-
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다.
이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다.
빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다.
하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다.
학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다.
즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다.
연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다.
또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다.
연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다.
더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다.
김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다.
이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 제작된 3차원 갭-플라즈몬 안테나
그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과
그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13320
-
디지털 이미지 위조, 변조 식별 기술 개발
이 흥 규 교수
우리 대학 전산학부 이흥규 교수 연구팀이 육안으로 판단이 어려운 디지털 이미지의 위조 및 변조를 식별할 수 있는 웹 서비스를 개발했다.
이 서비스는 국내에서 처음 시행되는 디지털 이미지 조작탐지 웹 서비스이며, 11일부터 http://forensic.kaist.ac.kr 도메인을 통해 시범 운영된다.
이번 연구는 이미지의 무결성 확인이 필요한 법원, 의료, 군사 등 다양한 분야에서 활용될 전망이다. 논문 사진, 의료 영상, 법적 증거자료 등에서 조작으로 인해 발생할 사회적 문제를 예방할 수 있을 것으로 기대된다.
기존의 이미지 조작 식별 서비스는 포맷 기반의 조작 탐지 방식에 근거해 위조 가능성 여부만을 알 수 있는 수준이었다. 포토샵 등 이미지 수정 프로그램의 다양한 수정 방식을 현재의 탐지 기술로 모두 잡아내기엔 어려움이 있었다.
연구팀은 국제 저명 논문 및 연구 결과들을 기반으로 해당 서비스를 구축했다. 복사-붙여넣기, 리터칭, 전체 변형, 스플라이싱 등 다양한 조작 방식을 식별하기 위해 탐지 방식 역시 여러 방향으로 구축했다.
연구팀은 ▲이미지 픽셀의 통계적 특성의 변화를 탐지하는 픽셀 기반 방식▲이미지 손실 압축 기업에 의한 무결성 검증을 통한 포맷 기반 방식▲카메라의 촬영 프로세스가 남기는 특성에 기반한 카메라 기반 방식을 이용해 조작을 탐지했다.
디지털 이미지에 가해지는 변형은 눈에 보이지 않아도 이미지 내부의 통계적 특성을 변화시킨다. 또한 변형의 종류에 따라 통계적 특성이 다르게 나타나는데 위의 방식들을 통해 조작의 영역 및 방식까지 측정이 가능해진다.
이번 웹 서비스는 논문 발표 수준에서만 진행되던 기술들을 다년간의 연구개발을 통해 일반에 제공함으로써 상용화의 발판이 될 것으로 기대된다. 연구팀은 개발된 기술 중 상당수는 이미 상용화 가능한 수준의 탐지율 및 기술 신뢰도를 보인다고 말했다.
이흥규 교수는 “전문 이미지 편집 툴의 발전에 비해 위변조 탐지 기술은 그 중요도에 비해 관심과 연구가 많이 부족하다”며 “다양한 위, 변조 탐지의 과학적 기법들이 실용화가 가능하도록 연구하겠다”고 말했다.
이번 연구는 미래창조과학부와 한국연구재단이 추진하는 중견연구자지원사업의 지원으로 수행됐다.
□ 사진 설명
그림 1. 2008년 이란의 미사일 발사 사진 조작 탐지 결과(복사-붙여넣기)
(左 : 원본, 中 : 이란에서 발표한 조작 사진, 右 : 연구팀이 탐지한 조작 영역이 픽셀로 표시된 화면)
그림 2. 탐지 기법 중 ‘색상 변환 탐지 기법’에 의해서 탐지된 결과 (左 : 원본, 中 : 색상 변형 조작 사진 右 : 조작 영역이 색깔로 표시된 화면)
그림 3. 복사-붙여넣기한 사진 조작 탐지 결과 (左 : 원본, 中 : 조작 사진, 右 : 조작 영역이 표시된 화면)
2015.06.11
조회수 14347
-
모델링 기반 거미줄 모사 인공 생체섬유 개발
유 승 화 교수
우리 대학 기계공학과 유승화(32) 교수 연구팀이 컴퓨터 모델링을 이용해 거미줄을 모사한 인공 생체섬유 개발에 성공했다.
이 연구를 기반으로 자연에서 생성되는 다양한 생체섬유의 합성과정에 대한 이해가 가능해지고, 실제 거미줄에 버금가는 인공 생체섬유의 설계, 제작을 앞당길 것으로 기대된다.
미국 매사추세스 공대, 플로리다 주립대, 터프츠 대학과 공동으로 진행한 이번 연구는 ‘네이처 커뮤니케이션즈(Nature Communications)’ 5월 28일자 온라인 판에 게재됐다.
거미줄은 강도가 강철에 버금가고 인성(끊어질 때까지 흡수하는 에너지 양)이 케블라 섬유와 버금가는 장점이 있다. 그러나 거미는 누에처럼 고치를 만들지도 않고 서로 영역을 침범하며 싸우기 때문에 사육이 어려워 대량 생산에 한계가 있었다.
그런 이유로 기존에는 박테리아 유전자에 거미줄 단백질을 삽입해 생체 섬유를 만들려는 시도가 많았으나 시행착오에 의존해 진행된 실험이 대부분이었다.
유 교수의 연구는 예측 가능한 모델링을 기반으로 다양한 단백질을 선제적으로 탐색하고, 인공 거미줄 설계 및 제작과정에 반영했다는 의의를 갖는다.
거미줄은 물속에서 안정성을 갖는 친수성과 반대로 물과 쉽게 결합되지 않는 소수성을 가진 영역이 교차로 존재하는 단백질(펩타이드)들이 가교를 이루며 결합한 구조이다. 거미줄은 거미의 실 분비 기관인 실샘에 존재하는 단백질 용액이 실관을 통과하며 전단유동을 통해 고체화돼 형성된다.
연구팀은 새롭게 개발된 컴퓨터 모델을 이용해 다양한 종류의 단백질 용액의 전단유동 하에서의 변화를 조사했다. 이를 통해 단백질의 아미노산 체인이 충분히 길고, 적절한 비율의 소수성과 친수성 영역을 가질 때만 단백질 간의 연결도가 급격히 증가해 높은 강성과 강도를 갖는 생체섬유 합성이 가능하다는 것을 밝혔다.
본 모델링을 통해 제시된 단백질을 박테리아의 유전자 조작을 통해 합성, 실관을 모사한 방적과정을 통해 인공 거미줄을 제작하였다.
연구팀은 강한 거미줄 생성 원리가 밝혀지기 시작했기 때문에 향후에는 실제 거미줄 강도에 버금가는 생체 섬유 제작이 가능할 것이라고 전망했다.
또한 생체 적합성을 갖기 때문에 인체 내에서도 부작용이 발생하지 않아 바이오메디컬용으로 사용이 가능할 것이라고 기대된다. 궁극적으로는 부작용이 없는 바이오메디컬에 특화된 생체 섬유 제작을 목표로 하고 있다.
유 교수는 “이번 연구로 체계적 설계를 통한 인공 생체섬유의 제작이 가능함을 증명했다”며 “향후 인공 생체섬유 합성의 새 가능성을 열었다”고 말했다.
□ 그림 설명
그림1. 합성된 인공 거미줄의 확대 사진
그림2. 전단유동 전후의 단백질 용액 모델링 결과 및 네트워크 연결도 분석 결과
2015.06.01
조회수 10434
-
레고블록 계면구조 수소연료전지 개발
우리 대학 생명화학공학과 김희탁 교수와 박정기 교수 공동 연구팀이 레고블록과 같은 맞물림 계면구조를 통해 결착력이 강화된 수소연료전지를 개발했다.
연구 결과는 재료과학분야 국제 학술지 ‘어드밴스드 머터리얼스(Advanced Materials)’ 20일자 온라인 표지논문으로 게재됐다.
전기자동차인 수소연료전지 자동차는 차세대 친환경 미래 자동차로 각광받고 있다. 하지만 기존 연료전지는 고가의 불소계 멤브레인(고분자 필름 박막)을 이용하기 때문에 가격을 낮추는 데 한계가 있었다.
이를 극복하기 위해 저가의 탄화수소계 멤브레인을 사용했지만, 백금 전극과의 계면 결착이 취약해 상용화에 어려움을 겪었다.
연구팀은 문제 해결을 위해 멤브레인과 전극 계면이 레고 블록처럼 서로 맞물려진 구조를 개발했다. 탄화수소계 멤브레인 표면에 형성된 마이크론 크기의 돌기가 전극 표면 고분자 층에 삽입된 후, 수분에 의해 팽창하며 계면 결착력이 발생하는 원리이다.
이 맞물림 계면구조의 개발로 탄화수소계 연료전지의 계면 결착력은 8배, 연료전지의 내구성은 4배 이상 향상됐다.
연구팀은 화학연구원 홍영택 박사팀과 협력해 맞물림 계면구조의 소재 설계를 수행했고, KAIST 기계공학과 이대길 교수팀과 수치 해석을 통한 계면 결착력 향상 메커니즘을 규명했다.
김희탁 교수는“맞물림 계면 구조를 도입한 연료전지는 탄화수소 소재가 가져왔던 한계를 극복할 단서를 제시했다”며, “연료전지의 가격을 낮추는 데 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 한국연구재단의 일반연구자사업과 KAIST 세계수준 연구중심대학(World Class University:WCU) 육성사업 프로그램 및 한국화학연구원 기관고유사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 어드밴스드 머터리얼스 誌에 게재된 레고블록 계면구조 개념도
그림 2. 마이크론 크기의 돌기가 표면에 형성된 탄화수소계 멤브레인
그림 3. 마이크론 크기의 돌기가 전극 표면 고분자층에 삽입된 계면 구조
2015.05.27
조회수 13282
-
새 인공 형광 단백질 나노 조립체 개발
정 용 원 교수
우리 대학 화학과 정용원 교수 연구팀이 새로운 모양과 다양한 크기의 인공적 형광 단백질 나노 조립체를 개발했다.
이 단백질 나노 조립체 연구로 단백질 기반 신약 및 백신 개발 등 새로운 나노구조체 분야에 활발한 적용이 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 14일자 온라인 판에 게재됐다.
우리 몸의 필수 구성요소인 단백질은 나노미터 크기의 특성과 더불어 무한한 기능과 구조를 갖고 있다는 점에서 새로운 물질 및 구조체 개발에 매우 적합한 것으로 알려져 있다.
특히 단백질 다수가 조립된 다중 조립체는 새로운 성질과 모양, 크기를 가지며 생체친화적인 나노 구조체이기 때문에 많은 관심을 받고 있다. 단백질 다중 조립체는 다수의 단백질이 동시에 작용하기 때문에 결합력을 극대화 해 신약, 백신 기능 향상 연구에 중요한 방법론을 제시할 것으로 기대되기 때문이다.
이 조립체의 상업적, 연구적 이용을 위해선 조립된 단백질의 수가 정확히 조절되고, 다양한 크기의 조립체를 제작할 수 있어야 한다. 하지만 현재의 기술로는 조립체의 크기에 따라 정밀히 분리하는 것이 쉽지 않다.
연구팀은 문제 해결을 위해 인공적 형광 단백질 조립체를 세포 내 합성을 통해 다양한 크기로 제작했다. 또한 조립체 표면 개량을 통해 거대 생체분자의 안정성을 향상시켰고, 다양한 크기의 조립체를 분리할 수 있는 방법을 최초로 개발했다.
이 방법을 이용해 다각형 및 선형 배열을 갖는 형광 단백질 조립체 또한 제작해 관찰했다. 이 과정에서 나노크기 공간에서의 결합 단백질의 개수를 증가시켰고, 기존 단일 단백질보다 비약적으로 향상된 결합력을 확인했다.
정 교수는 “이번 단백질 조립체 제작 기술은 다양한 모양과 크기, 기능성을 갖는 새 조립체 제작의 기반이 될 것이다”며 “비약적으로 향상된 기능을 가진 단백질 신약, 백신, 혹은 결합 리셉터 연구에 핵심적 역할을 할 것”이라 말했다.
정용원 교수 지도 아래 김영은 박사과정 학생이 1저자로 참여한 이번 연구는 우리 대학 김호민 교수 연구팀이 참여했으며, 한국연구재단이 추진하는 글로벌프론티어사업(바이오나노 헬스가드 연구단) 및 기초연구실지원사업의 지원을 받아 수행됐다.
□ 그림 설명
그림 1. 형광단백질 조립체 모식도 및 전자현미경 사진
2015.05.26
조회수 12943
-
빅데이터를 통해 고전음악 창작의 원리 밝혀
박 주 용 교수
우리 대학 문화기술대학원(CT) 박주용 교수 연구팀이 빅데이터를 이용해 서양 고전음악의 창작, 협력, 확산의 원리를 밝히는 데 성공했다.
문화기술대학원 박도흠 학생(박사과정)이 1 저자로 참여하고 미국 텍사스대 연구팀과 공동으로 진행한 이번 연구는 해외 저널인 EPJ 데이터 사이언스 4월 29일자 하이라이트 논문에 선정됐다.
연구팀은 ArkivMusic과 올 뮤직 가이드(All Music Guide)라는 세계 최대 음반 정보 사이트를 첨단 데이터와 모델링 방법을 사용해 분석했다.
연구팀은 고전음악 작곡가들의 시대와 스타일이 어떤 패턴을 이루는지 탐구해, 수 백 년의 차이가 있는 음악가들 사이에서도 긴밀한 네트워크가 존재함을 발견했다. 특히 소비자들의 음악적 취향이 고전음악 성장에 어떤 영향을 끼쳤는지 규명했다.
연구진은 미래의 고전음악 시장은 유명 작곡가들에게 집중되는 동시에 끊임없이 유입되는 새로운 음악가들로 인해 다양성이 유지되는 양면성을 갖게 될 것이라고 예측했다. 또한 이런 방식의 연구가 음악 뿐 아니라 미술과 문학 연구까지 확장될 것으로 예상했다.
박 교수는 “새로운 방식으로 문화의 원리를 밝히는 최신 연구의 일환이다”며 “문화에 과학적 방법론을 입힌 융합연구능력의 좋은 예시가 될 것”이라고 말했다.
붙임 : 연구 개요, 그림 설명
□ 연구 개요
* 빅데이터 출처: 아카이브뮤직(ArkivMusic)과 올 뮤직 가이드(All Music Guide)라는 빅데이터 소스를 사용했다. 아카이브뮤직은 서양 클래식 음반(CD)에 관한 세계 최대 정보를 제공하고 올 뮤직 가이드는 음악가들의 인적 정보를 제공하는 사이트이다. 여기서 약 64,000장의 클래식 음반과 그 음반에 음악이 수록된 14,000명의 작곡가 데이터를 사용했고, 이는 현재 ‘문화’의 빅데이터 연구로서는 세계 최대급 규모이다.
* 연구방법론: 서양 클래식 음악과 같은 문화의 중요한 특징 중의 하나는 그 창작자(작곡가 등)가 개인으로 동떨어져 존재하는 것이 아니라 다른 창작자들과 영향을 주고받으며 새로운 스타일이 등장하고 발전 한다는 것이다. 그러므로 창작자들이 맺고 있는 소통 및 연관성의 관계를 이해하는 것은 문화 창조의 원리, 역사와 미래를 이해하는 데 있어 매우 중요하다고 할 수 있다. 이를 위해 “CD--작곡가들의 빅데이터”로부터 작곡자들이 이루고 네트워크를 연구하였다. (그림 1) 즉, CD에 함께 등재된 작곡가들이 연결돼있는 것이다. 그림 1은 이 네트워크의 핵심적인 일부를 표현한 것으로 하단의 요한 세바스찬 바흐는 모차르트와, 차이코프스키는 드뷔시와 함께 CD에 등장한 적이 있음을 알게 해준다. 이러한 네트워크로부터 유의미한 패턴을 찾아 네트워크의 발전 원리와 미래를 연구하는 것을 네트워크 과학이라고 하는데, 현재 SNS와 사회과학, 인터넷 등의 연구에 사용되고 있다. ‘복잡계 네트워크 과학’ 이라고도 한다.
* 연구결과:
이 네트워크는 중세/르네상스(1500년대 이전) 작곡자로부터 2000년대 현존하는 작곡자까지 500년이 넘는 서양 클래식 음악의 역사를 담고 있으면서도, 작곡자와 작곡자간의 평균 거리는 3.5명에 불과한 좁은 세상을 이루고 있다. 직접 연결되지 않는 작곡가들끼리도 평균적으로 3-4명만 건너뛰면 연결이 돼 서로 가깝게 연관되어 있다는 것을 알 수 있다.
이 네트워크 안에서 각 작곡가들이 차지하는 비중은 작곡가에 따라 매우 상이하다는 것도 중요한 특징이다. 예를 들어, 요한 세바스찬 바흐는 (J. S. Bach) 이 1,551명의 각기 다른 작곡가와 연결돼있고, 모차르트는 (W. A. Mozart) 1086명의 다른 작곡가와 연결돼있는데 이는 작곡가 전체 평균 숫자인 15명의 수십, 수 백 배에 달한다. 바흐와 베토벤 같은 유명 작곡가들이 전체 작곡가 네트워크에서 얼마나 큰 비중을 차지하는지 수치적으로 명확히 보여줌으로써 영향력을 구체적으로 이해할 수 있는 것이다. (그림 1에서 작곡자들의 크기로 표현)
이 네트워크에서 연결되어있다는 것은 음반 레이블에서 CD를 발매할 때 함께 묶어서 냈다는 뜻이므로 스타일, 주제, 기법 등에 기반한 음악적 유사성을 뜻하는 것으로 볼 수 있다. 컴퓨터 알고리즘을 이용해 순전히 네트워크 구조로부터 서로 긴밀하게 연결된 작곡가들의 집단을 유추한 뒤 기존 클래식 음악사 연구에서 사용되는 사조 구분과 교차 검증을 햇다. (그림 2). 여기에서는 CD 빅데이터에 기반한 네트워크가 서양 클래식 음악의 발전사를 잘 보여주고 있다는 것을 알 수 있는데, 낭만파(1800년대)와 현대파(1900년대)를 잇는 프랑스의 작곡가 드뷔시(Debussy)의 중간적인 위치, 현대파의 유럽 및 남미파(드뷔시, 라벨, 피아졸라)-미국파(레너드 번스틴, 애론 코플랜드) 분리 등을 관찰할 수가 있다.
CD의 발매일자에 따른 네트워크의 과거 발전 모습을 분석함으로써 미래의 추세 또한 예측 가능하다. 미래의 네트워크는 유명 작곡가들에게 상대적으로 더욱 더 집중되는 모습을 가질 것으로 예상된다. 그러나 기술의 발전에 따른 CD 발매의 용이성에 힘입어 작곡가의 숫자 또한 꾸준히 늘어나는 것으로 관찰돼, 소수에 집중되는 측면과 다양성의 양면을 지닐 것으로 예상된다.
* 의의: 창작자가 서로 깊게 연관되어있는 문화의 발전 원리는 그 분야의 구성원 전체를 동시에 보는 것이 필요하므로, 이와 같은 빅데이터의 연구로 풀어내기에 매우 적합하다. 또한 다른 문화 분야 (회화, 문학 등) 로의 확장도 가능해 문화 분야 간 연관성 혹은 문화 전체의 발전의 원리를 연구할 수도 있을 것이다.
□ 그림 설명
그림 1. CD-작곡가들의 빅데이터
그림 2. 빅데이터와 사조구분 방법으로 교차 검증한 모식도
2015.05.06
조회수 13646
-
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수
우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다.
연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다.
키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다.
다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다.
연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다.
그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다.
이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다.
뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다.
김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다.
연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다.
한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다.
□ 그림 설명
그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진
그림2. 전체 실험과정 모식도
2015.04.30
조회수 10415
-
고효율의 단일광자원 소자 핵심기술 개발
조 용 훈 교수
우리 대학 물리학과 조용훈 교수 연구팀이 양자정보기술에 기여할 수 있는 고효율의 단일광자원(양자광원) 의 방출 효율과 공정 수율을 높일 수 있는 기술을 개발했다.
이번 연구 결과는 자연과학분야 학술지인 미국국립과학원회보(PNAS: Proceedings of the National Academy of Sciences) 4월 13일자 온라인 판에 게재됐다.
빛은 보통 파동의 성질을 갖는 동시에 입자의 성질도 가지고 있는데, 이 입자를 광자라고 한다. 단일광자원 혹은 양자광원은 광자가 뭉쳐서 나오는 고전적인 광원과는 달리 한 번에 한 개의 광자만 방출하는 소자이다. 반도체 양자점을 이용한 단일광자 방출 소자는 안정성 및 전기구동 가능성이 높아 상용화에 적합한 소자로 각광받고 있다.
하지만 빛의 파장은 양자점보다 수십~수백 배 정도 크기 때문에 상호 작용하기 어려워서 단일광자의 방출 효율이 매우 작다는 한계점이 있다. 따라서 고효율 단일광자원를 만들기 위해서는 양자점과 빛을 집속시키는 구조(광공진기)를 공간적으로 정확히 결합시키는 것이 필수적이다.
하지만 양자점은 불규칙하게 분포되어 있고 위치를 정확히 확인할 수 없어 우연성에 의존한 결합을 기대할 수밖에 없었다. 따라서 긴 공정시간에도 불구하고 소수의 단일광자소자를 제작하는 수준에 머물러 있었다.
연구팀은 문제 해결을 위해 피라미드 모양의 나노 구조체를 활용했다. 반도체 나노피라미드 구조에서는 양자점이 피라미드의 꼭지점에 자발적으로 형성된다. 그리고 그 위에 금속 필름을 얇게 증착하면 빛 역시 뾰족한 금속 끝에 모이는 성질 때문에 양자점과 동일한 위치에 집속되는 것이다.
특히 금속에서는 빛이 본래 가진 파장보다 작게 뭉칠 수 있다. 즉, 빛이 가진 파장보다 더 소형화를 시킬 수 있기 때문에 양자점과의 크기 차이로 인한 문제를 극복할 수 있게 되는데, 이 방법으로 단일광자 방출 효율이 기존의 방식보다 20배 정도 증가되었다.
단일광자 방출소자는 양자광컴퓨터 및 양자암호기술 구현의 가장 기본적인 구성 요소이다. 이번 연구를 통해 기존의 까다로운 과정들 없이 단순한 방식으로 효율과 수율을 모두 높일 수 있으므로, 단일광자방출원 혹은 양자광원 관련 기술의 상용화 가능성이 높아질 것으로 기대된다.
조 교수는 “이 기술은 높은 공정 수율을 갖고 있기 때문에 상용 양자광원 소자 제작 한계를 해결하고, 양자정보통신 분야 구현에 중요 기술이 될 것”이라고 말했다.
조용훈 교수의 지도를 받아 공수현(1저자)·김제형(2저자) 박사가 수행한 이번 연구는 우리 대학 신종화·이용희 교수, 프랑스 CNRS의 레시당 박사, 미국 UC 버클리의 샹장 교수가 참여했으며, 한국연구재단의 중견연구자 지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다.
그림 1. 단일 광자가 높은 효율로 방출되는 모습의 개념도
2015.04.23
조회수 14029
-
미세 입자의 3차원 영상 촬영기술 개발
우리 대학 물리학과 박용근 교수 연구팀은 CT촬영의 원리와 비슷한 광회절 단층촬영법을 이용해, 광학 집게로 포획한 입자의 3차원 위치를 고속으로 측정할 수 있는 기술을 개발했다.
이 기술로 광학 집게를 사용한 세포 단계의 수술 작업을 실시간 촬영할 수 있어 세포의 반응, 수술 예후 등을 모니터링 할 수 있게 됐으며, 기존에는 어려웠던 세포 내부 성분 및 총량에 대한 정확한 수치 측정이 가능해졌다.
연구 결과는 미국 광학회지 ‘옵티카(Optica)’ 4월 20일자 온라인 판 표지 논문으로 선정됐다.
광학 집게는 빛을 이용해 미세 입자를 포획해 힘을 가하거나 3차원 위치를 자유자재로 움직일 수 있는 기술이다.
렌즈를 이용해 레이저 빔을 머리카락의 수백분의 일 크기의 초점으로 모으면 자석에 철가루가 끌려오듯 주변의 미세입자들이 달라붙는다. 초점의 위치를 옮기거나 힘을 가해서 미세 입자의 3차원 위치를 조절하는 것이 광학 집게의 원리이다.
광학 집게로 움직인 미세 입자의 위치를 측정하기 위해서 광학 현미경을 이용하는데, 입자의 2차원 움직임은 미세 입자에 의해 산란된 빛의 정보를 측정함으로써 쉽게 알 수 있었다.
하지만 다른 물체가 시선 방향의 미세 입자를 가로막아 산란된 빛의 정보가 왜곡되거나, 생물 세포처럼 복잡한 형상인 경우에는 3차원 위치의 정확한 측정이 어려웠다.
연구팀은 병원의 CT촬영 원리와 비슷한 광회절 단층촬영법을 이용해 입자의 3차원 영상화에 성공했다. 다각도로 CT 영상을 찍어 환자 몸 내부를 들여다보듯이, 광학 집게로 포획한 미세 입자에 레이저 빔을 여러 각도로 입사해 촬영한 뒤 이를 분석하는 방식이다.
2 마이크로미터 크기의 유리구슬을 광학 집게로 집어 백혈구 세포 위에 얹은 뒤 백혈구의 반응을 1초당 60장의 속도로 영상화했다. 앞쪽에 위치한 백혈구가 구슬을 가려 기존의 기술로는 촬영이 어려웠지만, 연구팀의 광회절 단층촬영법으로 구슬의 3차원 위치 뿐 아니라 백혈구 내부의 물질 분포도 측정이 가능했다.
박 교수는 “포획한 입자의 3차원 위치와 내부 구조를 별도의 표지 없이 빠른 속도로 측정 가능한 기술이다” 며 “향후 물리학, 광학, 나노기술 및 의학 등의 다양한 분야에 응용될 것으로 기대한다”고 말했다.
김규현 학생(제1저자)은 "물리적, 화학적 자극에 따른 세포 반응을 단일 세포 단계에서 관찰하는 것이 중요하다"며, "이 방법을 이용해 부유 입자와 세포, 조직 등의 다양한 시스템에 광학 집게로 힘을 가하고 이를 3차원으로 실시간 영상화하는 실험을 수행할 예정이다"고 말했다.
□ 그림 설명
그림 1. 광집게로 집은 유리구슬을 백혈구 세포에 얹은 모습
그림2. 일반 현미경 관찰 영상과 광회절 단층촬영법 관찰 영상 비교
2015.04.21
조회수 11337
-
와이파이만 자동 감지해 다운로드하는 기술 개발
해외출장이 잦은 김 모 씨는 스마트폰에 영화를 다운받아 기내에서의 무료함을 달랜다. 그는 아침 회의에 들어가기 전 오후 5시까지만 다운을 완료하면 된다는 데드라인을 설정하고, 여러 일정을 마친 후 시간이 되자 기내에 탑승했다.
스마트폰을 확인하니 다운이 완료됐고, 자동으로 와이파이만 인식해 다운로드 했기 때문에 LTE 데이터는 전혀 소비되지 않았다.
우리 대학 전기및전자공학과 박경수, 이융, 정송 교수 연구팀은 와이파이와 이동통신 망의 단절을 자동으로 감지해 모바일 콘텐츠를 전달하는 기술 및 시스템을 개발했다.
이동통신 망에서 와이파이 망으로 데이터를 분산시키고 이양하는 것을 와이파이 오프로딩이라 한다. 이는 스마트폰에서 쉽게 볼 수 있는 기능이다.
그런데 현재의 와이파이 오프로딩은 원활하지 않아 자동적 시스템이 아닌 개인의 선택에 의해 이뤄지고 있다. 와이파이 망을 벗어나 이동하는 경우 연결이 단절되고 버퍼링이 발생해, 사용자들은 한 곳에서만 와이파이를 사용하거나 아예 해제하고 이동통신망을 이용하는 것이다.
원활한 오프로딩을 위해 관련 미래 표준을 만들고 있지만 LTE 망 통합 등의 변화가 필요하고 추후 장비 업그레이드 비용이 문제가 된다.
연구팀은 이러한 네트워크 단절 문제를 자동으로 처리하면서 와이파이 망을 최대한 사용하게 만드는 모바일 네트워크 플랫폼을 구축했다. 우선 네트워크 단절을 트랜스포트 계층에서 직접 처리해 네트워크간 이동 시에도 연결의 끊김 없이 전송이 가능한 프로토콜을 개발했다.
더불어 연구팀은 지연 허용 와이파이 오프로딩 기법을 개발했다. 다운로드 완료 시간을 예약하면 잔여 시간과 용량 등의 정보를 계산한 뒤, LTE와 와이파이를 스스로 조절해 최소의 LTE 데이터로 원하는 시간대에 다운로드를 완료할 수 있는 알고리즘이다.
이 기술은 스트리밍 플레이어에도 적용 가능해 와이파이 망에 있는 동안 더 많은 트래픽을 전송해 구역을 벗어나도 버퍼링 없는 동영상 시청이 가능하다.
이 기술로 사용자는 적은 요금으로 질 높은 콘텐츠를 이용할 수 있고, 사업자는 기존 LTE망의 재투자 및 효율적인 와이파이 망 유도가 가능하다. 또한 모바일 동영상 콘텐츠 사업자에겐 더 많은 수요자를 확보할 수 있다.
이융 교수는 “와이파이 오프로딩과 LTE 망의 관계를 최소화함으로써 모바일 콘텐츠 사업자, 망 사업자, 사용자 모두가 윈윈할 수 있는 기술이 될 것이다”고 말했다.
이번 연구는 미래창조과학부 정보통신기술진흥센터 (IITP) 네트워크 CP실(임용재 CP)의 지원을 받아 수행됐고, 5월에 개최하는 모바일 시스템 분야 최고 권위의 국제 학회인 에이씨엠 모비시스(ACM MobiSys)에서 발표될 예정이다.
□ 그림설명
그림 1. 지연 허용 와이파이 오프로딩 기법 개념도
2015.04.20
조회수 12283
-
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수>
우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다.
이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다.
일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다.
연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다.
엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다.
연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다.
연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다.
연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다.
박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다.
박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다.
□ 그림설명
그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술
세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14370
-
광전환 효율 높인 고분자 태양전지 모델 개발
<김 범 준 교수>
국내 연구진이 차세대 에너지원으로 각광 받고 있는 플라스틱 태양전지의 광전환 효율을 크게 높이는데(5% 이상, 기존 대비 1%p 이상 증가) 성공하였다. 특히 기존의 태양전지를 대체할 수 있다는 점에서 의미가 크다.
우리 대학 김범준, 부산대 우한영 교수(공동 교신저자)가 주도하고, 우리 대학 강현범, 부산대 우딘 모하메드 아프사르 박사(공동 제1저자)가 참여한 이번 연구는 미래창조과학부와 한국연구재단에서 추진하는 기초연구사업(중견연구자), 글로벌프론티어사업 등의 지원으로 수행되었고, 화학분야의 권위지 JACS(Journal of the American Chemical Society) 2월 18일자에 게재되었다.
고분자-고분자 태양전지는 기존의 풀러렌 유기태양전지에 비해 상용화에 핵심요소인 기계적인 안정성뿐만 아니라 열에 대한 안정성도 크게 향상시킬 수 있다.
그러나 풀러렌 유기태양전지(10%)에 비해 고분자-고분자 태양전지의 광전환 효율은 매우 낮다(4% 이하). 이것은 광 활성층을 형성하는 두 고분자가 잘 섞이지 않고 과도하게 분리되는 현상(상 분리)이 발생하기 때문이다. 이러한 상 분리 현상은 전자의 생성과 운반을 저해하고 태양전지의 광전환 효율을 감소시킨다.
연구팀은 전도성 고분자의 분자량과 구조를 조절함으로써 두 고분자의 상 분리 현상을 효과적으로 제어하여 5% 이상의 높은 광전환 효율을 가진 태양전지를 개발하였다.
연구팀은 현재 태양전지의 광전환 효율을 6%까지 끌어올렸는데, 이 수치는 지금까지 학계에 보고된 것 중에서 가장 높은 효율이다.
김범준 교수는 “이번 연구는 고분자 플라스틱 태양전지가 미래 에너지원, 특히 유연성이 필요한 휴대용 차세대 전자소자의 에너지원으로서 높은 응용가능성을 보여주는 사례”라고 밝혔다.
□ 그림 설명
그림 1. 플렉서블 고분자 / 고분자 태양전지 샘플
2015.03.30
조회수 12689