-
디지털 펜으로 ´쓱쓱´ 그려 움직이는 3D 형상 ´뚝딱´ 만드는 시스템 개발
우리 대학 산업디자인학과 배석형 교수 연구팀이 종이 위에 그림을 그리는 듯한 펜 드로잉과 장난감을 손으로 다루는 듯한 멀티터치 제스처만으로 `움직이는 3D 스케치'를 쉽고 빠르게 만들 수 있는 새로운 시스템을 개발했다고 18일 밝혔다.
한때 공상과학 영화의 전유물이었으나 기술의 발전 덕분에 일상에서도 접할 수 있게 된 접이식 드론, 변신형 자동차, 다족 보행 로봇처럼 여러 움직이는 부분과 관절로 이뤄진 제품은 디자인할 때 형태뿐만 아니라 구조, 자세, 동작까지 동시에 고려해야 하므로 전문가도 많은 어려움을 겪는다.
기존의 3D 캐드(CAD) 소프트웨어는 정교한 형상 작업에 특화돼 있어 움직이는 모델 하나를 제작하는 데에도 많은 시간과 노력을 요구하는데, 특히 이는 다양한 가능성을 넓고 빠르게 탐색해야 하는 디자인 초기 과정에서 심각한 병목과 비용을 초래한다.
반면, 배 교수 연구팀은 모든 디자인은 종이 위에 펜으로 빠르게 그린 2D 스케치로부터 출발한다는 점에 주목하고 디자이너가 디지털 태블릿 위에 디지털 펜으로 자유롭게 표현한 2D 스케치로부터 입체 형상을 생성하는 `3D 스케칭' 기술을 개발해 왔다.
이번 연구에서 연구팀은 생성 중인 3D 스케치를 마치 장난감을 다루듯 두 손으로 조작할 수 있는 직관적인 멀티터치 제스처를 설계 및 구현함으로써 순식간에 살아 움직이는 입체 형상을 만들 수 있는 `움직이는 3D 스케칭' 기술을 완성했다(그림 1, 2).
우리 대학 산업디자인학과 이준협 박사과정 학생이 제1 저자로 참여한 해당 연구는 컴퓨터 그래픽스 분야 제1위 국제 학술지인 `ACM 트랜잭션 온 그래픽스(ACM Transactions on Graphics, 피인용지수: 7.403)'에 게재됐으며, 이와 연동돼 8월 초 캐나다 밴쿠버에서 개최된 최대 규모의 국제학술대회인 ACM 시그래프 2022(ACM SIGGRAPH 2022, h5-색인: 103)에 발표됐다(논문명: Rapid Design of Articulated Objects).
이번 시그래프(이하 SIGGRAPH)에는 전 세계 유수의 대학교 연구진, 마블(Marvel), 픽사(Pixar), 블리자드(Blizzard)와 같은 세계적인 애니메이션 사, 영화사, 게임사, 록히드 마틴(Lockheed Martin), 보스턴 다이내믹스(Boston Dynamics)와 같은 첨단 제조사를 비롯해, 메타(Meta), 로블록스(Roblox)와 같은 메타버스 관련 기업 관계자 1만여 명이 참가한 것으로 알려졌다.
배 교수 연구팀의 기술 논문(Technical Paper) 성과는 SIGGRAPH에서 유망한 신기술을 현장에서 시연하는 `이머징 테크놀로지(Emerging Technologies)' 프로그램에 초청됐을 뿐만 아니라, 그중에서도 Top 3 우수 기술로 선정, 특별 강연으로 소개됐다. 제2 저자인 KAIST 산업디자인학과 김한빛 박사과정 학생이 불과 10분 만에 유려한 형태의 동물 로봇을 그리고 움직여서 입체 동영상을 완성하는 모습은 현장에 모인 청중의 감탄을 자아냈고 심사위원단이 선정한 우수 전시상(Honorable Mention)을 수상하는 영광을 얻었다(그림 3).
이번 SIGGRAPH에서 기조연설을 맡은 에드윈 캐트멀(Edwin Catmull) 픽사 공동 창업자 / 前 회장도 이 연구를 두고 "매우 훌륭한 업적이자(really excellent work), 픽사의 창의력 넘치는 디자이너들에게 필요한 도구(the kind of tool that would be useful to Pixar's creative model designers)ˮ라며 높이 평가했다.
연구를 지도한 배석형 교수는 "디자이너가 생각하고 작업하는 방식에 가까이 다가갈수록 효과적인 디자인 도구를 만들 수 있다ˮ며, "직관적인 상호작용 방식을 통해 여러 상이한 알고리즘을 하나의 조화로운 시스템으로 통합하는 것이 핵심ˮ이라고 강조했다. 또한 "학생 개개인이 디자이너인 동시에 엔지니어를 지향하는 KAIST 산업디자인학과만의 융합적인 토양이기에 가능한 연구였다ˮ고 덧붙였다.
3D 공간에서 자유자재로 움직이는 입체 형상과 같은 수준 높은 창의적 결과물을 기존 방식에 비교할 수 없을 만큼 쉽고 빠르게 생성할 수 있어서 가까운 미래에 콘텐츠 산업, 제조 산업, 나아가 메타버스 산업의 디자인 실무 혁신에 크게 기여할 것으로 기대된다.
한편, 이번 연구는 과학기술정보통신부 및 한국연구재단의 지원을 받아 수행됐다.
- 웹사이트(다양한 움직이는 3D 스케치 예시 수록): https://sketch.kaist.ac.kr/publications/2022_siggraph_rapid_design
- ACM SIGGRAPH 2022 특별 강연(한글 자막 있음): https://www.youtube.com/watch?v=rsBl0QvSDqI
2022.08.18
조회수 9826
-
상용 디젤로부터 수소 생산 가능한 개질 촉매 개발
우리 대학 기계공학과 배중면 교수, 이강택 교수와 한국에너지기술연구원(KIER) 이찬우 박사 공동 연구팀이 상용 디젤로부터 수소 생산이 가능한 고활성, 고내구성 디젤 개질 촉매 개발에 성공했다고 16일 밝혔다.
연료 개질(fuel reforming)은 탄화수소로부터 촉매 반응을 통해 수소를 추출하는 수소 생산 기술이다. 액체 연료인 디젤은 수소 저장 밀도가 높고 운반과 저장이 쉽다는 장점이 있어 디젤 개질을 통한 수소 공급 장치를 헤비트럭의 보조전원장치, 잠수함의 공기불요추진체계 등 모바일 연료전지 시스템에 적용하고자 하는 연구가 지속돼왔다.
그러나 디젤은 고 탄화수소의 혼합물로 긴 사슬 구조의 파라핀, 이중 결합을 갖는 올레핀, 벤젠 고리 구조를 갖는 방향족 탄화수소를 포함하고 있어 고 탄화수소를 효과적으로 분해하기 위한 높은 활성도의 촉매가 요구된다. 그뿐 아니라, 촉매의 성능 저하 요인인 코킹 및 열 소결에 대해 강한 내구성을 갖는 촉매가 요구돼 디젤 개질 기술 활용에 어려움을 겪어왔다.
연구팀은 용출(산화물 지지체에 이온 형태로 고용시킨 활금속을 열처리를 통해 금속나노입자 형태로 지지체 상에 고르게 성장시키는 방법) 현상을 통해 합금 나노입자를 형성하도록 촉매를 설계함으로써 고활성, 고내구성 디젤 개질 촉매를 개발하는 데 성공했다. 용출된 금속 나노입자는 지지체와 강한 상호작용을 갖는 특성이 있어 고온에서 높은 분산도를 유지할 수 있고, 이종 금속 간 합금을 형성해 상승효과로 촉매 성능 향상을 노릴 수 있다는 점에서 착안했다.
연구팀은 산화환원반응 촉매의 지지체로 흔히 쓰이는 세리아(CeO2)의 격자 내 백금(Pt)과 루테늄(Ru)을 미량 침투시킨 다성분계 촉매를 제조하기 위해 용액 연소 합성법을 도입했다. 이 촉매는 디젤 개질 반응 환경에 노출되었을 때 백금과 루테늄이 지지체 표면으로 용출된 후 백금-루테늄 합금 나노입자를 형성한다.
연구팀은 촉매 분석뿐만 아니라 밀도범함수 이론 기반 계산을 통해 활금속의 용출 및 합금 형성에 대한 거동을 에너지적 관점에서 규명하는데 성공했다. 백금-루테늄 합금 촉매를 사용해 기존 단일 금속 촉매와 개질 성능을 비교해 본 결과, 개질 활성도가 향상돼 저온(600oC, 기존 800oC)에서도 100%의 연료전환율을 보였으며, 장기 내구성 평가(800oC, 200시간)에서 성능 열화 없이 상용 안정적으로 상용 디젤로부터 수소를 생산하는데 성공했다.
우리 대학 기계공학과 이재명 박사과정이 제1 저자로, 한국에너지기술연구원 연창호 박사과정, 기계공학과 오지우 박사, 한국에너지기술연구원 한광우 박사, 기계공학과 유정도 박사, 한국기초과학지원연구원 윤형중 박사가 공저자로 참여했으며, 한국에너지기술연구원 이찬우 박사, 기계공학과 이강택 교수, 배중면 교수가 교신저자로 참여한 이번 연구는 환경·재료·화학 분야 국제 학술지 `어플라이드 카탈리시스 비: 인바이러멘탈, Applied Catalysis B: Environmental'(IF 24.319, JCR분야 0.93%)에 지난 6월 17일 字 온라인판에 게재됐다(논문명: Highly Active and Stable Catalyst with Exsolved PtRu Alloy Nanoparticles for Hydrogen Production via Commercial Diesel Reforming).
배중면 교수는 "상용 디젤로부터 수소를 안정적으로 생산할 수 있다는 점에서 매우 의미있는 성과이며, 초기 수소 경제 사회에서 모바일 연료전지 시스템의 활용성 제고에 크게 이바지할 것으로 기대된다ˮ며, "이번 연구에서의 촉매 설계에 대한 접근법은 개질 반응뿐만 아니라 다양한 분야에서 응용 및 적용될 수 있을 것이다ˮ라고 말했다.
이번 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행됐다.
2022.08.16
조회수 7494
-
성장 조절하는 인슐린 유사성장 인자의 비밀을 밝히다
인슐린유사성장인자(Insulin-like Growth Factor, IGF)는 인슐린과 유사한 분자구조를 가진 호르몬으로, 신체의 유지와 신진대사에 관여하며, 특히 태아 및 소아·청소년기 성장에 중요한 역할을 한다. 인슐린유사성장인자의 결핍은 느린 성장, 작은 체구, 지연된 발육과 같은 성장기 발달 장애, 그리고 성인에게는 골밀도와 근육강도 저하 등의 증상으로 나타난다. 인슐린유사성장인자의 과잉은 거인증 혹은 말단 비대증을 유발하고 다양한 성인병 위험도를 증가시킨다. 인슐린유사성장인자는 신체의 발달을 촉진시키는 작용 외에도 인슐린과 협동하여 혈당을 조절하는 작용도 하며, 종양의 발생에도 관여함이 알려져 있어, 인슐린유사성장인자의 작동 원리를 밝히기 위한 다양한 연구가 국내외에서 활발하게 진행 중이다.
우리 대학 의과학대학원 김호민 교수(기초과학연구원 (IBS), 바이오분자 및 세포구조연구단, Chief Investigator)는 인슐린유사성장인자 복합체의 3차원 분자구조를 규명하고, 인슐린유사성장인자 복합체의 조립과정 및 인슐린유사성장인자 활성화 메커니즘을 제시했다. 본 연구 결과는 성장과 대사에 관련된 다양한 질병에 대한 이해를 높이고 진단·치료제 개발에도 기여할 것으로 기대된다.
인슐린유사성장인자는 다양한 조직 세포막에 분포하는 인슐린유사성장인자 수용체를 활성화시켜 세포분열, 세포 증식·분화와 생존을 조절한다. 하지만 인슐린유사성장인자는 단독으로는 매우 불안정하여 체내반감기가 10분이 채 되지 않는다. 이 때문에 혈중 인슐린유사성장인자의 70% 이상은 체내에서 12시간 이상 머무를 수 있도록 인슐린유사성장인자 결합단백질들인 IGFBP 단백질(IGF Binding Protein), ALS 단백질(Acid labile subunit)과 결합하여 안정한 삼중복합체 형태로 존재한다.
IGFBP 단백질과 ALS 단백질은 인슐린유사성장인자와 결합하는 운반체 역할 뿐만 아니라 인슐린유사성장인자의 생물학적 작용을 조절하는 중요한 기능도 수행한다. 즉, 인슐린유사성장인자 삼중복합체(IGF1/IGFBP3/ALS)는 생체 내에서 아주 정교하게 조립되고, 필요시에만 활성화되어 적절하게 성장조절 효과를 나타낼 수 있게 된다. 이 때문에 인슐린유사성장인자와 이들 결합단백질의 혈중 농도는 성장호르몬결핍증, ALS 결핍증과 같은 성장관련 질환을 평가하는데 검사항목으로도 이용되고 있다.
연구진은 인슐린유사성장인자 삼중복합체의 3차원 분자구조를 초저온투과전자현미경(cryo-EM)을 활용하여 규명하고, 각 구성요소 간의 상호작용을 밝혀냈다. 특히, 인슐린유사성장인자가 IGFBP 단백질에 둘러쌓여 이중복합체를 이루고 있으며, 말발굽 모양의 ALS 단백질이 이중복합체를 한번 더 감싸는 안정된 구조로 인해 인슐린유사성장인자가 체내에서 쉽게 분해되지 않는 것을 발견했다.
또한, 다양한 생화학적 실험 방법을 통해 인슐린유사성장인자 삼중복합체의 순차적 조립과정과 삼중복합체로부터 인슐린유사성장인자가 분리되어 인슐린유사성장인자 수용체를 활성화시키는 분자 메커니즘을 규명했다. 인슐린유사성장인자 삼중복합체에 포함된 IGFBP 단백질이 생체 내 단백질분해효소에 의해 잘리면, IGFBP 단백질의 C-말단이 떨어져나가면서 불안정한 중간 삼중복합체가 형성된다. 이 과정이 인슐린유사성장인자가 활성을 나타내게 하는 핵심 과정임을 새롭게 발견했다.
김호민 교수는 “첨단 초저온투과전자현미경을 활용하여 고해상도 분자구조를 규명한 연구성과”라며, “인슐린유사성장인자 삼중복합체의 분자구조와 활성화 메커니즘은 향후 청소년기 성장 관련 연구 또는 인슐린유사성장인자 관련 질환의 진단 및 치료제 개발에 크게 기여할 것으로 기대한다.”라고 말했다.
이번 연구는 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 17.69)’ 온라인 판 7월 30일 자에 게재되었다.
2022.08.04
조회수 12870
-
기계공학과 박인규 교수, 팽창하는 입자를 이용한 불규칙한 마이크로 돔 구조 기반 고감도 압력센서 개발
우리 대학 기계공학과 박인규 교수 연구팀이 한국생산기술연구원 조한철 박사와 공동 연구를 통해 3D 마이크로 구조 기반의 표면 형태 제어 기술 및 고감도 압력센서 설계 관련 원천기술을 개발했다.
최근 인간과 전자기기 간의 상호작용 기술의 중요성 증가에 따라, 그 매개체 역할을 하는 센서 기술 개발에 대한 관심이 증가하고 있다. 고성능 센서 기술은 스마트 기기, 보안 및 안전, 의료 및 헬스케어 분야와 같은 고부가가치 산업에 주로 적용되고 있다. 최근에는 뛰어난 센서 특성과 함께 유연한 특성으로 인해 사람의 피부와 같은 굴곡진 부위에 쉽게 부착 가능한 유연 압력센서 및 웨어러블 센서 응용에 대한 관심이 급증하고 있다. 특히, 표면에 3D 마이크로 구조가 어레이된 필름을 사용하면 센서의 전반적인 특성을 향상시킬 수 있어, 3D 마이크로 구조의 크기 및 밀도를 제어할 수 있는 기술이 필수적으로 요구된다.
하지만, 기존의 연구들은 원하고자 하는 패턴의 역상으로 제작된 몰드에 액상의 엘라스토머를 부어 제작하기 때문에 몰드 제작 공정이 필수적으로 요구되며, 3D 마이크로 구조의 크기/밀도 등을 조절하는데 한계가 있어 제작 유연성에 있어 큰 한계점이 존재했다.
공동 연구진은 이러한 문제를 해결을 위해, 온도에 의해 팽창하는 입자를 이용하여 표면에 3D 마이크로 구조를 제작하는 기술을 개발하였다. 본 연구에서 핵심으로 사용한 물질은 온도에 의해 팽창하는 미소 입자이다. 이 입자는 상온에서는 초기 상태인 6~11 ㎛를 유지하는데, 특정 온도를 가하면 내/외부의 변화로 인해 약 30~50 ㎛로 크기가 변하게 된다. 해당 입자를 유연 엘라스토머와 혼합하여 유연 필름을 제작한 뒤에 열팽창을 시키는 표면에 3D 마이크로 구조가 어레이된 유연 필름의 제작이 가능하다 (그림 1).
이를 활용하여 고민감도의 유연 압력센서에 적용하였다 (그림 2). 본 센서는 기존에 제안되었던 3D 마이크로 구조 기반 압력센서에 비해 높은 감도를 보여주었으며 내구성/검출한계/응답속도 등에서도 뛰어난 성능을 보였다. 이를 활용하여 다양한 사용자 맞춤형 어플리케이션에 적용하였다. 첫 번째로 손가락형 압력센서에 적용하였다. 개발된 손가락형 압력센서는 높은 감도로 인해 미세한 압력 변화를 감지할 수 있었으며 이를 이용하여 손가락의 미세한 맥박 변화, 물체를 누르는 힘 등에 대해 정밀하게 감지/구분할 수 있음을 보였다. 두 번째로는 대면적 어레이 센서로 제작하여 인간-컴퓨터 상호작용에 적용하였다. 이를 통해 손목의 움직임을 감지하고 획득한 신호를 기계학습에 적용하여 마우스 커서를 움직일 수 있음을 증명하였다 (그림 3).
이번 연구는 제 1 저자로는 정영 박사후연구원(KAIST 기계공학과)과 최중락 박사과정 학생(KAIST 기계공학과)이, 교신저자로는 조한철 박사(한국생산기술연구원)와 박인규 교수(KAIST 기계공학과)가 참여했으며, 과학기술정보통신부의 재원으로 한국연구재단의 중견연구자 과제 (박인규 교수), 창의도전연구 과제 (정영 박사), 신진연구자 과제 (조한철 박사)의 지원을 받아 수행되었다. 본 연구 결과는 재료연구 분야 최상위 학술지 중 하나인 Advanced Functional Materials (Impact factor 18.81) 지 2022년 7월 4일자로 논문이 게재되었으며, 후면 표지논문 (Back cover)에 선정되었다. (논문명: “Irregular Microdome Structure-Based Sensitive Pressure Sensor Using Internal Popping of Microspheres”)
2022.08.01
조회수 7003
-
인공지능 및 빅데이터 시대를 이끌어갈 차세대 CXL2.0 메모리 확장 플랫폼 세계 최초 개발
우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)이 대용량 메모리 장치부터 프로세스를 포함한 컴퓨트 익스프레스 링크(CXL) 2.0 기반의 차세대 메모리 확장 플랫폼 ‘다이렉트CXL(이하 DirectCXL)’을 세계 최초로 프로토타입 제작, 운영체제가 실장된 단대단(End-to-End) 시연에 성공했다고 1일 밝혔다.
오늘날 빅데이터 분석, 그래프 분석, 인메모리 데이터베이스 등 대규모 데이터에 기반한 응용처리가 증가함에 따라, 데이터 센터에서는 이를 더 빠르고 효율적으로 처리하기 위해 시스템의 메모리 확장에 많은 투자를 하고 있다.
그러나 우리가 흔히 알고 있는 메모리 확장 방식인 더블 데이터 대역폭(DDR) 인터페이스를 통한 메모리 확장은 추가할 수 있는 메모리 개수의 제한이 있어, 대규모 데이터 기반의 응용을 처리하기에 충분치 않다. 따라서 데이터 센터에서는 CPU와 메모리로 이루어진 메모리 노드들을 따로 구성하고, 응용을 수행하는 호스트의 메모리가 부족하면 네트워크로 연결된 메모리 노드를 자신의 메모리 공간으로 사용하는 원격 데이터 전송 기술(이하 RDMA) 기반의 메모리 확장을 사용한다.
여러 메모리 노드를 사용하는 RDMA 기반의 메모리 확장을 통해 데이터센터는 시스템의 메모리 크기를 늘릴 수 있었지만, 여전히 해결해야 할 문제들이 남아있었다. 우선 RDMA 기반 메모리 확장 시스템에서는 노드 간 데이터 이동 시 불필요한 데이터 복사, 소프트웨어의 개입 그리고 프로토콜 전환으로 인한 지연을 발생시켜 성능 저하가 발생했다. 또한 시스템의 메모리 확장 시 메모리만을 추가할 수 있는 것이 아닌, 메모리와 메모리를 제어할 CPU가 하나의 메모리 노드를 이루어 시스템에 추가되어야 했기 때문에, 추가적인 비용 소모가 발생했다.
최근 컴퓨트 익스프레스 링크(Compute Express Link, 이하 CXL) 프로토콜의 등장으로 많은 메모리 고객사와 제조사가 이러한 문제를 해결할 가능성을 확인하고 있다. CXL은 PCI 익스프레스(PCIe) 인터페이스 기반의 CPU-장치(Device) 간 연결을 위한 프로토콜로, 이를 기반으로 한 장치 연결은 기존보다 높은 성능과 확장성을 지원하는 것이 특징이다.
국내외 유수 기업들이 모여 CXL 인터페이스 표준 규약을 제안하는 CXL 컨소시엄은 지난 2019년 CXL 1.0/1.1을 처음 제안했고, 이후 CXL 2.0을 발표하며 CXL 1.0/1.1에서 하나의 포트당 하나의 지역 메모리 장치만을 연결할 수 있었던 확장성 문제를 스위치 네트워크를 통해 개선, 하나의 포트를 여러 포트로 확장할 수 있도록 했다. 따라서 CXL 1.0/1.1과 달리 CXL 2.0에서는 확장된 포트에 다수의 원격 CXL 메모리 장치를 연결하는 것이 가능해 더 높은 확장성을 지원할 수 있게 됐다.
그러나 CXL 2.0의 높은 확장성에도 불구하고, 아직 CXL 연구의 방향성을 제시해줄 수 있는 시제품 개발 및 연구들이 진행되지 않아, 메모리 업계와 학계에서는 여전히 CXL1.0/1.1을 기반으로 지역 메모리 확장 장치, 시제품 개발 및 연구를 진행하고 있는 실정이다. 따라서 새로운 CXL 2.0을 통한 메모리 확장 연구의 방향성 초석을 제시할 필요성이 커졌다.
정명수 교수 연구팀이 전 세계 최초로 프로토타입한 CXL 2.0 기반 메모리 확장 플랫폼 ‘DirectCXL’은 높은 수준의 메모리 확장성을 제공하며, 빠른 속도로 대규모 데이터 처리를 가능케 한다. 이를 위해 연구팀은 메모리를 확장해 줄 장치인 ‘CXL 메모리 장치’와 호스트 ‘CXL 프로세서 (CPU)’, 여러 호스트를 다수의 CXL 메모리 장치에 연결해주는 ‘CXL 네트워크 스위치’ 그리고 메모리 확장 플랫폼 전반을 제어할 리눅스 운영체제 기반의‘CXL 소프트웨어 모듈’을 개발해 플랫폼을 구성했다.
구성된 ‘DirectCXL’ 플랫폼을 사용한 시스템에서는 확장된 메모리 공간에 직접 접근해 데이터를 CPU의 캐시로 가져와 불필요한 메모리 복사와 소프트웨어의 개입이 없으며, PCIe 인터페이스만을 사용해 프로토콜 전환을 없애 지연시간을 최대한 줄였다. 또한 추가적인 CPU가 필요 없는 CXL 메모리 장치를 CXL 스위치에 연결하는 것만으로 메모리 확장이 가능해 효율적인 시스템의 구성이 가능했다. 국내외 소수 대기업에서 메모리 장치 일부 단품에 대한 구성을 보여준 준 사례는 있지만, CXL 2.0 기반, CPU부터 CXL 스위치, 메모리 장치가 장착된 시스템에서 운영체제를 동작시키고 데이터 센터와 응용을 실행하고 시연한 것은 정명수 교수 연구팀이 처음이다.
연구팀은 자체 제작한 메모리 확장 플랫폼 ‘DirectCXL’의 성능을 검증하기 위해 CXL 동작이 가능한 다수의 자체 개발 호스트 컴퓨터가 CXL 네트워크 스위치를 통해 연결된 다수 CXL 메모리 장치들을 제어하는 환경을 구성했다. 이후 구성된 플랫폼을 통해 CXL 메모리 장치의 성능을 기존 RDMA 기반 메모리 확장 솔루션과 비교했다. 연구팀이 제안한 ‘DirectCXL’은 확장된 메모리에 대한 접근 시간 검증에서 기존 RDMA 기반의 메모리 확장 솔루션 대비 8.3배의 성능 향상을 보였으며, 많은 메모리 접근을 요구하는 그래프 응용처리 및 인 메모리 데이터베이스 응용처리에서도 각각 2.3배, 2배의 성능 향상을 이뤄냈다.
정명수 교수는 "이번에 개발된 ‘DirectCXL’은 기존 RDMA기반 메모리 확장 솔루션보다 훨씬 적은 비용으로도 뛰어난 성능과 높은 확장성을 제공하는 만큼 데이터센터나 고성능 컴퓨팅 시스템에서의 수요가 클 것으로 기대한다ˮ며, "세계 최초로 개발된 CXL 2.0 기반의 단대단 프로토타입 플랫폼을 활용해 CXL이 적용된 새로운 운영체제(OS)는 물론 시스템 소프트웨어, 솔루션 시제품 고도화를 통해 향후 CXL을 활용한 시스템 구축에 초석을 제공할 것이다ˮ라고 말했다.
한편 이번 연구는 미국 칼스배드에서 지난 7월에 11에 열린 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2022'에 ‘DirectCXL’이라는 논문명(Direct Access, High-performance Memory Disaggregation with DirectCXL)으로 발표되었다. 또한 미국 산호세에서 열리는 8월 2/3일에 플래시 메모리 정상회담(Flash Memory Summit)에서 CXL 컨소시움이 이끄는 CXL포럼에 발표될 예정이다.
‘DirectCXL’의 자세한 내용은 연구실 웹사이트(http://camelab.org)에서 확인할 수 있다. DirectCXL은 데이터센터와 클라우드 시스템에서 다양한 응용에 쉽게 적용 가능하며, 하나의 실시예로 메타(페이스북) 추천시스템 기계학습 데이터 가속에 대한 시연 영상을 연구실 유튜브(https://youtu.be/jm8k-JM0qbM) 에서 확인할 수 있다. 해당 영상은 각 개인의 대규모 특성 자료들(텐서)을 CXL 메모리 풀에 올려두고 빅데이터를 활용한 인공지능이 친구나 광고 등 개인 특성에 맞는 자료들을 추천하게 하는 시스템으로 기존 데이터 센터의 원격메모리에 비해 3.2배 이상의 사용자 수준 성능 향상을 보여주고 있다.
2022.08.01
조회수 7541
-
뇌 모방 스핀 소자 핵심기술 개발
우리 대학 물리학과 김갑진 교수와 신소재공학과 박병국 교수 공동연구팀이 뇌 모방 소자로 개발 중인 스핀토크발진기 주파수 대역을 증대시킬 핵심 기술을 개발했다고 18일 밝혔다.
두 연구팀은 비자성체/강자성체/산화물 3중층 구조의 자기발진소자에 게이트 전압을 인가하여 GHz 수준의 발진주파수 조절에 성공하였다. 이는 기존 기술보다 약 10배 이상 향상된 결과로 스핀토크 기반 뉴로모픽 소자가 가진 학습 효과의 휘발성, 좁은 주파수 대역 등의 문제를 해결할 핵심 기술로 제안되었다.
본 소자는 게이트 전압이 영구적으로 수직자기이방성을 변화시켜 소자에 전류가 흐르지 않아도 학습 내용이 저장되어 있는 비휘발성 특성을 가지고 있으며 그 폭이 GHz 수준으로 넓어 뉴로모픽 소자 활용성을 증대시켜줄 것으로 기대된다.
신소재공학과 최종국 박사과정과 물리학과 박재현 박사가 공동 제1저자로 참여하고, KAIST 신소재공학과 강민구 연구원, 고려대학교 이재성 교수와 김도윤 연구원, KAIST 물리학과 이경진 교수가 공동저자로 참여한 본 논문은 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’에 6월 30일 온라인 게재됐다. (논문명 : Voltage-driven gigahertz frequency tuning of spin Hall nano-oscillators)
기존의 스핀토크발진기 기반 뉴로모픽 소자는 학습 대상을 주파수 대역에 대응시켜 학습하는 소자로, 전류가 흐르지 않으면 학습 내용이 사라지는 휘발성과 200MHz 이내의 제한적인 학습 가능 대역폭을 가지고 있어 이에 대한 개선이 필요한 상황이다.
이번 연구에서 연구팀은 게이트 전압 인가가 소자의 수직자기이방성을 영구적으로 조절하고 이를 통해 자기공명주파수가 조절된다는 사실을 이용하여 기존 보고의 10배 이상인 2.1 GHz 이상의 광대역 조절 가능한 발진기를 실현하였다. 본 기술은 스핀-홀 나노 발진기 기반 뉴로모픽 소자 개발에 핵심 기술로 활용될 것이라 기대된다.
한편 이번 연구는 KAIST 글로벌 특이점 연구사업, 삼성미래기술육성사업, 한국연구재단 선도연구센터/중견연구자지원사업의 지원을 받아 수행됐다.
2022.07.29
조회수 7170
-
차량 배기열을 에너지원으로 화학합성 가능성 최초 밝혀
우리 대학 신소재공학과 박찬범 교수와 정연식 교수 공동 연구팀이 한밭대학교(총장 최병욱) 오민욱 교수팀과 네덜란드 델프트 공과대학교(TU Delft) 프랭크 홀만(Frank Hollmann) 교수팀과의 협력을 통해 상온용 *열전소재 기반 열전 촉매반응과 산화환원 효소반응을 접목해 폐열로 고부가가치 화학물질을 합성하는 데 성공했다고 22일 밝혔다.
☞ 열전효과: 물질의 양단에 온도 차가 존재할 때 내부에 전위차가 생겨 전기가 발생하는 현상.
신소재공학과 윤재호, 장한휘 박사과정이 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션즈 (Nature `Communications)' 6월 29일 字에 게재됐다. (논문명: Heat-fueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons)
전 세계적으로 1차 에너지 소비를 기준으로 약 70%의 에너지가 사용되지 못한 채 폐열(Waste heat)로 사라진다. 열전(Thermoelectric)소재는 열을 직접 전기로 변환할 수 있는 소재로, 다양한 환경에서 버려지는 폐열을 회수하여 전기에너지로 변환하는 열전발전에 사용되는 등, 지속 가능한 에너지 물질로서 주목받고 있다.
그러나 우리가 일상생활에서 쉽게 접할 수 있는 낮은 온도의 열원에서 발생하는 저온 폐열은 열전소재를 이용해 충분한 발전 효율을 확보할 수 없어, 실 사용처가 매우 제한적이라는 한계점이 있었다.
연구팀은 이러한 문제를 해결하기 위해 전기 에너지가 아닌 화학 에너지에 주목했다. 화학 에너지는 전기 에너지보다 안정하여 보관과 운송이 간편하다는 장점이 있다.
연구팀은 상온용 열전소재인 비스무트 텔루라이드(Bismuth telluride)가 섭씨 100도 이하의 낮은 온도에서도 물과 산소로부터 과산화수소를 생성하며, 이러한 현상이 열전소재가 만들어내는 전위차에 비례한다는 것을 실험적으로 입증했다.
연구팀은 더 나아가 저온 폐열을 사용하는 비스무트 텔루라이드의 열전 촉매반응을 생체촉매인 퍼옥시게나아제(Peroxygenase) 활성에 적용했다. 퍼옥시게나아제는 과산화수소를 이용해 유기합성에서 중요하게 여겨지는비활성 탄화수소의 선택적 옥시관능화(oxyfunctionalization)를 유도하여 고부가가치 화학원료로 쓰이는 반응성 산소화 화학종을 생성할 수 있는 효소이다. 연구팀은 열전소재가 과산화수소를 실시간으로 공급하도록 설계해 퍼옥시게나아제가 지속해서 탄화수소의 옥시관능화 반응을 수행하도록 만드는 데 성공했다.
연구팀은 그뿐만 아니라 차량의 대전 시내 주행 중에 발생하는 배기열을 활용해서 고부가가치 화학물질 합성에 성공해, 이번에 개발한 시스템의 실용화 가능성도 높였다.
연구팀은 "이번 연구는 폐열을 고부가가치 화학물질 생산에 이용할 수 있음을 처음으로 발견했다는 것에 의의가 있다ˮ며, "열전소재의 반응 메커니즘을 더 자세하게 밝혀 성능을 높이고, 다양한 생체촉매와 접목 및 규모 확대를 통해, 산업적 파급력을 높일 계획ˮ이라고 밝혔다.
한편 이번 연구는 한국연구재단 리더연구자지원사업(창의연구)의 지원을 받아 수행됐다.
2022.07.22
조회수 6255
-
가까운 미래에 많은 지역에서 가뭄이 일상화되는 사실 최초 예측
우리 대학 문술미래전략대학원(건설및환경공학과 겸임) 김형준 교수 연구팀이 국제 공동 연구를 통해 과거 최대의 가뭄이 여러 해에 걸쳐 지속해서 발생하는 시점, 즉 세계의 각 지역에서 가뭄이 일상화되는 시점을 최초로 추정했다고 밝혔다. 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’6월 28일 판에 출판됐다. (논문명: The timing of unprecedented hydrological drought under climate change; doi:10.1038/s41467-022-30729-2)
지구온난화에 대한 장기적인 대책을 검토하기 위해서 그 영향이 미래에 어떻게 변화되는지에 대한 전망은 매우 중요한 정보가 된다. 특히 종래의 통계치나 경험을 적용할 수 없게 되는 시기가 도래한다면 그 시점을 파악하는 것이 매우 중요하다.
KAIST, 동경대학교, 일본 국립환경연구원 등 7개국 13기관으로 구성된 국제 공동 연구팀은 수치모델을 이용해 전 지구 하천유량의 미래 변화를 예측하고 가뭄이 일어나는 빈도를 조사함으로써 과거 최대의 가뭄이 수년에 걸쳐 일어나게 되는 이른바 `재난'이 일상화가 되는 시기를 세계 최초로 추정해냈다.
연구 결과는 지중해 연안이나 남미의 남부 등 특정한 지역들에서 이번 세기 전반 혹은 중간쯤에 과거 최대의 가뭄이 적어도 5년 이상 연속적으로 넘어서는 시기를 맞이하고 과거로부터 지금까지의 기후에서 비정상 상태가 일상에서 빈번하게 일어날 확률이 높아짐을 보인다. 또한, 온실가스의 배출을 적극적으로 줄여나가더라도 어떤 지역에서는 십여 년 안에 이와 같은 `재난의 일상화'가 일어날 수 있음을 발견했다. 하지만, 기후변화에 적극적으로 대응하는 시나리오(RCP2.6)의 경우에는 가뭄의 일상화 시점이 늦어지거나 계속되는 기간이 줄어드는 것으로 나타났다.
교신 저자인 김형준 교수 연구팀의 유스케 사토 박사(문술미래전략대학원 연구부교수)는 "수자원 혹은 농업 분야의 기후변화 대책에는 보통 많은 시간이 요구되며 현재의 비정상이 일상화가 되기 전에 충분한 준비를 해두는 것이 중요하다ˮ고 말했다.
김형준 교수는 "이번 연구 결과는 전 세계의 가뭄 발생의 미래경로에 있어서 탄소중립 실현의 중요성을 강조하고 특정 지역에서는 기후변화 대응과 더불어 기후변화 적응대책을 적극적으로 준비해나가야 할 필요가 있다는 것을 시사한다ˮ고 밝혔다.
한편 이번 연구는 한국연구재단 해외우수과학자유치사업(BP+)와 인류세연구센터의 지원을 받아 수행됐다.
2022.07.21
조회수 6774
-
새로운 인공지능 형광 현미경 적용, 뇌 신경세포 등 3차원 고화질 영상기술 개발
우리 대학 김재철 AI 대학원 예종철 교수 연구팀이 서울대학교 장성호 교수팀, 포스텍 김기현 교수팀과 공동연구를 통해 형광 현미경의 오랜 문제인 이방성(Anisotropy)을 해결해, 3차원 영상 화질을 획기적으로 끌어올리는 인공지능 기술을 개발했다고 29일 밝혔다.
이방성 문제란 형광 현미경으로 3차원 영상을 획득하는 데 있어 빛의 성질로 인해 영상 공간 방향 간에 적게는 2~3배, 많게는 10배까지도 화질 차이가 발생하는 문제를 뜻한다. 예를 들면 3차원 영상을 보는 각도마다 화질의 차이가 발생하는 것이다.
연구팀은 수학적 기법인 최적 수송이론 기반을 둔 새로운 인공지능 시스템을 개발해 공초점 현미경과 광 시트 현미경에 적용했다. 기존 인공지능 기법들과는 다르게, 인공지능 학습 데이터가 따로 필요하지 않고, 하나의 3차원 영상만으로도 인공지능 학습에 적용할 수 있다는 점에서 획기적이라 볼 수 있으며, 생물학 연구자들에게 생물 표본의 3차원 고화질 영상 획득에 큰 도움을 줄 것으로 기대된다.
예종철 교수는 "3차원 영상 획득에 있어 극복하기 어려웠던 현미경의 물리적 한계를 인공지능 기술을 통해 뛰어넘었다는 점에서 의미가 있고, 비지도 학습 기반으로 훈련이 진행되기 때문에, 다양한 많은 종류의 3차원 영상 촬영 기법에도 확장 적용 가능하며, 또한 인공지능 연구의 새로운 응용을 개척했다는 데 의미가 있다ˮ 고 말했다.
김재철 AI 대학원의 예종철 교수가 주도하고, 박형준 연구원이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월 8일 字 온라인판에 게재됐다.
*논문명 : Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy
논문 링크: https://www.nature.com/articles/s41467-022-30949-6
2022.06.29
조회수 7543
-
인공지능 이용해 3차원 홀로그래피 현미경의 박테리아 신속 식별 기술 개발
우리 대학 물리학과 박용근 교수 연구팀이 홀로그래피 현미경과 인공지능을 이용한 신속 박테리아 병원균 식별 기술을 개발했다고 27일 밝혔다.
병원균의 조기 식별은 감염질환 치료에 필수적이다. 치명적인 상태로 진행되기 전에 감염균에 맞는 효과적인 항생제의 선택과 투여가 가능해지기 때문이다. 하지만 현재의 일상적 병원균 식별은 통상 수일이 소요된다. 이로 인해 감염 초기 식별 결과 없이 실증적인 처방으로 항생제를 투여하는 사례가 빈번하며, 이로 인해 패혈증의 경우 치명률이 50%에 달하며 항생제 남용으로 인한 슈퍼박테리아 문제도 발생한다.
기존 방법으로 병원균 식별이 오래 걸리는 원인은 긴 박테리아 배양 시간이다. 질량 분석기로 대표되는 식별 기술들은 일정량 이상의 박테리아 표본이 확보되어야 균종과 관련된 분자적 신호를 검출할 수 있다. 이로 인해, 환자에서 추출한 시편을 하루 이상 배양해야만 검출이 될 정도의 박테리아 개수가 확보된다.
광학 분야의 저명 학술지인 `빛: 과학과 응용(Light: Science & Applications), (IF = 17.782)'에 게재된 이번 연구(논문명: Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network)에서 박용근 교수 연구팀은 3차원 홀로그래피 현미경과 인공지능 알고리즘을 활용해서 단일 세포 수준의 표본으로도 병원균의 균종을 정확히 알아낼 수 있음을 입증했다.
홀로그래피 현미경으로 측정되는 3차원 굴절률 영상 정보에 내재된 균종과 관련된 특성을 인공지능 알고리즘으로 학습해 종을 구분하는 것이 핵심 아이디어다. 연구팀은 종별로 500개 이상의 박테리아의 3차원 굴절률 영상을 측정했고, 이를 인공지능 신경망을 통해 학습시켰다.
연구팀은 개발한 방법을 이용해 주요한 혈액 감염균을 신속하게 식별함으로써 실제 진단에도 응용될 가능성을 검증했다. 구체적으로 그람 음성 및 양성, 구균 및 간균을 모두 포함한 총 19가지 균종으로 혈액 감염 사례의 90% 이상의 원인이 되는 균들이다. 한 개의 병원균 혹은 병원균 덩어리를 측정한 단일 3차원 굴절률 영상에서는 약 82.5%의 정확도로 균종 판별이 가능했다. 연구팀은 또한 여러 영상을 확보할 수 있을 때 정확도가 증가해, 7개의 박테리아 영상이 확보된다면 99.9%의 정확도를 얻을 수 있었다.
연구진의 책임자이자 논문의 교신저자인 박용근 교수는 "홀로그래피 현미경의 세포 감별 능력을 인공지능으로 극대화해 감염 진단 기술로서의 가능성을 확인한 것이 의미ˮ라고 말했다. 제1 저자인 물리학과 김건 박사과정 학생은 "100,000분의 1 수준의 표본량으로도 질량 분석기의 균종 검출률과 비슷한 정확도를 얻었고 환자 시편에서 다양한 병원균을 식별하는 플랫폼 기술이 될 것으로 기대된다ˮ라고 덧붙였다.
이번 연구는 KAIST-삼성서울병원-토모큐브 팀의 수년간의 공동 연구를 통해 진행됐다. 물리학과 박용근 교수 연구팀의 기술에 다양한 기관의 경험과 비전을 반영함으로써 완성할 수 있었다. 삼성서울병원 진단검사의학과 이남용 교수, 진단검사의학과 허희재 교수, 감염내과 정두련 교수 연구팀, 서울성모병원 진단검사의학과 유인영 교수, 분당 차병원 응급의학과 김규석 교수, 우리 대학 나노과학기술대학원 정현정 교수 등 다양한 분야와 기관이 모여, 실험적 검증을 효과적으로 진행할 수 있었다. 또한 KAIST 교원 창업 기업인 ㈜토모큐브의 3차원 홀로그래피 기술 지원도 필수적인 역할을 했다.
한편 이번 연구는 한국연구재단 창의연구사업, 과학기술일자리진흥원의 지원을 받아 수행됐다.
2022.06.27
조회수 7206
-
인간 뇌처럼 뉴런-시냅스 동시 구동 모사한 메모리 최초 구현
우리 대학 신소재공학과 이건재 교수팀이 100 nm(나노미터) 두께의 단일 소자에서 뉴런과 시냅스를 동시에 모사하는 뉴로모픽(neuromorphic) 메모리를 개발했다고 23일 밝혔다. 뉴런은 신경계를 이루는 기본적인 단위세포를, 시냅스는 뉴런 간의 접합 부위를 말한다.
이 교수팀은 인간의 뇌처럼 뉴런과 시냅스가 유기적으로 동작하는 방식의 단일 메모리 소자를 최초로 구현했으며, 이를 통해 반도체 소자로 인간 뇌를 완전히 구현한다는 뉴로모픽 컴퓨팅 본연의 목표 달성에 근접할 수 있을 것으로 기대된다.
1,000억 개의 뉴런과 100조 개의 시냅스의 복잡한 네트워크로 구성된 인간 뇌는 그 기능과 구조가 고정된 것이 아니라 외부 환경에 따라서 유연하게 변하는 특징을 가지고 있다. 따라서 뉴로모픽 소자는 뉴런과 시냅스의 특성을 모사해 기존의 컴퓨터로는 구현할 수 없는 인간 뇌의 고도 인지 기능을 실현하는 데에 가장 큰 목적을 두고 있다.
지금까지 뉴로모픽 컴퓨팅 구현을 위해서 CMOS 집적회로와 비휘발성 메모리 등을 이용한 연구들이 진행됐으나, 기존 기술들은 뉴런과 시냅스의 기능을 분리해 모사한다는 한계점을 가지고 있었다.
인간 뇌에서 뉴런과 시냅스는 서로 유기적으로 연결돼 있으며, 서로 간의 상호작용을 통해 인지 기능이 발현된다. 이러한 뉴런과 시냅스의 기능을 인간 뇌처럼 단일 구조체에서 통합해 구현하는 것은 어려운 도전 과제였다.
이 교수 연구팀은 휘발성의 소자(threshold switch)로 뉴런을, 비휘발성의 상변화 메모리 소자로 시냅스를 모사해 단기·장기 기억이 공존하는 단일 뉴로모픽 소자를 개발했으며, 이를 통해 집적도 개선 및 비용 절감 효과도 얻을 수 있을 것으로 기대된다. 특히 기존 CMOS 뉴런 소자에서는 단순 신호 발산 기능만이 구현됐으나, 연구팀의 뉴런-시냅스 통합소자는 신호 발산 유형이 환경에 따라서 유연하게 적응하는 가소성(plasticity)을 구현하는 데 성공했다.
이건재 교수는 이번 연구 성과에 대해 "인간은 뉴런과 시냅스의 상호작용을 통해 기억, 학습, 인지 기능을 발현하므로 둘 모두를 통합 모사하는 것이 인공지능에 있어서 필수적인 요소ˮ라며 "개발한 단일 뉴런-시냅스 소자는 기존의 단순 이미지 학습 효과를 넘어서, 피드백 효과를 기반으로 한 번 배운 내용을 더 빨리 학습하는 재학습(retraining) 효과 구현도 성공해 인공지능뿐만 아니라 뇌를 역설계하는 연구에도 큰 도움이 될 것이다”고 언급했다.
한편 이번 연구는 삼성전자 전략산학과제와 지능형반도체 사업의 지원을 받아 수행됐으며, 국제 학술지 `네이쳐 커뮤니케이션즈(Nature Communications)'에 5월 19일 字 게재됐다.
2022.06.23
조회수 6857
-
차세대 뉴로모픽 구현을 앞당길 멤리스터 기반 고신뢰성 인공 뉴런(신경세포) 어레이 개발
우리 대학 전기및전자공학부 최신현 교수 연구팀이 뛰어난 안정성과 집적도가 높은 우리 뇌의 뉴런 세포의 동작을 모사하는 *고신뢰성 차세대 저항 변화 소자(멤리스터) 어레이를 개발했다고 7일 밝혔다.
☞ 멤리스터(Memristor): 입력에 따라 소자의 저항 상태가 바뀌는 소자. 입력 전압의 크기와 길이 등에 따라 소자 내부의 저항 값이 바뀌며 정보를 저장하거나 처리한다.
최 교수 연구팀은 기존 멤리스터의 불안정한 특성을 보이는 필라멘트 기반 방식에서 벗어나, 점진적인 산소 농도를 갖는 금속산화물을 이용해 안정적이고 신뢰성 높은 인공 뉴런 어레이를 발표하였다. 기존의 멤리스터 소자는 안정성이 낮고 응용에 사용하기 위한 어레이 형태로 제작하기 힘든 문제점이 있지만, 최 교수 연구팀이 개발한 소자는 뛰어난 안정성을 갖출 뿐만 아니라, 자가 정류 특성과 높은 수율을 갖춰 대용량 어레이 형태로 집적될 수 있다. 따라서 집적도가 높고 안정적인 뉴로모픽 시스템을 구현할 때 활발히 사용될 수 있을 것으로 기대된다.
전기및전자공학부 박시온, 정학천 석박사통합과정, 박종용 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)' 6월호에 출판됐다. (논문명 : Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing)
인간의 뉴런은 들어오는 신호의 크기와 주파수에 따라 스파이크를 내보내거나 내보내지 않는 방식으로 정보를 처리한다. 현대의 컴퓨터가 빅데이터를 처리하는데 많은 에너지를 소모하는 것과 다르게, 사람의 뇌는 매우 적은 에너지만으로도 많은 양의 데이터를 빠르게 처리할 수 있다. 이러한 이유로, 신경의 효율적인 신호전달 시스템을 모사하여 컴퓨팅에 사용하는 `뉴로모픽' 하드웨어 기술이 활발히 연구되고 있다. 멤리스터 소자는 고집적, 고효율로 뉴로모픽 컴퓨팅 시스템을 구현할 수 있는 차세대 소자로 주목받고 있다.
그러나 현존하는 멤리스터로 실용적인 대용량 인공신경망 컴퓨팅(Large-scale Neural Computing) 시스템을 구현하기에는 단위 소자의 신뢰성 및 수율의 문제가 있다. 기존의 멤리스터는 절연체 내부에서 필라멘트가 마치 번개와 같이 무작위적으로 생성되고 사라지며 동작하기 때문에 제어하기가 힘들어 낮은 신뢰성을 보이게 되며, 이로 인해 안정적인 뉴로모픽 시스템을 구현하는 데 한계점으로 지적되어 왔다.
최신현 교수 연구팀은 이러한 무작위적인 필라멘트 문제를 해결하기 위해 필라멘트 기반 저항 변화가 아닌, 산소 이온의 점진적인 이동을 이용해 저항 변화 소자를 구현함으로써 소자의 신뢰성 확보하였다. 또한 단위 소자를 통한 어레이 제작 기술을 확보하여, 400개의 고신뢰성 인공 뉴런 소자를 100% 수율의 크로스바 어레이 형태로 집적하는 데 성공했다.
연구팀은 제작한 고신뢰성 인공 뉴런 어레이 기반 뉴로모픽 시스템을 이용해 항균성 단백질(anti-microbial peptide) 아미노산 서열을 학습하고, 이를 바탕으로 새로운 항균성 단백질을 만들어내는 뉴로모픽 시스템을 구현하였다.
제1 저자인 박시온 석박통합과정 연구원은 "이번에 개발한 고신뢰성 인공 뉴런 소자는 안정적인 특성과 높은 수율을 바탕으로 차세대 멤리스터 기반 뉴로모픽 컴퓨팅 시스템 구현에 기여할 수 있을 것으로 기대되며, 개발된 인공 뉴런 소자를 이용해 촉각 등을 감지하는 로봇의 인공 신경계, 시계열 데이터를 처리하는 축적 컴퓨팅(reservoir computing) 등 다양한 응용을 가능케 하여 미래 전자공학의 기반이 될 것으로 기대한다ˮ라고 말했다.
한편 이번 연구는 삼성미래육성사업의 지원을 받아 수행됐다.
2022.06.07
조회수 8301