기대되고 있다.
그러나 리튬-황 이차전지 음극과 양극에서 많은 문제점이 남아있어 상용화에 한계가 있다. 특히 양극에서는 황의 낮은 전기 전도도와 황이 충·방전 과정에서 전극으로부터 새어나가는 현상이 문제점으로 남아있다.
이를 해결하기 위해 황을 안정적으로 담을 수 있는 그릇 역할의 소재, 즉 황 담지체에 대한 연구가 활발하게 이뤄지고 있다.
기존 극성 표면의 무기 소재들은 황과 강한 작용력을 갖지만 무기 소재의 구조적 특성 제어를 할 방법이 부족해 황 담지체로 개발하기에는 한계가 있었다. 이번 연구는 독창적인 합성법을 개발함으로써 이 한계점을 극복했다.
연구팀은 문제 해결을 위해 50나노미터 이상 크기의 매크로 기공과 50나노미터 이하의 메조 기공을 동시에 지닌 계층형 다공성 구조의 티타늄질화물 기반의 황 담지체를 개발했다.
티타늄질화물은 황과의 화학적 작용력이 매우 강하고 전기 전도도가 높아 충·방전 과정에서 황이 전극으로부터 빠져나가는 것을 막아주고 황의 전기화학적 산화, 환원 반응을 빠르게 해준다.
연구팀은 매크로 기공과 메조 기공의 구조적 시너지 효과로 인해 많은 양의 황을 안정적으로 담으면서도 높은 수명 안정성 및 속도 특성을 보임을 확인했다.
이 교수는 “리튬-황 이차전지는 여전히 해결해야 할 문제점이 많아 이를 해결하기 위한 연구는 지속적으로 이뤄져야 한다”라며 “이번 연구를 통해 안정적인 수명을 지닌 양극 소재 개발의 독보적인 기술을 확보했다”라고 말했다.
이번 연구는 LG화학과 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 계층형 다공성 티타늄질화물 합성전략 모식도
그림2. 합성된 계층형 다공성 티타늄질화물 전자현미경 사진
그림3. 저널 표지 원본
2019.01.28
조회수 9932
-
김학성 교수, 세포 내 단백질 전달 효율 높이는 DNA 기반 나노구조체 개발
우리 대학 생명과학과 김학성 교수, 류이슬 박사 연구팀이 강원대 이중재 교수, 한국원자력연구원 강정애 박사와의 공동 연구를 통해 DNA를 기반으로 나노 구조체를 개발해 세포 속으로의 단백질 전달 효율을 높이는 기술을 개발했다.
이번 연구 결과는 국제 학술지 ‘스몰(Small)’에 2018년 12월 28일일자 표지논문으로 게재됐다.
단백질 치료제는 저분자 화합물에 비해 반응 부위를 구별해내는 특이성이 우수해 차세대 의약품으로 활발히 개발되고 있다. 단백질 치료제가 탁월한 효과를 내기 위해서는 치료용 단백질이 세포 내로 효율적으로 전달되는 기술이 선행돼야 한다.
지금까지는 화학적 합성법 등으로 단백질 전달체를 제작해 왔지만 생체 독성, 낮은 전달 효율, 복잡한 제조공정과 효과가 일관적이지 않은 재현성 등이 해결돼야 할 과제로 남아있다.
연구팀은 생체 분자인 DNA를 기반으로 나노 구조체를 제작해 생체 친화적이면서 특정 세포로의 높은 전달 효율을 보였다. 특히 다양한 단백질을 전달할 수 있는 범용적인 기술로서 폐암 동물 모델에서도 항암 물질을 전달해 높은 항암 효과를 입증했다.
제조공정도 복잡하지 않다. 먼저 금 나노입자 표면에 DNA를 부착한다. 다음으로 징크 핑거를 이용해 각 DNA 가닥에 암세포를 표적하는 생체 분자와 항암 단백질을 결합해 제작했다.
DNA와 징크 핑거 간의 상호작용을 이용하므로 DNA 서열과 길이를 조절해 나노 구조체에 탑재되는 단백질의 양을 손쉽게 조절할 수 있다.
김학성 교수는 “생체 적합한 소재인 DNA와 단백질의 상호작용을 이용해 세포 내로 단백질을 효율적으로 전달하는 새로운 나노 구조체를 개발한 것이다”라며, “세포 내 단백질 치료제의 전달뿐 아니라 동반 진단용으로 광범위하게 활용될 것으로 기대된다”라고 말했다.
이번 연구 성과는 과학기술정보통신부‧한국연구재단 기초연구사업(글로벌연구실, 중견연구, 생애첫연구) 지원으로 수행됐다.
□ 그림 설명
그림1. small 표지
그림2. 나노 구조체 제조 과정 모식도
그림3. 나노 구조체의 세포 내 단백질 전달 효과
그림4. 나노 구조체의 현미경 관찰 사진
2019.01.21
조회수 11878
-
한순규 교수, 마약중독치료제 및 항암제 후보물질 합성 기술 개발
〈 왼쪽부터 임형근 연구원, 한순규 교수, 성시광 연구원 〉
우리 대학 화학과 한순규 교수 연구팀이 마약중독 치료제, 항암제 후보물질로 쓰일 수 있는 천연물을 인공적으로 합성하는 데 성공했다.
연구팀은 시중에서 구할 수 있는 카타란틴(catharanthine)을 원료로 해 산화와 재배열을 통해 7종의 이보가 및 포스트이보가 천연물을 합성해냈다. 이번 연구결과는 마약중독 치료제, 항암제 후보물질 생산의 원천기술이 될 것으로 기대된다.
성시광, 임형근 석박사통합과정이 공동 1 저자로 참여한 연구는 화학 분야 국제 학술지이자 셀(Cell) 자매지인 ‘켐(Chem)’ 11월 15일 자에 게재됐다. (논문명 : Biosynthetically Inspired Transformation of Iboga to Monomeric Post-Iboga Alkaloids, 생합성 가설에 기반한 이보가 알칼로이드의 단위체 포스트이보가 알칼로이드로의 변환)
이보가 알칼로이드가 학계의 관심을 끈 이유는 이들의 천연물군이 마약중독 치료제로써 가능성을 보였기 때문이다. 또한 이보가 알칼로이드가 생 합성적으로 변형된 천연물 중 빈블라스틴(vinblastine)은 현재 항암제로 쓰이고 있다. 최근에는 이보가 알칼로이드로부터 자연적으로 파생된 다양한 형태의 천연물군이 대거 발견되며 학계와 산업계의 관심도 커지고 있다.
천연물 전합성(全合成)은 간단한 시작물질로부터 다단계의 화학반응을 통해 원하는 천연물을 합성하는 학문 분야이다. 그러나 이 다단계 화학반응을 거치는 과정에서 합성효율이 낮아지는 한계가 있다.
한 교수 연구팀은 이보가 알칼로이드 천연물인 카타란틴이 미 식품의약국(FDA) 승인 항암제인 나벨빈(Navelbine®)의 공업원료로 쓰여 시중에서 쉽게 구할 수 있다는 점에 착안했다. 산화와 재배열을 통해 카타란틴의 구조를 변형시켜 고부가가치의 포스트이보가 천연물을 효율적으로 합성했다.
연구팀은 이번 연구에서 이보가 알칼로이드에서 자연적으로 파생되면서 분자적 재배열을 이룬 천연물군을 ‘포스트이보가’ 알칼로이드라고 이름 지었다. 그리고 다양한 효소의 작용을 통해 식물 내에서 이뤄지는 이보가 골격의 분자적 재배열을 화학적으로 구현하는 데 성공했다.
한 교수팀이 합성에 성공한 포스트이보가 알칼로이드는 타버틴진(tabertinggine), 보아틴진(voatinggine), 디피닌(dippinine) B로 이 중 보아틴진과 디피닌 B는 최초의 합성이다.
특히 디피닌 천연물군은 30년 이상 학계의 관심을 받아왔음에도 정복하지 못한 난공불락의 천연물로 여겨졌는데 한 교수 연구팀이 이번에 최초로 합성에 성공했다.
한 교수는 “이번 연구는 포스트이보가 알칼로이드 합성에 새로운 패러다임을 부여한 연구이다”며 “본 연구를 통해 다양한 항암제 및 마약중독 치료제 후보물질을 합성할 수 있는 원천기술을 확보했다는 데 의의가 있다”라고 말했다.
이번 연구는 한국연구재단의 이공분야 기초연구사업 중견연구자지원사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 포스트이보가 알칼로이드의 합성전략 모식도
그림2. 디피닌 B의 합성 경로
2018.11.15
조회수 9904
-
이봉재, 이승섭 교수, 금속-유전체 간 근접장 복사열전달량 제어 기술 개발
〈 왼쪽 위부터 시계방향으로 이승섭 교수, 이봉재 교수, 임미경 박사, 송재만 박사과정 〉
우리 대학 기계공학과 이봉재 교수와 이승섭 교수 연구팀이 금속-유전체 다층구조 사이의 근접장 복사열전달량을 측정하고 제어하는 데 성공했다.
연구팀의 복사열전달 제어 기술은 차세대 반도체 패키징과 열광전지, 열관리 시스템 등에 적용 가능하고 폐열의 재사용을 통한 에너지 절감, 사물인터넷 센서의 지속적 전력 공급원 등에 응용 가능할 것으로 기대된다.
임미경 박사와 송재만 박사과정이 주도한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 10월 16일자 온라인 판에 게재됐다. (논문명 : Tailoring Near-Field Thermal Radiation between Metallo-Dielectric Multilayers using Coupled Surface Plasmon Polaritons, 표면 플라즈몬 폴라리톤 커플링을 이용한 금속-유전체 다층구조 사이의 근접장 복사열전달 제어)
두 물체 사이의 거리가 나노미터 단위일 때 물체 사이의 복사열전달은 거리가 가까워질수록 매우 크게 증가한다. 그 값은 복사열전달량의 이론적인 최댓값이라 여겨졌던 흑체 복사열전달량보다 1천 배에서 1만 배 이상 커질 수 있다. 이 현상을 근접장 복사열전달이라고 한다.
최근 나노기술의 발전으로 다양한 물질 사이의 근접장 복사열전달을 규명하는 연구가 활발히 진행되고 있다. 특히 나노구조에서 발생하는 표면 폴라리톤 커플링을 이용하면 두 물체 사이의 근접장 복사열전달량을 크게 향상시킬 수 있을 뿐 아니라 파장에 따른 복사열전달 제어가 가능해진다.
이런 이유로 박막, 다층나노구조, 나노와이어 등 나노구조를 도입한 근접장 복사열전달 적용 장치에 대한 이론 연구가 계속 진행되고 있다. 그러나 현재까지 대부분의 연구는 등방성(等方性) 물질 사이의 근접장 복사열전달만을 측정하는 데 초점이 맞춰졌다.
이봉재, 이승섭 교수 공동 연구팀은 커스텀 MEMS 장치 통합 플랫픔과 3축 위치 나노제어 시스템을 이용해 금속-유전체 다층나노구조 사이의 진공 거리에 따른 근접장 복사열전달량을 최초로 측정하는 데 성공했다.
금속-유전체 다층나노구조는 일정한 두께를 갖는 금속과 유전체가 반복적으로 쌓인 구조를 말한다. 금속-유전체 단일 층 쌍을 단위 셀이라 부르며 단위 셀에서 금속 층이 차지하는 두께의 비율을 충전인자라 한다.
연구팀은 다층나노구조의 충전인자와 단위 셀 개수의 변화에 따른 근접장 복사열전달량 측정 결과를 통해 표면 플라즈몬 폴라리톤 커플링으로 근접장 복사열전달량을 크게 향상시켰으며, 나아가 열전달의 파장별 제어가 가능함을 증명했다.
연구를 주도한 이봉재 교수는 “그동안 실험적으로 규명된 등방성 물질은 근접장 복사열전달의 파장별 제어에 한계가 있었다”며 “이번에 밝혀낸 다층나노구조를 사용한 근접장 복사열전달 제어 기술은 열광전지, 다이오드, 복사냉각 등 다양한 근접장 복사열전달 적용 장치 개발에 첫걸음이 될 것으로 기대된다”고 말했다.
이번 연구는 한국연구재단 중견연구자사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 근접장 복사열전달 측정 3차원 개념도와 개발한 장치
그림2. 금속-유전체 다층나노구조의 충전 인자에 따른 복사 열전달량 분석 결과
2018.11.14
조회수 11273
-
조광현 교수, 뇌파 생성, 변조 담당하는 신경회로 원리 규명
〈 조광현 교수 연구팀 〉
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 뇌파의 생성 및 변조를 담당하는 핵심 신경회로를 규명하는 데 성공했다.
이를 통해 뇌의 동작원리를 밝힐 뿐 아니라 향후 여러 뇌질환 환자에게서 발생하는 비정상적 뇌파활동을 신경세포 네트워크 수준에서 규명하는 데 활용 가능할 것으로 기대된다. 이번 연구는 4차 산업혁명의 핵심기술로 주목받는 IT와 BT의 융합연구인 시스템생물학 연구로 규명했다는 의미를 갖는다.
이병욱 박사과정, 신동관 박사, 스티븐 그로스 박사가 함께 참여한 이번 연구는 국제 학술지 ‘셀 리포트(Cell Reports)’ 11월 6일자 온라인 판에 게재됐다.
뇌의 다양한 기능은 신경세포(뉴런) 사이의 복잡한 상호작용을 통해 이뤄진다. 특히 뉴런들의 동시다발적인 발화에 의해 형성되는 뇌파는 뇌의 활동 상태를 측정하는 가장 중요한 지표이며, 특정 기능을 수행하기 위해 영역 간 선택적 통신의 매개체 역할을 하는 것으로 알려져 있다.
또한 뇌파의 비정상적인 생성 및 변조 현상은 다양한 뇌질환과 밀접한 관계를 갖는 것으로 밝혀지고 있다. 이에 따라 전 세계 신경생물학 연구자들은 뇌파의 생성 및 변조 원리를 파악하기 위해 노력해 왔다.
그러나 뇌파의 생성 및 변조는 수많은 뉴런 사이의 복잡한 상호작용을 통해 발생하는 예측할 수 없는 창발적 특성(emergent property)을 갖기 때문에 기존의 신경 생물학 실험을 통해 그 원리를 규명하기에는 한계가 있었다.
조 교수 연구팀은 시스템생물학 기반의 연구방법을 통해 뇌파의 생성 및 변조 원리를 분석했다. 연구팀은 여러 뇌 영역 중 특히 감각 피질(sensory cortex)에 주목했다. 감각 피질은 외부 감각 정보를 처리하고 통합, 조절하는 핵심 영역으로 여러 주파수 대역의 뇌파와 변조를 관측할 수 있다.
연구팀은 최근 커넥토믹스 (connectomics) 연구를 통해 밝혀진 쥐의 감각피질 내 뉴런의 종류 및 뉴런 간 연결성 정보를 이용해 감각피질을 구성하는 뉴런들과 이들을 연결하는 시냅스를 수학 모델을 통해 표현하고 이로부터 신경회로를 구축해 뇌파의 생성 및 변조 과정을 분석했다.
연구팀은 대규모 컴퓨터 시뮬레이션 분석을 통해 흥분성 뉴런과 억제성 뉴런으로 구성된 양성피드백과 음성피드백의 중첩된 구조(interlinked positive and negative feedback)가 뇌파의 생성 및 주파수 변조 현상의 핵심회로임을 최초로 규명했다.
특히 연구팀은 기존의 전기생리학 실험을 통해 측정된 뉴런 간 시냅스의 특정 연결강도가 신경회로의 뇌파 생성 및 변조 기능을 극대화시킬 수 있는 최적의 조합임을 밝혀냈다.
이번에 개발한 수학모형을 활용하면 전통적 생물학 실험을 통해 파악이 어려웠던 뉴런들 간의 다양한 상호작용을 이해하고 신경회로의 복잡한 설계원리를 파악할 수 있을 것으로 기대된다.
또한 여러 뇌질환 환자의 뇌에서 관측되는 비정상적인 뇌파 활동을 신경네트워크 차원에서 분석하고 규명할 수 있을 것으로 예상된다.
시스템생물학 접근을 통한 신경회로의 구조 및 기능 분석은 인공지능의 발전에도 기여할 것으로 기대된다. 두뇌 신경회로의 작동원리에 대한 이해를 높인다면 컴퓨터 과학자들이 이를 이용해 새로운 인공지능 기술을 개발할 수 있다. 자폐증이나 집중력 조절장애 등과 관련된 신경회로 규명, 두뇌 치료 기술 개발 등의 원천 의료기술 개발에도 혁신으로 이어질 수 있다.
조 교수는 “지금껏 뇌파의 생성 및 변조를 담당하는 핵심 신경회로가 밝혀진 바가 없었다”며 “이번 연구에서는 최근 커넥토믹스 (connectomcis) 연구를 통해 점차 밝혀지고 있는 뉴런간의 복잡한 연결성에 숨겨진 설계원리를 시스템생물학 연구를 통해 찾아냄으로써 뇌의 동작원리를 파악할 수 있는 새로운 가능성을 제시했다”고 말했다.
이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 바이오의료기술개발사업, 그리고 삼성전자 미래기술육성센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 뉴런 간 연결 강도에 내제된 기능적 설계원리 파악
그림2. 뇌파의 생성 및 변조를 담당하는 핵심 신경회로
2018.11.14
조회수 16552
-
유승협 교수, 초저전력 심박 및 산소포화도 센서 구현
〈 유승협 교수, 이현우 박사과정〉
우리 대학 전기및전자공학부 유승협 교수 연구팀이 유기발광다이오드(OLED)와 유기포토다이오드(OPD)를 이용해 초저전력 심박 및 산소포화도 센서 구현에 성공했다.
전기및전자공학부 유회준 교수 연구팀과의 협력을 통해 이뤄진 것으로 이 기술을 통해 심박 및 산소포화도 센서가 다양한 웨어러블 기기에 적용될 수 있는 계기가 될 것으로 기대된다.
이현우 박사과정이 1저자로 참여한 이번 연구는 ‘사이언스 어드밴스 (Science Advances)’11월 9일자 온라인 판에 게재됐다. (논문명 : Toward all-day wearable health monitoring: An ultralow-power, reflective organic pulse oximetry sensing patch)
심박 및 산소포화도 센서는 신체의 건강 상태를 나타내는 가장 중요한 생체 신호의 하나인 심장 박동과 혈액 내 산소와 결합한 헤모글로빈의 농도로서 신체 내 원활한 산소 공급 여부를 가늠할 수 있는 산소포화도를 측정하는 기기이다.
심박 및 산소포화도 센서에는 일반적으로 LED와 포토다이오드로 구성된 광학적 방법이 이용된다. 이 기술은 간단하고 소형화가 용이한 비 침습적 방법이면서 주요 생체신호의 모니터링이 가능하다는 이점이 있어 병원용 기기뿐 아니라 스마트 워치 등 웨어러블 기기에도 탑재되는 경우가 많다.
이러한 센서는 배터리 용량이 매우 제한적인 웨어러블 기기의 특성상 센서의 전력소모를 줄이는 것이 매우 중요하다.
그러나 현재 상용 심박 및 산소포화도 센서는 이산소자들의 배열로 구성돼 피부에서 산란으로 인해 전방위로 전달되는 빛을 효율적으로 감지하기 어렵다. 이러한 이유로 좀 더 강한 빛을 필요로 하기 때문에 장기간 실시간 모니터링에는 한계가 있다.
연구팀은 문제 해결을 위해 광원의 발광 파장에 따른 피부에서의 빛의 전달 형태를 실험과 피부 모델 시뮬레이션을 통해 검토했다. 유기소자의 경우 자유로운 패턴 구현이 용이한 점을 최대한 이용해 유기포토다이오드가 유기발광다이오드를 동심원 형태로 감싸 피부에서 전방위로 분포되는 빛을 효율적으로 감지하는 최적 구조를 갖는 유연 심박 및 산소포화도 센서를 구현했다.
이를 통해 평균소비전력 약 0.03밀리와트(mW)만으로도 심박 및 산소포화도를 측정할 수 있었다. 이는 LED와 PD가 일렬로 배치된 상용 센서가 갖는 통상 전력소모 양의 약 수십 분의 일에 해당하는 매우 작은 값으로 24시간 동작에도 1밀리와트시(mWh)가 채 되지 않는 양이다.
이 기술은 매우 낮은 전력 소모 외에도 유기소자가 갖는 유연 소자의 형태적 자유도도 그대로 갖는다. 따라서 스마트 워치부터 작게는 무선 이어폰, 스마트 반지, 인체 부착형 패치 등의 웨어러블 기기에서 배터리로 인한 제한을 최소화하면서 일상에 지장 없이 지속적인 생체 신호 모니터링을 가능하게 할 것으로 기대된다.
유승협 교수는 “생체 신호의 지속적인 모니터링은 건강의 이상 신호를 상시 검출 할 수 있게 할 뿐 아니라 향후 빅데이터 등과 연계하면 이들 생체신호의 특정 패턴과 질병 간의 상호 관계를 알아내는 등에도 활용될 수 있다.”고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단-나노·소재원천기술개발사업 및 선도연구센터 사업의 지원을 받아 수행됐다.
□ 사진 설명
사진1. 연구팀이 개발한 센서
2018.11.12
조회수 11771
-
김상율 교수, 투명 유연 디스플레이 기판용 소재 개발
〈 김상율 교수 연구팀. 왼쪽부터 김태형, 김성종 박사과정, 김상율 교수, 이동휘, 윤영록 석사과정〉
우리 대학 화학과 김상율 교수 연구팀이 투명 유연 디스플레이를 제작할 수 있게 해주는 고분자를 합성하는 데 성공했다.
연구팀이 개발한 고분자는 유리와 같은 투명성과 열팽창계수를 갖는 고성능의 무정형 고분자로 유기소재의 열팽창 제어에 응용 가능할 것으로 기대된다.
김선달, 이병용 연구원이 주도한 이번 연구는 국제 학술지 ‘사이언스 어드밴시스(Science Advances)’ 10월 26일자 온라인 판에 게재됐다.(논문명 : Poly(amide-imide) materials for transparent and flexible displays )
차세대 디스플레이로 유망한 투명하면서도 유연한 디스플레이를 제조하기 위해서는 유리와 같은 수준의 투명성과 열팽창계수를 가지면서도 휘어지고 접을 수 있는 기판소재가 필요하다. 그러나 고분자 소재 중 이러한 조건을 갖는 유연 고분자 소재는 알려진 바 없었다.
모든 물체는 열을 받으면 팽창하고 차가워지면 수축하는 성질을 갖는다. 세라믹이나 금속 소재에 비해 유기물질로 이뤄진 고분자 소재는 열에 의한 팽창이 상대적으로 매우 크다.
얇고 가벼운 평판디스플레이에 사용되는 반도체소자는 세라믹과 비슷한 열팽창계수를 갖고 있어 열팽창계수의 차이가 큰 고분자 필름 위에 반도체소자를 만들게 되면 작동 시 발생하는 열에 의한 팽창과 수축의 차이로 소자가 파괴되는 문제가 발생한다.
따라서 반도체소자와 기판의 열팽창계수를 일치시키는 것은 성공적인 디스플레이를 제조하는데 매우 중요한 일이다.
무정형인 투명한 고분자 물질의 열팽창계수를 줄이는 방법으로 고분자 사슬들을 연결시켜 망상구조(특정 다각형이 이어진 그물 모양의 구조)를 형성시키는 방법이 알려져 있다. 하지만 망상 구조를 갖는 고분자 물질은 유연성을 잃어버리고 필름으로 제조해도 유연하지 않게 된다.
김 교수 연구팀은 문제 해결을 위해 고분자 사슬 간 거리를 조절하는 방식을 이용했다. 고분자 물질을 합성할 때 고분자 사슬 간에 상호작용하는 힘을 도입하고 힘의 방향이 수직으로 교차하게 만들며 사슬 간 거리를 적절히 조절하면 온도에 따른 팽창 및 수축을 억제할 수 있다. 연구팀은 이러한 화학구조를 투명한 고분자 물질에서 구현하는데 성공했다.
김상율 교수팀이 합성에 성공한 새로운 고성능 고분자 물질인 투명한 폴리아마이드이미드 필름은 열팽창정도가 유리 수준으로 낮으면서도(열팽창계수: 4ppm/oC) 유연하며 아몰레드(AMOLED) 디스플레이 제조공정에 적용할 수 있는 내열성을 갖고 있다(>400oC).
연구팀은 새로 합성된 투명 폴리아마이드이미드 필름 위에 이그조 박막 트랜지스터(IGZO TFT)소자를 제작해 필름을 반경 1mm까지 접어도 소자가 정상적으로 작동되는 것을 확인했다.
김 교수는 “이번 연구 결과는 그간 난제로 여겨졌던 무정형 고분자의 열팽창을 화학적 가교결합 없이 조절해 유리 정도 수준으로 낮추면서도 유연성을 확보하고 동시에 투명하게 만드는 방법을 제시한 흥미로운 연구결과이다”며 “다양한 유기소재의 열팽창을 제어하는 데 응용 가능할 것으로 기대된다”고 말했다.
화학과와 전기및전자공학과, 나노과학기술대학원이 공동으로 참여한 이번 연구는 한국연구재단 중견연구자지원사업과 삼성미래기술센터의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 투명 폴리아마이드이미드 필름 위에 제조된 투명하고 유연한 IGZO TFT의 구조
그림2. 투명한 폴리아마이드이미드 고분자의 화학구조
2018.11.08
조회수 10882
-
민범기 교수, 광학적 시공간 경계 통한 빛 제어 기술 개발
〈 민범기 교수, 손재현 박사과정, 이강희 박사 〉
우리 대학 기계공학과 민범기 교수 연구팀이 광학적인 시공간 경계(spatiotemporal boundary)를 이용해 빛의 색과 위상을 동시에 제어하는 기술을 개발했다.
기계공학과 전원주 교수, 물리학과 이상민 교수와의 공동 연구로 진행된 이번 연구는 특수 미세 금속 구조를 반도체 표면 위에 제작해 기존 연구결과에 비해 훨씬 높은 자유도를 갖는 시공간 경계를 구현했다. 이 시공간 경계는 빛의 주파수를 변환할 수 있는 초박막형 광학 소자에 응용 가능할 것으로 기대된다.
이강희 박사, 손재현 박사과정이 공동 1저자로 참여한 이번 연구는 광학분야 국제 학술지 ‘네이처 포토닉스(Nature Photonics)’ 10월 8일자 온라인 판에 게재됐다.
광 주파수 변환 소자는 광학적 비선형성으로 인해 빛의 색이 변화하는 현상을 주로 이용해 빛을 사용한 정밀 측정과 통신 기술에서 핵심 역할을 하고 있다.
일반적인 광학 현상에서는 빛의 중첩(superposition) 원리가 성립하기 때문에 여러 빛이 동시에 물질을 통과해도 서로에게 영향을 주지 않는다. 하지만 빛의 세기가 매우 강하면 빛의 전기장이 물질을 이루는 원자핵, 전자 상호작용에 영향을 줘 빛의 주파수를 배로 늘리거나 두 빛의 주파수를 합하거나 뺀 빛을 형성하는 등의 비선형 광학 현상을 관찰할 수 있다.
이럴 경우 대부분 비선형 형상 구현에 필요한 강한 빛을 얻기 위해 고출력 레이저를 사용하거나 아주 좁은 공간에 빛을 집속시키는 방법을 사용한다.
또한 빛이 통과하고 있는 물질을 빛 스스로가 아닌 다른 외부 자극을 이용해 변화시킬 때에도 주파수 변환 현상을 볼 수 있다. 이렇게 시간에 따라 동적으로 변화하는 물질, 시간 경계 등을 이용하면 약한 빛에서도 주파수 변환을 일으킬 수 있다. 이는 통신 분야에서 유용하게 활용 가능하다.
그러나 외부 자극을 이용한 물성의 변화는 개념적으로만 연구돼 왔고, 다양한 이론적 예측 결과들을 실제로 구현하는 데 어려움이 있었다.
연구팀은 문제 해결을 위해 원자 구조를 모사한 금속 미세구조를 배열해 인공적인 광학물질(메타물질)을 개발했고 이 인공 물질을 매우 빠르게 변화시켜 시공간 경계를 만들어내는 데 성공했다.
기존 연구들이 약간의 굴절률에만 변화를 주는 것에 그쳤다면 이번 연구는 물질의 분광학적 특성을 자유롭게 설계 및 변화시킬 수 있는 플랫폼을 제공했다. 이를 이용해 빛의 색을 큰 폭으로 변화시키면서 주파수 변화량 역시 제어할 수 있는 소자를 개발했다.
연구팀은 주로 개념적으로만 진행되던 시공간 경계에서의 주파수 변환에 관한 연구를 광학물질을 이용해 실현 및 응용할 수 있는 단계로 발전시켰다는데 의의가 있다고 밝혔다.
민 교수는 “주파수 스펙트럼의 변화를 자유롭게 설계하고 예측할 수 있어 폭넓은 활용이 가능하다”며 “광학 분야에서 동적인 매질에 연구에 새 방향을 제시하게 될 것이다”라고 말했다.
이번 연구는 한국연구재단의 중견연구자지원사업과 미래유망융합기술파이오니어사업 및 글로벌프론티어사업 파동에너지극한제어연구단의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 협대역의 테라헤르츠파를 입사시켰을 때 시간적 경계의 변화에 따른 주파수 변환 실험 결과
그림2. 기술 개념도
2018.11.05
조회수 12230
-
한동수, 신진우 교수, 느린 인터넷 환경에서도 고화질 영상 감상 기술 개발
〈 (왼쪽부터) 김재홍, 정영목 석사과정, 여현호 박사과정, 한동수, 신진우 교수 〉
우리 대학 전기및전자공학부 신진우, 한동수 교수 연구팀이 딥러닝 기술을 이용한 인터넷 비디오 전송 기술을 개발했다.
여현호, 정영목, 김재홍 학생이 주도한 이번 연구 결과는 격년으로 개최되는 컴퓨터 시스템 분야의 유명 학술회의인 ‘유즈닉스 OSDI(USENIX OSDI)’에서 10월 10일 발표됐고 현재 국제 특허 출원을 완료했다.
이 기술은 유튜브, 넷플릭스 등에서 비디오를 사용자에게 전송할 때 사용하는 적응형 스트리밍(HTTP adaptive streaming) 비디오 전송기술과 딥러닝 기술인 심층 콘볼루션 신경망(CNN) 기반의 초해상화를 접목한 새로운 방식이다.
이는 열악한 인터넷 환경에서도 고품질, 고화질(HD)의 비디오 시청이 가능할 뿐 아니라 4K, AV/VR 등을 시청할 수 있는 새로운 기반 기술이 될 것으로 기대된다.
기존의 적응형 스트리밍은 시시각각 변화하는 인터넷 대역폭에 맞춰 스트리밍 중인 비디오 화질을 실시간으로 조절한다. 이를 위해 다양한 알고리즘이 연구되고 있으나 네트워크 환경이 좋지 않을 때는 어느 알고리즘이라도 고화질의 비디오를 감상할 수 없다는 한계가 있다.
연구팀은 적응형 스트리밍에 초해상화를 접목해 인터넷 대역폭에 의존하는 기존 적응형 스트리밍의 한계를 극복했다. 기존 기술은 비디오를 시청 시 긴 영상을 짧은 시간의 여러 비디오 조각으로 나눠 다운받는다. 이를 위해 비디오를 제공하는 서버에서는 비디오를 미리 일정 시간 길이로 나눠 준비해놓는 방식이다.
연구팀이 새롭게 개발한 시스템은 추가로 신경망 조각을 비디오 조각과 같이 다운받게 했다. 이를 위해 비디오 서버에서는 각 비디오에 대해 학습이 된 신경망을 제공하며 또 사용자 컴퓨터의 사양을 고려해 다양한 크기의 신경망을 제공한다.
제일 큰 신경망의 크기는 총 2메가바이트(MB)이며 비디오에 비해 상당히 작은 크기이다. 신경망을 사용자 비디오 플레이어에서 다운받을 때는 여러 개의 조각으로 나눠 다운받으며 신경망의 일부만 다운받아도 조금 떨어지는 성능의 초해상화 기술을 이용할 수 있도록 설계했다.
사용자의 컴퓨터에서는 동영상 시청과 함께 병렬적으로 심층 콘볼루션 신경망(CNN) 기반의 초해상화 기술을 사용해 비디오 플레이어 버퍼에 저장된 저화질 비디오를 고화질로 바꾸게 된다. 모든 과정은 실시간으로 이뤄지며 이를 통해 사용자들이 고화질의 비디오를 시청할 수 있다.
연구팀이 개발한 시스템을 이용하면 최대 26.9%의 적은 인터넷 대역폭으로도 최신 적응형 스트리밍과 같은 체감 품질(QoE, Quality of Experience)을 제공할 수 있다. 또한 같은 인터넷 대역폭이 주어진 경우에는 최신 적응형 스트리밍보다 평균 40% 높은 체감 품질을 제공할 수 있다.
이 시스템은 딥러닝 방식을 이용해 기존의 비디오 압축 방식보다 더 많은 압축을 이뤄낸 것으로 볼 수 있다. 연구팀의 기술은 콘볼루션 신경망 기반의 초해상화를 인터넷 비디오에 적용한 차세대 인터넷 비디오 시스템으로 권위 잇는 학회로부터 효용성을 인정받았다.
한 교수는 “지금은 데스크톱에서만 구현했지만 향후 모바일 기기에서도 작동하도록 발전시킬 예정이다”며 “이 기술은 현재 유튜브, 넷플릭스 등 스트리밍 기업에서 사용하는 비디오 전송 시스템에 적용한 것으로 실용성에 큰 의의가 있다”고 말했다.
이번 연구는 과학기술정보통신부 정보통신기술진흥센터(IITP) 방송통신연구개발 사업의 지원을 받아 수행됐다.
비디오 자료 링크 주소 1.
https://www.dropbox.com/sh/z2hvw1iv1459698/AADk3NB5EBgDhv3J4aiZo9nta?dl=0&lst =
□ 그림 설명
그림1. 기술이 적용되기 전 화질(좌)과 적용된 후 화질 비교(우)
그림2. 기술 개념도
그림3. 비디오 서버로부터 비디오가 전송된 후 저화질의 비디오가 고화질의 비디오로 변환되는 과정
2018.10.30
조회수 10941
-
강승균 교수, 신경치료 후 몸에서 자연 분해되는 전자약 개발
〈 강 승 균 교수 〉
우리 대학 바이오및뇌공학과 강승균 교수 연구팀이 美 노스웨스턴 대학 구자현 박사와의 공동 연구를 통해 절단된 말초신경을 전기치료하고 역할이 끝나면 몸에서 스스로 분해돼 사라지는 전자약을 개발했다.
몸에 녹는 수술용 실이 대중화된 것처럼 생분해성 무선 전자약을 통해 앞으로는 병원을 찾지 않고도 집에서 물리치료를 받듯 전기치료를 받는 시대를 맞이할 수 있을 것으로 기대된다.
이번 연구결과는 국제 학술지 ‘네이처 메디슨(Nature Medicine)’ 10월 8일자 온라인 판에 게재됐다. (논문명 : 비약리학적 신경재생 치료를 위한 생분해성 무선전자 시스템, Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy)
말초신경 손상은 국내에서 연간 1만 건 이상 발생할 정도로 빈도가 높은 외상 중 하나이다. 신경의 재생 속도가 얼마나 신속하게 이뤄지느냐가 근육 회복율 및 후유증을 결정하는 중요 요소이며 재생속도가 현저히 저하되면 슈반세포의 소멸로 신경재생이 불가능해지거나 탈 신경 지연에 의한 영구 근육장애를 유발한다.
따라서 신경재생을 가속하기 위한 노력이 지속돼 왔고 전기적 자극을 통해 신경재생을 촉진시키는 전자약의 효능이 주목을 받고 있다.
전자약이란 전기 신호를 통해 체내의 장기, 조직, 신경 등을 자극해 세포의 활성도를 높여 재생속도 향상과 생체반응이 활발히 이뤄지도록 치료하는 기술이다. 전자약을 통해 손상된 신경을 전기자극하면 신경 세포가 활성화되며 축색돌기의 분화가 가속돼 신경재생이 빨라져 치료효과를 극대화할 수 있다.
이러한 전자약의 효과적인 성능에도 불구하고 치료 수술의 복잡성과 이로 인한 2차 손상의 위험성이 커 신경 치료에 직접적으로 활용하지 못했다.
전기 신호를 전달하기 위해서는 전선으로 머리카락 두께의 신경을 감싸야 하는데 치료 후에 신경을 감쌌던 전선을 다시 제거하는 과정이 매우 어렵고 자칫하면 제거 과정에서 2차 신경손상으로 이어질 수 있다. 또한 장기적인 전기 치료가 필요한 경우에는 매번 수술을 반복해야하는 한계가 있었다.
연구팀은 문제 해결을 위해 초박막형 실리콘과 유연성을 갖춘 생분해성 고분자를 이용해 300마이크로 수준 두께의 매우 얇고 유연성을 갖추고 있을 뿐 아니라 체내에서 수개월 내에 분해되는 전자약을 개발했다.
개발한 전자약은 체내에서 무선으로 작동되고 사용이 종료된 후 몸속에서 녹아 흡수되기 때문에 별도의 제거수술이 필요하지 않다. 따라서 추가 수술 없이도 반복적인 전기치료를 할 수 있으며 제거를 위한 수술도 필요하지 않아 2차 위험성과 번거로움을 근본적으로 해결할 수 있는 기술이다.
연구팀은 생분해성 무선 전자약 기술이 말초신경의 치료와 더불어 외상성 뇌손상 및 척추손상 등 중추신경의 재활과 부정맥 치료 등을 위한 단기 심장 박동기에도 응용 가능할 것으로 예상했다.
강 교수는 “최초로 생분해성 뇌압측정기를 개발해 2016년 네이처 紙에 논문을 게재한 뒤 약 2년 만에 치료기술로서의 의료소자를 성공적으로 제시했다”며 “생분해성 전자소자의 시장에서 우리나라가 중추적인 역할을 수행할 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단 신진연구자지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 생분해성 무선 전자소자의 생분해성 데모 예시
그림2. 다리신경 모델에 적용된 생분해성 무선 전자약의 삽입 모형도
그림3. 생분해성 전자약의 신경치료 시나리오 모식도
2018.10.22
조회수 10438
-
김신현 교수, 달걀 속 살충제 성분, 현장 즉시 검출 기술 개발
〈 김신현 교수, 김동재 박사과정 〉
우리 대학 생명화학공학과 김신현 교수 연구팀과 재료연구소(소장 이정환) 김동호 박사 공동 연구팀이 생체 시료에 들어있는 미량의 분자를 직접 검출할 수 있는 센서를 개발했다.
연구팀은 개발한 센서를 통해 다양한 종류의 살충제 성분을 검출하는데 성공했다. 특히 국내 및 유럽에서 문제가 됐던 달걀 속 살충제 성분인 피프로닐 술폰(Fipronil sulfone)을 시료 전처리 없이 검출할 수 있음을 증명했다.
연구팀의 센서는 전하를 띠는 하이드로젤 미세입자 내부에 금 나노입자 응집체를 캡슐화한 형태로 생체 시료 내에 존재하는 분자를 직접 분석해야 하는 광범위한 분야에 적용 가능할 것으로 기대된다.
김동재 박사과정이 1저자로 참여한 이번 연구는 나노분야의 국제 학술지 ‘스몰(Small)’ 10월 4일자 내부표지 논문으로 게재됐다.(논문명 : SERS-Active Charged Microgels for Size- and Charge-Selective Molecular Analysis of Complex Biological Samples, 생체 시료의 분자 크기 및 전하 선택적 분석을 위한 표면증강라만산란용 마이크로젤)
분자가 레이저에 노출되면 ‘분자 지문’이라고 불리는 고유의 라만(Raman) 신호를 보인다. 하지만 일반적으로 라만 신호의 세기는 매우 낮아 실질적인 분자 감지에 사용이 어렵다.
연구팀은 금속 나노구조의 표면에서 발생하는 표면 플라즈몬 공명 현상이 강한 세기의 기장을 형성하는 점을 이용해 라만신호를 현저히 증가시켰다. 이를 표면증강라만산란 현상이라고 한다.
이 표면증강라만산란 현상에 의해 금속 나노구조 표면에 존재하는 분자의 라만신호는 크게 증가시킬 수 있지만 이를 일반적인 생체 시료에 직접 적용하는 것은 어렵다. 생체 시료에 존재하는 다양한 크기의 단백질들이 금속 표면에 비가역적으로 흡착해 실제 분석이 필요한 분자의 접근을 막기 때문이다.
일반적으로 사용되는 생체 시료 분석법은 대형 장비를 이용한 시료 전처리 과정이 필수이다. 하지만 이로 인해 시료의 신속한 현장 분석이 어려워 시간과 비용을 증가시킨다.
연구팀은 시료의 정제 과정 없이 분자를 직접 검출하기 위해 하이드로젤에 주목했다. 하이드로젤은 친수성(親水性) 나노 그물 구조를 이루고 있어 단백질처럼 크기가 큰 분자는 배제하고 작은 크기의 분자만을 내부로 확산시킨다. 또한 하이드로젤이 전하를 띠는 경우 반대 전하를 띠고 있는 분자를 선택적으로 흡착시켜 농축할 수 있다.
연구팀은 이러한 원리를 센서 구현에 적용시키기 위해 미세유체기술을 이용했다. 이를 통해 금 나노입자 응집체를 형성하는 동시에 전하를 띠는 하이드로젤 미세입자 안에 캡슐화 하는데 성공했다.
하이드로젤 미세 입자는 생체 시료에 도입돼 단백질로부터 금 나노입자 응집체를 보호하고, 동시에 반대 전하를 띠는 표적 분자를 응집체 표면에 선택적으로 농축시킨다. 이를 통해 표적 분자의 라만 신호는 단백질의 방해 없이 증대되며 시료의 전처리 과정 없이 빠르고 정확한 분자 검출이 가능해진다.
김신현 교수는 “새롭게 개발한 라만 센서는 식품 내 살충제 성분 검출 뿐 아니라 혈액과 소변, 땀 등 인체 속 시료에 들어있는 약물, 마약 성분 등 다양한 바이오마커의 직접 검출에도 사용 가능하다”고 말했다.
재료연구소 김동호 박사는 “시료 전처리가 필요없기 때문에 현장에서 시료의 직접 분석이 가능해 시간과 비용의 혁신적 절감이 가능해질 것이다”고 말했다.
이번 연구결과는 재료연구소의 기관 주요사업과 한국연구재단의 중견연구자지원사업 및 글로벌연구실사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. small 저널 내부표지
그림2. 시료 전처리 없이 분자 선택적 라만 분석이 가능한 하이드로젤 기반 라만 센서의 원리
그림3. 분자 전하 선택적 농축 및 배제를 보여주는 현미경 사진
2018.10.18
조회수 12392