-
반도체 다층 소자의 개별 층 두께를 옹스트롬 정확도로 비파괴 검사하는 기술 개발
우리 대학 기계공학과 김정원 교수 연구팀이 삼차원 낸드플래시 메모리(이하 3D-NAND)의 비파괴적인 검사를 위해 광학 측정법과 머신러닝을 사용한 다층 두께 측정기술을 개발했다. 이 기술은 200층 이상의 초고밀도 3D-NAND 소자 공정 과정에서 전수검사 방법으로 사용돼 공정의 효율을 극대화할 수 있을 것으로 기대된다.
3D-NAND 메모리는 수백층의 메모리 셀이 적층되어 있는 메모리 반도체로, 기존의 평면형 플래시 메모리와 비교하여 저장용량과 에너지 효율이 매우 우수하여 개인용 USB부터 서버 시스템까지 다양하게 사용되고 있다.
기존에는 수직으로 적층된 반도체 셀들의 두께를 측정하기 위하여 전자현미경을 사용하였다. 하지만 전자현미경을 사용한 방법은 샘플의 단면을 이미징하기 위하여 샘플을 절단해야 하고 비용도 많이 들기 때문에, 전수검사로서는 적합하지 않은 문제가 있었다.
연구팀은 반도체 다층 구조가 초고속 광학 시스템에 자주 사용되는 유전체 거울의 구조와 유사하다는 점에 착안하여, 유전체 거울의 분석에 활용되는 광학 스펙트럼 측정법을 반도체 다층 구조에도 적용했다.
연구팀은 엘립소미터(ellipsometer)와 스펙트로포토미터(spectrophotometer)를 이용한 반도체 다층 샘플의 스펙트럼 측정과 머신러닝 알고리즘을 활용하여 200층이 넘는 반도체 물질의 각 층 두께를 1.6 옹스트롬 (1Å = 1미터의 100억 분의 1)의 평균제곱근오차로 예측할 수 있는 방법을 개발했다. 이 기술은 삼차원 반도체 소자의 검수 공정, 적층 공정, 그리고 식각 공정의 정확도를 크게 향상시킬 수 있을 것으로 기대된다.
연구팀은 또한 시뮬레이션 스펙트럼 데이터를 생성해 개별 층의 두께 불량을 검출할 수 있는 머신러닝 학습법도 개발했다. 그 결과 반도체 물질 적층 시 목표로 설정한 두께보다 약 50Å만큼 얇게 제작된 샘플들을 정상 범주의 샘플들로부터 성공적으로 분리할 수 있었다. 연구팀이 개발한 불량샘플 검출법은 시뮬레이션 데이터를 활용하기 때문에 큰 비용이 들지 않으며, 공정의 초기에 발견될 수 있는 불량 샘플들을 효과적으로 검출할 수 있을 것으로 기대된다.
최근 글로벌 IT 기업들의 서버 시스템에 대한 수요가 늘어나고 높은 저장용량을 가진 스마트 기기들이 개발됨에 따라, 초고밀도, 초고효율을 갖는 3D-NAND 메모리가 반도체 시장에서 각광받고 있다. 이번 연구 결과는 다양한 삼차원 반도체 소자들의 비파괴적인 검수를 위해 활용될 수 있다.
김 교수는 “비파괴적인 광학 측정법과 머신러닝을 결합한 방법은 다양한 반도체 검수 공정에도 적용할 수 있다”고 밝히며, “다양한 반도체 소자들의 형상이나 공정 조건 모니터링에도 광학측정법과 머신러닝을 결합한 접근방식을 활용할 것”이라고 말했다.
기계공학과 곽현수 박사과정 학생이 제1저자로 참여하고 삼성전자 메모리 계측기술팀과의 산학협력연구로 수행된 이번 연구는 국제학술지 ‘라이트: 어드밴스드 매뉴팩처링(Light: Advanced Manufacturing)’ 창간호에 1월 12일 게재됐다. (논문명: Non-destructive thickness characterisation of 3D multilayer semiconductor devices using optical spectral measurements and machine learning)
이번 연구는 삼성전자 산학연구과제의 지원을 받아 수행됐다.
2021.01.13
조회수 64110
-
인공지능 기술을 이용한 유전자 전사인자 예측 시스템 개발
우리 대학 생명화학공학과 이상엽 특훈교수와 미국 캘리포니아대학교 샌디에이고캠퍼스(UCSD) 생명공학과 버나드 팔슨(Bernhard Palsson) 교수 공동연구팀이 인공지능을 이용해 단백질 서열로부터 *전사인자를 예측하는 시스템인 '딥티팩터(DeepTFactor)'를 개발했다고 29일 밝혔다. 이번 연구는 국제학술지인 '미국국립과학원회보(PNAS)'에 12월 28일 字 게재됐다. (논문명: DeepTFactor: A deep learning-based tool for the prediction of transcription factors)
※ 전사인자 (transcription factor) : 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질. 특정 DNA 서열에 특이적으로 결합해 유전자의 전사를 조절한다.
※ 저자 정보 : 김기배(한국과학기술원, 제1 저자), 예 가오(Ye Gao) (UCSD, 제2 저자), 버나드 팔슨(Bernhard Palsson) (UCSD, 제3 저자), 이상엽(교신저자) 포함 총 4명
전사인자는 특정한 DNA 서열에 특이적으로 결합해 유전자의 전사(유전 정보를 복사하는 과정)를 조절하는 단백질이다. 전사인자로 인한 유전자 전사를 분석함으로써 유기체가 유전적 또는 환경적 변화에 어떻게 반응해 유전자의 발현을 제어하는지 이해할 수 있다. 이러한 점에서 유기체의 전사인자를 찾는 것은 유기체의 전사 조절 시스템 분석을 위한 첫 단계라고 할 수 있다.
지금까지 새로운 전사인자를 찾기 위해서는 이미 알려진 전사인자와의 상동성(유사한 성질)을 분석하거나, 기계학습(머신러닝)과 같은 데이터 기반의 접근 방식을 이용했다. 기존의 기계학습 모델을 이용하기 위해서는 분자의 물리 화학적 특성을 계산하거나, 생물학적 서열의 상동성을 분석하는 등, 해결하고자 하는 문제에 대한 전문 지식에 의존해 모델의 입력값으로 사용할 특징을 찾아내는 과정이 필요하다.
한편, 심층 학습(딥러닝)은 문제 해결을 위한 잠재적인 특징을 내재적으로 학습할 수 있기에 최근 다양한 생물학 분야에서 활용되고 있다. 하지만, 심층 학습을 이용한 예측 시스템의 경우 시스템 내부의 복잡한 연산 때문에 추론 과정을 직접 확인할 수 없는 `블랙박스(black box)'라는 특징을 가지고 있다.
공동연구팀은 심층 학습 기법을 이용해 주어진 단백질 서열이 전사인자인지 예측할 수 있는 시스템인 딥티팩터(DeepTFactor)를 개발했다. 딥티팩터는 단백질 서열로부터 전사인자를 예측하기 위해 세 개의 병렬적인 합성곱 신경망(convolutional neural network)을 이용한다. 공동연구팀은 딥티팩터를 이용해 대장균(Escherichia coli K-12 MG1655)의 전사인자 332개를 예측했으며, 그중 3개의 전사인자의 게놈 전체 결합 위치(genome-wide binding site)를 실험으로 확인함으로써 딥티팩터의 성능을 검증했다.
공동연구팀은 나아가 딥티팩터의 추론 과정을 이해하기 위해 특징 지도 (saliency map) 기반의 심층 학습 모델 해석 방법론을 사용했다. 이를 통해 딥티팩터의 학습 과정에서 전사인자의 DNA의 결합 영역에 대한 정보가 명시적으로 주어지지 않았지만, 내재적으로 이를 학습해 예측에 활용한다는 사실을 확인했다.
연구팀 관계자에 따르면, 특정 생물군의 단백질 서열만을 위해 개발됐던 이전 예측 방법론들과 달리, 딥티팩터는 모든 생물군의 단백질 서열에서 우수한 성능을 보여 다양한 유기체의 전사 시스템 분석에 활용 가능할 것으로 기대된다.
이상엽 특훈교수는 “이번 연구에서 개발한 딥티팩터를 이용해서 새롭게 발견되는 단백질 서열과 아직 특성화되지 않은 수많은 단백질 서열을 높은 처리 능력으로 분석할 수 있게 됐다”며 “이는 유기체의 전자 조절 네트워크 분석을 위한 기초 기술로써 활용 가능할 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 기후변화대응기술개발사업의 바이오리파이너리를 위한 시스템대사공학 원천기술개발 과제 지원을 받아 수행됐다.
2020.12.30
조회수 54518
-
도파민의 성질로 박테리아 생장의 실시간 탐지 기술 개발
우리 몸의 신경전달물질인 도파민의 성질을 이용해 박테리아(병원균)를 쉽게 검출할 수 있는 기술이 우리 대학 연구진에 의해 개발됐다.
생명과학과 정현정 교수, 화학과 이해신 교수 공동연구팀이 도파민의 반응을 이용해 병원균의 생장과 항생제 내성을 광학적으로 측정하고 맨눈으로 실시간 검출하는 기술을 개발했다고 7일 밝혔다.
박테리아의 항생제 내성 문제는 현대인의 건강을 위협하는 위험요인으로 꼽히고 있다. 항생제 내성에 대한 적절한 대처가 없다면 30년 이내에 항생제 내성균에 의한 피해가 암보다 더 현대인의 수명을 줄일 수 있다는 보고서가 발표되기도 했다. 항생제 내성균의 종류가 점차 늘어나면서 미국 질병통제예방센터(CDC)는 연간 최소 200만 명 이상의 환자가 항생제 내성 병원균에 의해 발생하고 있다고 보고했다.
도파민은 대다수 생명체에서 신경전달물질로 사용되며, 산소가 존재하는 환경에서 다른 물질의 도움 없이 자체 중합반응(두 개 이상 결합해 큰 화합물이 되는 일)이 일어난다. 이렇게 중합된 도파민 고분자는 짙은 갈색을 나타내고, 다양한 물질 표면에 흡착해 층을 형성한다.
연구팀은 이러한 도파민의 성질을 이용해 병원균이 생장하는지와 항생제 내성을 갖는지를 육안과 형광으로 동시에 탐지 가능한 기술을 개발했다. 이 기술은 현재 사용되는 디스크 확산 검사나 균 배양 분석에 대비해 시간이 짧고 중합효소 연쇄 반응(PCR 검사)과 비교할 때도 전처리 과정이 필요 없는 간편한 기술이라는 점이 큰 장점이다.
우리 대학 나노과학기술대학원 석박사통합과정 이주훈 학생이 제1 저자로, 나노과학기술대학원 석박사통합과정 류제성 학생과 생명과학과 강유경 박사가 공동 저자로 참여한 이번 연구 결과는 재료과학 분야 국제학술지 `어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials, IF 16.836)'에 11월 3일 字 온라인 게재됐다. (논문명 : Polydopamine Sensors of Bacterial Hypoxia via Fluorescence Coupling)
도파민의 자체 중합반응에서는 개시제 역할을 하는 산소가 필수적인 존재다. 연구팀은 박테리아가 생장함에 따라 용액 내의 산소를 소모하는 현상을 이용, 박테리아의 생장 정도를 도파민의 중합반응과 연관 지어 관측하는 방법을 개발했다.
또 박테리아의 생장에 영향을 끼치지 않는 소재인 덱스트란으로 형광나노입자를 제조해 실험에 사용했다. 도파민의 자체 중합반응은 용액 내에 존재하는 형광나노입자 표면에 흡착하고 층을 형성해 입자의 화학적, 물리적 성질에 큰 변화를 일으키고 기존에 발생하던 강한 형광 신호를 약하게 만든다. 또한, 도파민과 나노입자가 첨가된 용액 내에서는 도파민의 산화와 자체 중합반응 때문에 용액의 색이 짙은 갈색으로 변한다.
하지만 박테리아가 용액 내에 존재하는 경우 박테리아 생장 때문에 산소가 소모돼 도파민의 자체 중합반응은 저해되고 용액의 색깔은 투명하게 유지된다. 나노입자의 형광 신호 역시 원래의 신호를 유지하게 된다.
연구팀은 이러한 현상을 박테리아의 생장 및 항생제 내성을 탐지하는데 적용할 수 있다는 점에 착안, 항생제에 내성을 가지는 `뉴 델리 메탈로-베타락타마제 1 (NDM-1)'을 발현하는 대장균(E. coli)을 대상으로 실험을 진행했다.
일반적인 대장균의 경우 카바페넴 계열의 항생제인 암피실린에 의해 생장이 크게 저해되는데, 항생제에 내성을 갖는 대장균은 생장이 잘 이뤄진다. 즉 항생제 내성을 가지는지에 따라 소모하는 산소의 양이 달라지고, 이 차이 때문에 도파민의 중합반응 여부를 육안과 광학적 측정으로 확인할 수 있다.
이렇게 살아있는 세포의 활성에 따라 일어나는 도파민의 자체 중합반응은 실제로 인체에 존재하는 다양한 `카테콜아민' 물질에서 나타나는 반응과 깊은 관련이 있다. 일례로 피부에 존재하는 카테콜아민은 자체 중합반응이 왕성하게 일어나 피부의 색에 큰 영향을 주는 멜라닌 색소를 형성하게 되는데 신경계에 존재하는 카테콜아민은 자체 중합반응이 거의 일어나지 않고 단일분자 형태로 존재하여 작용하는 것으로 알려져 있다. 연구팀은 이번 연구 결과를 향후 생체 내에서 도파민 등 카테콜아민의 역할과 작용을 다양한 생체 모델에서 밝히는 연구로 발전시킨다면 매우 흥미로운 연구 결과를 얻을 것으로 기대하고 있다.
정현정 교수는 “이번 연구는 도파민의 자체 중합반응을 생체 시스템에서 규명한 연구로 큰 의미를 가지며, 이를 박테리아 생장 및 항생제 내성의 실시간 검출에 적용할 수 있어 기존의 미생물 배양법보다 신속하게, 그리고 PCR 검사보다 간편하게 진단이 가능해 감염병 확산 예방에 크게 기여할 것으로 기대된다”고 말했다.
한편 이번 연구는 한국연구재단 중견연구자지원사업 및 KAIST 그랜드 챌린지 사업의 지원을 통해 이뤄졌다.
2020.12.07
조회수 43217
-
촉각 증강을 위한 고탄성 압전 세라믹 신소재 개발
언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다.
전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다.
촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기술에 활용할 수 있다. 이러한 촉각 증강 분야에서는 전기적-기계적 결합이 있는 압전 재료의 활용이 필수적이다.
압전 재료는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환할 수 있는 소재로서 촉각 증강 분야에서 사용자에게 촉각을 전달하거나 사용자의 움직임을 전기적 신호로 변형시키는데 적합한 소재다.
촉각 증강 소재로 활용하기 위한 압전 재료의 중요한 특징은 압전 계수와 탄성 변형률이다. 압전 계수는 기계적 힘과 전기적 전하량 간의 변환 효율을 나타내는 수치로써 촉각 증강 장치의 감도에 영향을 준다. 또 탄성 변형률은 소재가 가질 수 있는 기계적 변형 한계를 나타내는 수치인데 소재 및 장치가 가지는 유연성에 영향을 준다. 따라서 촉각 증강 기술로 활용하기 위해서는 압전 계수와 탄성 변형률 모두가 높은 압전 소재를 개발하는 것이 필수적이다.
하지만 압전 세라믹 소재의 경우 압전 계수는 높으나 탄성 변형률이 낮고, 고분자 소재는 탄성 변형률은 높으나 압전 계수가 낮아 하나의 소재에서 높은 압전 계수와 탄성 변형률을 모두 얻기는 힘들다. 특히 세라믹 소재는 상대적으로 높은 압전 계수에도 불구하고 소재 내부의 결함으로 인해 탄성 변형률을 높이기가 어려워 아직 실용화 단계까지는 이르지 못하고 있다.
홍 교수 연구팀은 문제해결을 위해 근접장 나노 패터닝(Proximity field nanopatterning, PnP) 기술 및 원자층 증착(Atomic layer deposition, ALD) 기술을 이용해 3차원 나노 트러스(truss) 구조를 갖는 산화물 아연 (ZnO) 세라믹을 제작했다. 또 나노 인덴테이션 (Nano-indentation) 기술과 압전 감응 힘 현미경(Piezoelectric force microscopy, PFM) 기술을 이용, 제작된 구조체의 높은 기계적 특성과 압전 특성을 입증하는데 성공했다.
홍 교수팀이 개발한 압전 아연 산화물 구조체는 100 나노미터(nm) 이하의 두께를 가지면서 내부가 비어있는 트러스 구조체다. 기존 세라믹이 보유하고 있는 내부 결함의 크기를 나노미터 단위로 제한해 재료의 기계적 강도를 증가시켰다. 이 아연 산화물 트러스 구조체의 탄성 변형률은 10% 수준으로 기존 아연 산화물 대비 3배나 더 큰 것으로 나타났으며 압전 계수 역시 9.2 pm/V로 박막 형태의 아연 산화물보다 2배 이상 더 큰 값을 나타냈다.
특히 홍 교수팀이 개발한 이 구조체의 탄성 변형률 증가는 아연 산화물 외에도 다양한 압전 세라믹 소재에 적용할 수 있기에 향후 촉각 증강 기술에서 매우 중요한 유연한 센서와 액추에이터에 압전 세라믹을 활용할 수 있는 새로운 방법으로 사용할 수 있을 것으로 기대된다.
홍승범 교수는 "언택트 시대의 도래로 감성 소통의 중요성이 증가하고 있는데 시각, 청각에 이어 촉각 구현 기술의 발전을 통해 인류는 장소와 관계없이 누구와도 소통할 수 있는 새로운 세상을 맞이할 것ˮ이라고 전망했다. 홍 교수는 이어 "이번 연구 결과를 촉각 증강 소자에 바로 적용하기에는 공정적인 측면에서 다소 보강작업이 필요하지만, 소재 활용에 큰 문제가 됐던 기계적 한계를 극복해 압전 세라믹 소자로의 응용 가능성을 연 것ˮ이라고 이번 연구에 대한 의미를 부여했다.
우리 대학 신소재공학과 김훈 박사과정, 윤석중 박사과정, 김기선 박사가 공동 제1 저자로 참여한 이번 연구는 신소재공학과 전석우 교수와 한승민 교수 연구팀과 함께 진행됐으며 연구 결과는 국제 학술지 `나노 에너지(Nano Energy)'에 게재됐다. (논문명: Breaking the Elastic Limit of Piezoelectric Ceramics using Nanostructures: A Case Study using ZnO)
한편 이번 연구는 과학기술정보통신부·한국연구재단 지원 웨어러블 플랫폼 소재 기술센터 지원과 미래소재 디스커버리 지원, 그리고 기초연구 지원 및 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2020.12.02
조회수 39503
-
노화된 세포를 젊은 세포로 되돌리는 초기 원천기술 개발
우리 연구진이 노화된 세포를 젊은 세포로 되돌리는 역 노화 원천기술을 개발했다. 이를 활용하면 노화 현상을 막고 각종 노인성 질환을 사전 억제할 수 있는 치료제를 개발할 단서를 찾을 수 있을 것으로 기대된다.
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌리는 역 노화의 초기 원천기술을 개발했다고 26일 밝혔다.
조광현 교수팀의 이번 연구 결과는 ㈜아모레퍼시픽 기술연구원과의 산학 공동연구를 통해 최초로 개발된 노화 인공피부 모델에서 이 기술을 적용함으로써 입증하는 데 성공했다.
조 교수팀은 이번 연구를 위해 인간 진피 섬유아세포의 세포노화 신호전달 네트워크의 컴퓨터 모델을 개발한 후 시뮬레이션 분석을 통해 노화된 인간 진피 섬유아세포를 젊은 세포로 되돌리는데 필요한 핵심 인자를 찾아냈다. 이후 노화 인공피부 모델에서 핵심 인자를 조절함으로써 노화된 피부조직에서 감소된 콜라겐의 합성을 증가시키고 재생 능력을 회복시켜 젊은 피부조직의 특성을 보이게 하는 역 노화 기술을 개발했다.
연구팀 관계자는 이러한 역 노화 기술은 노화된 피부 등을 포함한 노화 현상 및 많은 노인성 질환의 발생을 사전에 억제할 수 있도록 근본적인 치료전략을 제시한 것으로 건강 수명을 오랫동안 유지하고 싶은 인류의 꿈을 실현하는데 한 걸음 다가선 결과라고 의미를 부여했다.
바이오및뇌공학과 안수균 박사과정 학생, 강준수 연구원, 이수범 연구원과 ㈜아모레퍼시픽의 바이오사이언스랩이 참여한 이번 연구 결과는 국제저명학술지인 `미국국립과학원회보(PNAS)'에 게재됐다.(논문명: Inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK1) can revert cellular senescence in human dermal fibroblasts)
현재 널리 연구되고 있는 회춘 전략은 이미 분화된 세포를 역분화시키는 4개의 `OSKM(Oct4, Sox2, Klf4, c-Myc) 야마나카 전사인자'를 일시적으로 발현시켜 후성유전학적 리모델링(epigenetic remodeling)을 일으킴으로써 노화된 세포를 젊은 상태로 되돌리는 부분적 역분화(partial reprogramming) 전략이다.
이 기술은 노화된 세포가 젊은 세포로 되돌아갈 수 있다는 것을 증명했지만 종양의 형성과 암의 진행을 유발하는 부작용이 생긴다. 따라서 이와 같은 부작용을 배제할 수 있는 정교한 제어 전략이 과학 난제로 남아있었다.
조 교수팀은 이러한 난제 해결을 위해 시스템생물학 연구 방법을 통해 노화된 인간 진피 섬유아세포를 정상적인 젊은 세포로 되돌릴 수 있는 핵심 조절인자를 오래전부터 탐구하기 시작했다. 4년에 걸친 연구 끝에 단백질 합성, 세포의 성장 등을 조절하는 mTOR와 면역 물질 사이토카인의 생성에 관여하는 NF-kB를 동시에 제어하고 있는 상위 조절 인자인 `PDK1(3-phosphoinositide-dependent protein kinase 1)'을 찾아냈다.
연구팀은 PDK1을 억제함으로써 노화된 인간 진피 섬유아세포를 다시 정상적인 젊은 세포로 되돌릴 수 있음을 분자 세포실험 및 노화 인공피부 모델 실험을 통해 입증했다. 연구를 통해 노화된 인간 진피 섬유아세포에서 PDK1을 억제했을 때 세포노화 표지 인자들이 사라지고 주변 환경에 적절하게 반응하는 정상 세포로서 기능을 회복하는 현상을 확인했다.
연구 결과 노화된 인간 진피 섬유아세포에서는 PDK1이 mTOR와 NF-kB를 활성화해 노화와 관련된 분비 표현형(SASP: Senescence Associated Secretary Phenotype)을 유발하고 노화 형질을 유지하는 것과 연관돼 있음을 밝혀냈다. 즉, PDK1을 억제함으로써 다시 원래의 정상적인 젊은 세포 상태로 안전하게 되돌릴 수 있음을 증명한 것이다.
조 교수팀이 연구 과정에서 찾아낸 표적 단백질의 활성을 억제할 수 있는 저분자화합물과 관련된 신약개발과 그리고 전임상실험을 통해 노화된 세포의 정상 세포화라는 연구 결과는 새로운 노인성 질환의 치료 기술과 회춘 기술에 관한 연구를 본 궤도에 올려놓은 초석을 다진 획기적인 연구로 평가받고 있다.
실제 ㈜아모레퍼시픽 기술연구원은 이번 연구 결과로부터 동백추출물에서 PDK1 억제 성분을 추출해 노화된 피부의 주름을 개선하는 화장품을 개발중이다.
조광현 교수는 "그동안 비가역적 생명현상이라고 인식돼왔던 노화를 가역화할 가능성을 보여줬다ˮ라며 "이번 연구는 노화를 가역적 생명현상으로 인식하고 이에 적극적으로 대처해 건강 수명을 연장하는 한편 노인성 질환을 예방할 수 있는 새로운 시대의 서막을 열었다ˮ라고 의미를 부여했다.
이번 연구는 조광현 교수 연구팀의 시스템생물학 기반 가역화 기술 개발의 일환으로 이뤄졌으며, 연구팀은 지난 1월 같은 기술을 적용해 대장암세포를 다시 정상 대장 세포로 되돌리는 연구에 성공한 바 있다.
한편 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 그랜드챌린지 30 (KC30) 프로젝트 및 아모레퍼시픽 R&D 센터의 지원으로 수행됐다.
2020.11.26
조회수 42926
-
이상엽 특훈교수팀, 세계 최고 농도의 글루타르산 생산이 가능한 미생물 균주 개발
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 세계 최고 농도의 *글루타르산 생산이 가능한 미생물 균주를 개발했다고 19일 밝혔다. 연구 결과는 국제학술지인 `미국 국립과학원 회보(PNAS)' 11월 16일 자에 게재됐다. (논문명: Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum)
※ 글루타르산(glutaric acid) : 두 개의 카복실산기를 가진 유기 화합물. 무색의 고체로 사탕무나 양모의 추출물 속에 들어있다. 폴리에스터, 나일론 등의 제조에 쓰인다.
※ 저자 정보 : 한태희(KAIST 박사과정 학생, 제1 저자), 김기배(KAIST 박사과정 학생, 제2 저자), 이상엽 교수(교신저자) 등 총 3명
최근 들어 기후 변화에 대한 우려가 증대되고 화석 자원에 대한 의존도가 높아지면서 재생 가능한 자원에서 화학 연료와 재료를 바이오 기반으로 생산하기 위한 관심이 증가하고 있다.
글루타르산은 폴리아미드, 폴리우레탄, 글루타르산 무수물, 1,5-펜탄디올의 생산을 포함한 다양한 응용 분야에 널리 사용되는 중요한 유기 화합물이다.
지금까지 글루타르산은 석유화학에 기반한 다양한 화학적 방법으로 생산돼왔는데, 이들은 대개 재생 불가능하고 독성이 강한 시작 물질에 의존해 친환경적이지 않다는 단점이 있다. 따라서 포도당과 같은 재생 가능한 자원에서 글루타르산을 생물학적으로 생산하기 위한 연구가 활발히 이뤄지고 있다.
다만 기존에 발표된 미생물을 이용한 글루타르산 생산 연구는 높은 글루타르산 생산 농도를 달성하는 데 한계가 존재했다. 또 균주 전체의 대사 밸런스를 고려하지 않고 알려진 표적 유전자들만을 개량했기 때문에 균주 개발에 어려움도 많았다.
이 교수 연구팀도 앞서 토양 세균의 일종인 `수도모나스 푸티다(Pseudomonas putida)' 균주의 유전자를 대장균에 도입해 최초로 글루타르산을 생산하는 미생물 개발에 관한 연구 결과를 발표한 바 있는데 문제는 생산된 글루타르산의 농도가 매우 낮다는 점이다.
연구팀은 이러한 취약점 개선을 위해 그간 아미노산 생산에 주로 사용되는 세균의 일종인 `코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)'을 이용한 글루타르산 생산공정에 관한 연구에 주목했다. 해당 균주가 글루타르산의 전구체(전 단계의 물질)인 `라이신'을 130 g/L 이상 생산 가능하다는 점을 고려하면 높은 농도의 글루타르산 생산도 가능할 것으로 연구팀은 판단했다.
이상엽 특훈교수 연구팀은 우선 라이신을 과량 생산하는 코리네박테리움 글루타미쿰 균주에 수도모나스 푸티다균에서 유래한 외래 유전자와 코리네박테리움 글루타미쿰의 유전자로 이뤄진 생합성 경로 구축을 통해 포도당으로부터 글루타르산을 효율적으로 생산하는 데 성공했다.
연구팀은 특히 이번 연구 과정에서 라이신을 과량 생산하는 균주에 대한 게놈(genome), 전사체(transcriptome), 흐름체(fluxome)을 아우르는 다중 오믹스 분석을 진행해 균주의 대사 흐름에 대한 이해도를 높였다. 또 이를 통해 예측한 11개의 표적 유전자들을 프로모터 교환, 유전자 결실 및 추가 유전자 도입 등의 방법으로 조작했다.
또한 연구팀은 효율적인 글루타르산 생산을 위해 새로운 글루타르산 수송체 유전자를 발견했고, 해당 유전자의 발현 수준 조작과 발효 조건 최적화를 통해 포도당으로부터 세계 최고 농도(105.3 g/L, 기존 연구 대비 1.17배)를 지닌 글루타르산을 생산하는 데 성공했다.
연구팀 관계자는 이번 연구에 적용한 시스템 대사공학 전략과 발효 공정 최적화 기술을 활용하면 글루타르산 외에도 다양한 고부가 가치 화학물질을 생산하는 미생물 세포 공정 개발도 가능하다고 내다봤다.
이상엽 특훈교수는 “이번 연구는 시스템 대사공학을 활용해 재생 가능한 탄소원으로부터 폴리에스터와 나일론 등의 원료인 글루타르산을 친환경적으로 세계 최고 농도로 생산하는 균주를 제작했다는 점에 의미가 있다”면서 “향후 화학·환경·의료 분야 등 다양한 산업적 응용이 가능할 것”이라고 강조했다.
한편, 이번 연구는 과기정통부가 지원하는 한국연구재단 바이오·의료기술개발사업의 `에스테르계 차세대 바이오 플라스틱 합성 원천기술개발’ 과제 지원을 받아 수행됐다.
2020.11.20
조회수 36775
-
열을 전기로 변환하는 하프호이즐러 물질의 나노구조 제어 성공
우리 대학 신소재공학과 최벽파 교수 연구팀이 경북대 이승훈 교수(신소재공학과) 연구팀과 공동연구를 통해 *준 안정상을 활용, *하프호이즐러 *열전재료의 나노구조를 제어하는 새로운 방법을 개발했다고 11일 밝혔다.
☞ 준 안정상(metastable phase): 어떤 물질의 가장 안정한 상(고체, 액체, 기체 등)은 아니지만 꽤나 안정하여 유지되는 상.
☞ 하프호이즐러(half-Heusler) 화합물: 금속 간 화합물(합금)의 일종으로 열전발전, 태양광 발전, 자성재료 등의 에너지 재료로 각광을 받는 물질.
☞ 열전발전: 온도 차에 의해 생긴 전위차를 이용해 전기를 생산하는 발전방식.
열전 소자는 열에너지를 전기로 직접적으로 변환시키는 에너지 소자다. 소자의 양단에 온도 차가 존재할 때 내부의 전하가 이동함으로써 전기를 발생시킨다.
좋은 열전재료가 되기 위해서는 소자 양단의 온도 차는 오래 유지돼야 하고 전하는 잘 이동해야 하므로 열전도도는 낮아야 하고 전기 전도도는 높아야 한다.
다양한 열전재료 중 하나인 하프호이즐러 물질은 폐열(에너지의 생산, 소비 과정에서 사용되지 못하고 버려지는 열)이 풍부하고 중온 영역(300~800℃)에서 높은 효율의 열전발전이 가능하다. 특히 열 안정성과 기계적 특성(강도)이 우수하고 높은 제벡 계수(온도 차이를 전력으로 변환하는 정도)와 출력 계수를 지니고 있는데 독성이 없고 지구에 풍부하게 매장된 원소로 이뤄져 있다. 하지만 상대적으로 높은 열전도도로 인해 낮은 열전성능을 갖는다는 점이 약점이다.
열 전도도를 낮추기 위해서는 포논(입자)의 산란을 극대화해야 하는데 이를 위해서는 서로 다른 상의 경계를 만든 후 나노 결정화를 통해 달성할 수 있다. 이 때문에 기존에는 하프호이즐러 합금을 제조한 뒤 물리적으로 파쇄해 나노분말을 제조하고 이를 가열해 굳히는 방법을 사용해왔다. 하지만 이 방법은 나노결정의 크기 제어는 물론 복잡한 미세구조 형성이 어렵기 때문에 열전도도를 획기적으로 감소시키기는 매우 어렵다.
최 교수 연구팀은 문제해결을 위해 준 안정상(비정질)의 결정화 방법을 활용했다. 준 안정상은 안정상에 비해 상대적으로 덜 안정한 상을 의미하는데 열처리를 통해 안정상(고체, 액체, 기체 등)으로 쉽게 상변화를 일으킬 수 있다. 이때, 열처리 온도에 따라 준 안정상(비정질)의 결정화 거동은 다양하게 변화하고 이를 이용해 나노결정의 크기와 상을 제어할 수 있다.
구체적으로 연구팀은 급속냉각 공정을 이용해 하프호이즐러(NbCo1.1Sn) 조성을 가진 비정질(준 안정상)을 제조한 뒤 비교적 저온에서 짧은 열처리를 통해 하프호이즐러 물질 내부에 풀호이즐러(NbCo2Sn) 나노 석출물이 존재하는 복잡한 나노구조를 만들었다.
최 교수 연구팀이 새로 개발한 이 방법은 기존의 방법과는 달리 고온에서의 장시간의 열처리가 필요 없으므로 쉽고 경제적이면서도 더욱 복잡하고 세밀한 나노구조의 형성이 가능하다.
연구팀은 특히 이번 연구에서 3차원 원자 탐침 현미경(Atom probe tomography)과 투과 전자 현미경(Transmission electron microscope)을 활용했는데 하프호이즐러 물질 내부에 존재하는 수 나노미터의 풀호이즐러 석출물의 존재를 규명하는 데도 성공했다.
최벽파 교수는 "이번 연구에서 새롭게 제안된 방법을 활용해 만든 열전재료는 기존 대비 복잡한 나노구조를 갖고 있어 3배 이상의 열전도도 감소 와 함께 열전발전 성능도 획기적으로 증가하는 효과가 있을 것으로 기대된다ˮ고 말했다.
신소재공학과 정찬원 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지인 `나노 에너지(Nano Energy, IF: 16.602)' 10월 20일 字 온라인 판에 실렸다. (논문명: Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor)
한편 이번 연구는 한국연구재단 과학기술 분야 기초연구사업인 기초연구실지원사업 (중온(300-800 ℃) 작동형 합금 기반 half-Heusler계 고성능/고강도 열전소재 개발)의 지원을 통해 수행됐다.
2020.11.12
조회수 32527
-
서양 미술사 빅데이터 분석으로 회화 속 구도 변화 규명
우리 대학 물리학과 정하웅 교수 연구팀이 충북대학교 물리학과 한승기 교수 연구팀과 공동연구를 통해 르네상스부터 동시대 미술에 이르기까지 약 500년에 걸친 풍경화 1만 5천여 점을 정보이론과 네트워크 이론으로 분석해 서양 미술사 속 풍경화의 구도와 구성 비율의 점진적 변화를 수치적으로 규명했다.
우리 대학 물리학과 이병휘 박사과정 학생과 충북대 서민경 학생이 주도한 이번 연구는 세계적인 학술지 ‘미국 국립과학원회보(Proceedings of the National Academy of Sciences of the USA, 이하 PNAS)’에 10월 117권 43호에 출판됬다. (논문명: Dissecting Landscape Art History with Information Theory, 정보이론으로 해부한 풍경화의 역사). 해당 논문은 PNAS의 In this issue 섹션에 이번 호의 대표 논문으로 선정되었고, 코멘터리와 함께 게재됐다.
화가는 그림을 그릴 때 선, 색, 형태, 모양 등 여러 가지 시각적 구성 요소들을 다양한 ‘구성 원리’를 바탕으로 조화로운 최종 작품을 완성한다. 미술사와 미학 연구자들은 작가들이 작품을 생성할 때 잠재적으로 적용한 구성 원리가 시대와 문화를 초월하는 공통적인 특징을 가지는지, 혹은 시대나 문화적 환경에 따라 어떻게 달라지는지 이해하고자 시도해왔다. 특별히 대표적인 구성 원리중 하나인 작품구도 속 사용된 ‘비례’와 ‘비율’은 미술사가들과 미학자들의 오랜 관심사였다. 역사적으로 많은 논란을 일으킨 사례로는 황금비(Golden ratio)가 있다. 기원전 300년 전 유클리드의 원론에 의해 처음 제시된 황금비는 1500년대 초 이탈리아의 수학자 루카 파치올리의 책을 통해 ‘신성한 비율’이라는 이름으로 대중적으로 소개되며 유명해졌다. 최근까지도 황금비의 미적 선호도에 관한 논란은 계속되어 왔는데, 파르테논 신전이나 밀로의 비너스 등 여러 아름다운 미술 작품 속에 황금비가 발견되었다는 대부분의 주장들은 오늘날 근거가 부족한 것으로 밝혀지고 있다. 그렇다면 미술사 속에서 화가들이 특별히 선호한 비율은 과연 존재했을까? 혹은 시대에 따라 선호한 비율은 어떻게 변해왔을까?
연구팀은 회화 속 색상의 공간적 배치를 특징짓는 정보이론적 분할 방법론을 적용해 서양 미술사 풍경화 역사 속에서 사용된 구도와 구성 비율을 수치화하는 방법을 제시했다. (그림1 참조) *두 가지 대규모 온라인 갤러리 로부터 16세기 르네상스 시대부터 20세기 미술까지 500년 이상의 시간에 걸친 서양 미술사 속 풍경화 1만 5천여 점을 수집하여 분석한 결과, 화가들이 선호한 거시적 작품 구도와 구성 비율이 시대에 따라 일정하거나 무작위적이지 않고, 점진적이고 체계적인 변화과정을 거쳐왔음을 확인했다.
* 온라인 시각 예술 백과사전인 위키 아트(‘WikiArt’)와 헝가리 부다베스트 물리학 컴퓨터 네트워킹 연구센터에서 운영하는 온라인 갤러리인 웹 갤러리 오브 아트(‘Web Gallery of Art’)의 풍경화 데이터를 활용
연구팀은 먼저 정보이론적 분할 방법론을 이용해 풍경화 구도를 특징지었는데, 16세기부터 19세기 중반까지의 풍경화는 지배적인 수평 구조와 수직 구조가 함께 존재하는 ‘수평-수직’ 형태의 구도가 가장 빈번하게 사용되었으나, 시간이 흐를수록 전경-중경-후경과 같이 두 개의 수평 구조가 존재하는 ‘수평-수평’ 형태의 구도 사용이 점차 증가해 19세기 중반 이후부터는 ‘수평-수평’ 형태의 구도가 가장 지배적인 구도가 되었음을 확인했다. (그림 2 참조) 흥미롭게도 이러한 시간에 따른 구도 변화 패턴은 여러 국적에 걸쳐서도 유사하게 나타났다.
또한 연구팀은 색상 사용 패턴이 급격하게 달라지는 지배적인 수평선의 위치를 기반으로 시대와 작가별로 풍경 구도를 잡는데 자주 사용한 구성 비율을 측정했는데, 선호된 구성 비율은 시간에 따라 매우 점진적이고, 부드러운 변화 과정을 보였다. 작가들의 선호한 풍경화 속 지배적인 수평선은 바로크 시대 17세기 무렵 그림의 절반 아래에 해당하는 낮은 위치에서 발견되었으나, 그 후 점차 위쪽으로 움직여 19세기 이후에는 작품 위에서부터 1/3 지점에서 가장 많은 빈도로 발견됐다. 신기하게도 1/3 구성 비율을 가장 빈번하게 사용하는 특징은 다양한 현대 미술 주의(ism)에 걸쳐 유사하게 발견됐는데, 이러한 발견은 미술 양식의 폭발적인 다양성을 대표하는 현대 미술의 여러 주의들이 색채 사용과 표현 방법에선 다양성과 차별성을 추구했으나, 구도와 구성 비율의 관점에서는 유사한 사용 패턴을 보였다는 점에서 새로운 발견이다.
연구팀은 또한 네트워크 과학 방법론을 적용해 서로 유사한 구도를 적용한 작가들과 사조들로 이루어진 네트워크를 구축하여 분석했다. 이 작가-사조 네트워크는 크게 세 가지 거대 군집으로 구성돼 있었는데, 신기하게도 구도 사용의 유사성만을 바탕으로 한 작가들과 사조 속 군집은 시기적으로도 근접한 시기에 활동을 보인 작가들과 사조들로 이루어져 있었다. 이는 기존 알려진 개별 작가들의 생애와 개별 사조의 시간 범위를 초월하는 미술사 구도 양식 속 거대 군집이 있음을 시사한다.
정하웅 교수는 ‘이 같이 시대에 따른 깔끔하고 체계적인 서양 미술사 속 구도변화는 미술의 실제 역사의 모습을 반영하고 있을 수도 있지만, 동시에 높을 확률로 그동안 미술사가들과 비평가들에 의해 평가되고 정리돼 온 주류 미술사의 편향을 나타내고 있을 수 있음을 주의해야 한다’고 지적했다.
한편 이번 연구는 한국연구재단의 지원을 통해 수행됐다.
2020.11.02
조회수 30197
-
사람 3D 폐포 배양 기술로 코로나19 감염 기전을 규명하는 데 성공
우리 대학 연구진 포함 국내 연구진이 실험실에서 3차원으로 키운 사람의 폐포(허파꽈리)에 코로나19 바이러스를 배양해 감염 기전과 치료제 개발에 적용이 가능한 기술 개발에 성공했다.
국제 통계 사이트 월드오미터에 따르면 전 세계 누적 코로나바이러스감염증-19(이하 코로나19) 확진자 수는 25일 기준 4,331만 8,941명으로 지난 18일(4,030만 1,609명) 4,000만 명을 넘어선 후 일주일 만에 4,331만을 돌파하는 2차 대유행이 점차 현실화돼 가고 있다.
우리 대학 의과학대학원 주영석 교수 연구팀은 인간의 폐포 세포를 실험실에서 구현하는 3D 미니 장기기술을 개발하고 이를 활용해 코로나19 바이러스가 인간의 폐 세포를 파괴하는 과정을 정밀하게 규명하는 데 성공했다고 26일 밝혔다.
이번 연구는 영국 케임브리지대학 이주현 박사를 비롯해 국립보건연구원 국립감염병연구소 최병선 과장·기초과학연구원(IBS) 고규영 혈관연구단장(우리 대학 의과학대학원 교수)·서울대병원 김영태 교수와 우리 대학 교원창업기업인 ㈜지놈인사이트와 공동으로 진행됐다.
공동연구팀의 이번 연구 결과는 줄기세포 분야 세계적인 학술지 `Cell Stem Cell' 10월 22일 字 온라인판에 실렸다. (논문명: Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2)
정확한 질병 기전의 이해를 기반으로 치료제를 효과적으로 개발하기 위해서는 실험실에서 사용 가능한 인체를 모사한 모델 사용이 필수적이다. 코로나19 바이러스는 생쥐 모델에 감염시키기가 어렵고, 특히 실험실에서 사용할 수 있는 폐 세포 모델은 존재하지 않기 때문에 직접적인 감염 연구의 한계가 존재해왔다.
공동연구팀은 이런 문제를 해소하기 위해 지속적으로 배양이 가능한 3차원 인간 폐포 모델을 새롭게 정립했다. 이를 이용하면 실험실에서 사람의 폐 세포를 이용해 코로나19 바이러스 등 각종 호흡기 바이러스의 질병 기전을 연구할 수 있기 때문이다. 더 나가서 3차원 인간 폐포 모델은 약물 스크리닝 등 치료법 개발에도 직접적으로 응용할 수 있다는 장점이 있다.
공동연구팀은 폐암 등 사람의 수술 검사재료에서 확보되는 사람 폐 조직을 장기간 안정적으로 3차원 배양할 수 있는 조건을 알아내는 데 성공했다. 실험 결과, 3D 폐포는 코로나19 바이러스에 노출되면 6시간 내 급속한 바이러스 증식이 일어나 세포 감염이 완료됐으나, 이를 막기 위한 폐 세포의 선천 면역 반응 활성화에는 약 3일가량의 시간이 걸렸다.
이와 함께 하나의 코로나19 바이러스 입자는 하나의 세포를 감염시키는 데 충분하다는 사실을 알아냈다. 감염 3일째 공동연구팀은 세포 가운데 일부분이 고유의 기능을 급격히 상실한다는 사실도 확인했다.
공동 교신저자인 주영석 교수는 "이번에 개발한 3차원 인체 폐 배양 모델 규모를 확대한다면 코로나19 바이러스를 포함한 다양한 호흡기 바이러스의 감염 연구에 유용하게 사용될 것ˮ이라고 말했다.
주 교수는 이어 "동물이나 다른 장기 유래의 세포가 아닌 호흡기 바이러스의 표적 세포인 사람의 폐 세포를 직접적으로 질병 연구에 응용함으로써 효율적이고 정확한 기전 규명은 물론 치료제 개발에도 이용할 수 있다ˮ고 강조했다.
코로나19 바이러스 대응 기술개발을 위해서는 다양한 기관의 지원과 관련 연구자들의 협력 연구가 필수적이다. 공동연구팀의 이번 연구는 한국연구재단·질병관리청·기초과학연구원(IBS)·서울대학교 의과대학·유럽연구이사회(ERC)·서경배과학재단·휴먼프론티어과학재단의 지원을 받아 수행됐다.
2020.10.26
조회수 29965
-
2차원 신소재를 1차원 리본으로 오려내는 나노 가위 기술 개발
우리 대학 신소재공학과 김상욱 교수 연구팀이 생명화학공학과 정유성 교수 연구팀과 공동연구로 2차원 반도체인 *전이금속 칼코지나이드 물질을 얇은 리본 형태로 오려낼 수 있는 신기술을 개발했다고 15일 밝혔다.
☞ 2차원 전이금속 칼코지나이드 : 전이금속원소와 칼코겐 원소의 화합물. 평면 방향으로는 전이금속원소와 칼코겐 원소가 강한 공유결합을 하고 있으나, 수직 방향으로 약한 반데르발스 결합을 하는 층상구조를 가지고 있다. 이를 이용하여 층간 분리를 통해 2차원 단층 형태로 박리가 가능하다.
연구팀은 간단한 초음파 처리를 통해 2차원 전이금속 칼코지나이드 물질을 일정한 방향으로 절개해 긴 나노 리본 형태로 오려내는 데 세계 최초로 성공했다. 김상욱 교수와 정유성 교수 공동 연구팀이 개발한 이 신소재는 기존 백금 촉매를 대체하여 수소 발생 반응 촉매로 활용이 가능할 것으로 기대된다.
우리 대학 신소재공학과의 인도 출신인 수치스라 파드마잔 사시카라(Suchithra Padmajan Sasikala) 연구교수가 제1 저자로 참여한 이번 연구성과는 국제 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 10월 6일 字 온라인 판에 게재됐다.(논문명: Longitudinal unzipping of 2D transition metal dichalcogenides)
수소는 공해물질을 배출하지 않기 때문에 기존의 화석연료를 대체할 수 있는 신 에너지 자원으로 주목받고 있다. 수소를 생산하는 가장 환경친화적인 방법은 화학적으로 물을 분해하는 방법인데 이 경우 효율적으로 수소를 생성할 수 있도록 값싸고 높은 효율의 촉매를 개발하는 것이 매우 중요하다.
2차원 전이금속 칼코지나이드 소재는 우수한 촉매 성능을 지니고 있어 에너지·환경 분야에 응용이 기대되는 소재다. 하지만 보다 높은 촉매 성능을 달성하기 위해서는 촉매 활성을 갖는 2차원 소재의 가장자리를 많이 노출하는 방법이 요구돼왔다. 종이를 오려내듯 2차원 소재를 길쭉한 1차원 리본 형태로 오려내게 되면 더 많은 가장자리를 노출할 수 있다는 장점 때문이다.
현재까지는 그래핀과 같이 한가지 원소로만 이루어진 2차원 소재의 경우 여러 방법의 오려내는 기술이 보고돼왔지만, 2개 이상의 원소로 이뤄진 2차원 전이금속 칼코지나이드 물질에 이를 적용하는 데 한계가 따랐다.
공동 연구진은 문제해결을 위해 화학 반응을 통해 2차원 소재의 특성 변화를 유도한 후, 저렴한 초음파 처리 공정을 통해 1차원 리본 형태로 오려내는 기술을 세계 최초로 개발하는 데 성공했다.
연구팀은 2차원 소재 표면이 산소와 일정한 방향성을 가지고 화학 반응한다는 점을 발견하고 간단한 초음파 자극을 통해 1차원 리본 형태로 오려냈다. 이어 이 기술을 활용해 기존 고가의 백금 촉매에 견줄 만한 높은 성능을 지닌 수소 발생 반응 촉매를 구현했다.
연구팀 관계자는 "기존에 보고된 적이 없는 다원소로 구성된 2차원 전이금속 칼코지나이드 소재를 오려내는 새로운 기술 개발을 계기로 다양한 다원소 저차원 나노 신물질을 제조할 것으로 크게 기대가 된다ˮ고 설명했다.
교신저자로 이번 연구를 주도한 김상욱 교수는 "2차원 전이금속 칼코지나이드 소재는 뛰어난 물성에도 불구하고 나노구조를 정교하게 조절하는 방법이 부족했다"면서 "이번 연구를 계기로 가격이 비싼 백금 기반 촉매를 대체하는 새로운 수소 발생 촉매의 개발도 가능할 것이다"고 말했다.
한편 이번 연구는 과학기술정보통신부 리더연구자지원사업인 다차원 나노조립제어 창의연구단과 중견연구자지원사업의 지원을 받아 수행됐다.
2020.10.15
조회수 29962
-
한국인의 자연스러운 감성 인식 인공지능을 위한 공공 DB 구축
기계적 인공지능을 뛰어넘는 감성 지능기술 기반의 미래산업 창출과 효율적인 동영상 요약 서비스 개발을 위한 공공 데이터베이스 구축 사업에 대학이 주도적으로 나선다.
문화기술대학원 박주용 교수 연구팀은 한국인의 감정을 인지할 수 있는 감성 기술과 지능형 영상 요약기술 개발을 위한 인공지능 빅데이터 구축 사업을 통해 코로나 이후 새로운 인공지능산업 창출에 적극적으로 나설 계획이라고 24일 밝혔다.
현재 인공지능은 질병 진단과 자율운전 등 인간의 기계적인 움직임과 판단력을 보완하는 영역에서 활용 폭을 넓히고 있다. 그러나 사람들의 미묘한 감정 표현 인식처럼 기계적으로 판단하기 어려운 문제를 해결하는 '감성 지능' 기술의 국내 수준은 아직 걸음마 단계라고 평가받고 있다. 미국이나 일본과 같은 선진국에서 '험인텔(Humintell)'과 같은 감성 인식 기술기반 서비스가 두각을 보이는 상황에서 이제 우리나라도 사람의 감정을 인지할 수 있는 인공지능 기술 개발을 위해 고품질의 한국인 고유의 감정 표현과 관련된 데이터 수집하고, 또 다양한 응용 서비스 개발에도 더욱 박차를 가해야 한다는 목소리가 커지고 있다.
박주용 교수 연구팀의 '감성 인식 인공지능 공공DB 구축사업'은 COVID-19로 인한 경기침체를 극복하고 코로나19 종식 이후 디지털 시대의 신산업 창출을 위해 과기정통부(장관 최기영)와 한국정보화진흥원(원장 문용식)의 '인공지능 학습용 데이터 구축(2차)' 사업 예산 및 KAIST가 주도하는 컨소시엄의 민간투자금 등 모두 46억 원의 재원으로 운용된다. 이를 위해 일반인과 전문배우 등 약 2,500명의 자발적 참여자로부터 감정 학습을 위한 얼굴 데이터 수집과 함께, K-pop과 K-드라마 등의 세계적 성공으로 수요가 급증하고 있는 환경에서 다양한 동영상 콘텐츠의 효과적인 영상 요약과 맞춤형 마케팅을 가능케 하는 영상 데이터 확보에 나선다.
이 사업은 우리 대학 문화기술대학원이 주관하고 메트릭스리서치(대표 나윤정), 액션파워(공동대표 조홍식/이지화), 소리자바(대표이사 안상현), 데이터헌트(대표이사 김태헌), 아트센터 나비미술관(관장 노소영), 리콘랩스(대표이사 반성훈)가 공동연구기관으로, 그리고 대홍기획(대표이사 홍성현)이 수요기관으로 참여한다. 이밖에 한국 소비자 광고심리학회가 자문하는 이 프로젝트에서 개발되는 데이터베이스, 인공지능 학습모델, 프로그래밍 코드 등 모든 연구결과는 공공재이기 때문에 누구나 연구와 사업에 사용이 가능하다.
특히 문화기술대학원 박주용, 이원재, 남주한 교수팀과 리콘랩스, 아트센터 나비미술관은 사용자의 심리적 건강을 추적할 수 있는 심리 일기장, 음악 영상의 하이라이트 생성을 위한 알고리즘, 서비스 사용자의 반응을 감지할 수 있는 앱 등 이번 사업을 통해 구축예정인 공공 데이터베이스를 활용하는 각종 응용 서비스를 설계하고 실험할 계획이다.
박주용 교수는 "인간을 감정을 이해하는 미래 인공지능 기술발전을 위해서는 고품질의 공공데이터 확보가 필수ˮ라고 전제하면서 "일상 사진을 공유하며 공감대를 찾는 소셜미디어 시대의 문화에 힘입어 새로운 산업을 창출하고 세계적 팬데믹으로 인한 위기 극복에 주도적인 역할을 하는 것은 KAIST의 당연한 책무"라고 강조했다.
2020.09.24
조회수 23959
-
엄지용 교수팀, 대기 중 미세먼지 증가가 전력 소비에 미치는 영향 실증
우리 대학 기술경영학부 엄지용 교수 연구팀이 대기 중 미세먼지 증가가 가정의 전력소비를 증가시킴을 실증적으로 밝혔다. 이번 연구는 대기 중 초미세먼지(PM2.5) 등급을 '좋음'에서 '매우 나쁨'으로 격상시키는 75μg/m3 농도증가가 가정부문 전력소비량을 평균 11.2% 증가시킴을 계량경제 모형으로 확인했는데, 이는 한 여름철 실외온도가 3.5oC 상승할 때 유발되는 전력소비 증가량에 해당하는 큰 폭의 유의미한 변화로 확인됐다. 이번 연구에는 전국 136개 주요 시군구 853가구에 설치된 실시간 스마트미터에서 1년여에 걸쳐 수집한 전력사용 데이터에 전국 미세먼지 관측소와 기상관측소에서 수집한 시간별 환경정보를 매칭해 얻은 에너지-환경 빅데이터가 활용됐다.
미세먼지와 같은 급성 환경스트레스에 대한 소비자의 적응행태는 그간 에너지 학계에서 많은 주목을 받지 못했는데, 이번 연구에서는 미세먼지에 대한 가구의 에너지 집약적인 적응행태를 최초로 확인했다. 특히, 가구의 적응행태는 라이프스타일에 영향을 받는데, 그 민감도는 주중보다 주말에 그리고 저녁이나 새벽시간대 보다는 낮 시간대에 높은 것으로 나타났다. 아울러, 실외 기온이 아주 높거나 낮을 경우, 미세먼지에 대한 환경적응 행태가 더 크게 나타나는 것으로 확인됐다. 미세먼지 농도증가로 가정에서는 공기청정기 등의 간편하고 즉각적인 적응수단을 활용하는데 이 때문에 전력소비가 증가하고, 다시 미세먼지 농도가 더욱 상승하는 誤적응(mal-adaptation)의 가능성을 보여준 실증연구이다. 이번 연구는 미세먼지 저감정책 설계에 있어 미세먼지 적응의 역량을, 미세먼지 적응정책 설계에 있어 미세먼지 저감의 역량을 함께 고려할 필요가 있음을 시사하고 있다.
우리 대학 현민우 녹색경영정책 석사 졸업생(現 UC Santa Barbara 경제학 박사과정)과 이재웅 경영공학 박사(現 삼성전자 근무)가 공동저자로 참여하고, 인코어드 테크놀로지스의 이효섭 연구소장과 공동 수행한 이번 연구는 국제학술지 '네이처 에너지(Nature Energy)' 9월 21일자에 게재됐다. (논문명: Increase in household energy consumption due to ambient air pollution)
엄 교수는 “이번 논문의 후속 연구로 미세먼지 경보시스템의 효과성 실증과, 효과적인 예보시스템을 제시하기 위한 연구를 수행중이고 이미 기초 결과를 도출하는 데 성공했다”고 밝히며 “에너지-환경 빅데이터를 이용해 기후 및 환경경제 분야의 다양한 융합연구를 계속할 계획"이라고 말했다.
이번 연구는 한국연구재단 중견연구자 지원사업과, 한-EU 공동연구지원사업, 그리고 녹색성장대학원 운영사업의 지원을 받아 수행됐다.
2020.09.23
조회수 24156