본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99%EC%9E%90%EC%97%B0%EA%B3%BC%ED%95%99%EB%8C%80%ED%95%99
최신순
조회순
휘어지는 물질에서 증폭된 광전기 효과 발견
양 찬 호 교수 우리 대학 물리학과 양찬호 교수 연구팀이 물질이 휘어질 때 광전기(光電氣) 효과가 증폭되는 것을 발견하고 그 원인을 규명했다. 이번 연구결과는 나노과학기술 분야 학술지 ‘네이처 나노테크놀로지(Nature Nanotechnology)’ 8월 31자 온라인 판에 게재됐다. 광전기 효과는 빛 에너지가 전기 에너지로 전환되는 현상으로 이 효과를 이용하면 온실가스 배출 없이 전기를 만들 수 있다. 따라서 전 세계적으로 안정적이고 저렴하며 효율이 높은 광전기 효과를 발생시키는 물질 및 구조를 찾는 연구가 활발히 진행되고 있다. 기존 태양광 소자들은 다른 물질을 붙이거나 P형-N형 반도체를 접합하는 등 두 개 이상의 물질을 이용하는 방식으로 광전기 효과를 일으켰다. 하지만 연구팀은 단일 물질에서도 휘어지는 변형이 발생했을 때 마치 두 물질의 경계면에서 광전기 효과가 일어나는 것과 흡사한 현상을 발견했다. P형-N형 반도체 접합에서만 가능했던 전기장 생성이 단일 물질의 휘어짐으로도 가능함을 확인해 좀 더 효율적인 광전기 소자 제작이 기대된다. 물질의 일반적인 휘어짐으로는 얻을 수 있는 광전기 효과가 크지 않아 실용성이 없었다. 하지만 연구팀은 나노미터 크기의 구조까지 관찰해 물질이 자발적으로 매우 크게 휘는 구간을 발견했다. 그리고 수십 나노미터(1억분의 1미터)의 곡률(曲律)로 크게 휘어진 이 물질이 통상적인 물질에 비해 100배 증폭된 광전기 효과를 생성함을 규명했다. 광전기 효과가 증폭된 원인은 물질이 휘어질 때 발생하는 전기장에 있다. 물질이 빛을 받으면 원자에 묶여있던 전자가 잠깐 움직일 수 있는 상태가 되는데 일반적으로는 원자에 다시 속박된다. 하지만 물질이 휘어지는 구간에서는 전기장이 유의미한 강도로 세게 발생해 전자가 원자의 속박을 벗어나 외부로 빠져나와 전류가 흐를 수 있는 것이다. 특히 나노미터 규모의 미시적 구조에서는 물질이 크게 휘어진 상태가 흔하게 존재하기 때문에 연구팀의 규명은 작은 나노소자 연구에 유용할 것으로 예상된다. 또한 연구팀은 물질 표면의 전기기계적 성질을 10나노미터의 해상도로 이미지화할 수 있는 기술을 개발했다. 이 기술은 전기장 분포를 유추할 수 있어 다양한 나노스케일 연구에 활용할 수 있을 것으로 기대된다. 양 교수는 “휘어진 정도가 큰 경우에 플렉소전기 현상의 비선형 움직임이 중요함을 제안했다.”며 “이러한 비선형 거동은 전기기계적 성질의 계보를 잇는 새로운 현상으로 학술적 가치가 높다”고 말했다. 이번 연구는 우리 대학 김용현 교수, 포항공대 조문호 교수, 오상호 교수, 포항 가속기연구소 구태영 박사, 재료연구소 최시영 박사 등과 공동으로 진행됐고, 한국연구재단의 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. 물질이 휘어질 때 광전기 효과가 발생함을 나타낸 개념도
2015.09.15
조회수 11460
빛 이용 나선형 구조체 방향조절 기술 개발
김 상 율 교수 우리 대학 화학과 김상율 교수, 서명은 교수 연구팀이 빛의 파동을 이용해 특정한 방향으로 꼬인 나선형 나노 구조체를 형성하는 데 성공했다. 연구 결과는 국제 학술지 네이처 커뮤니케이션(Nature Communications) 23일자 온라인 판에 게재됐다. 키랄성이란 오른손과 왼손처럼 모양은 같지만 서로 거울에 비친 형태를 가지는 물질을 말한다. 키랄성 물질은 돌리고 방향을 바꾸어도 서로 겹칠 수 없는 구조적 특성을 갖는다. 자연에 존재하는 DNA나 단백질 등을 구성하는 분자들은 이 중 한쪽 형태로만 이루어져 있다. 다량의 특정 키랄성 물질이 자연계에 존재하는 이유는 명백히 밝혀지지 않았다. 한 가지 가설은 유기 물질이 처음 생성될 시점에 우주로부터 나선을 따라 진동하는 빛의 파동인 원편광이 쬐어져, 원편광의 나선 방향이 유기 물질에 전달되어 한쪽 키랄성을 갖는 분자가 보다 많이 만들어 지게 됐다는 것이다. 연구팀은 이 가설에 입각해 원편광의 키랄성이 비키랄성 분자에 전달 및 증폭이 가능한지 알아보기 위해 빛에 반응하는 비키랄성 분자를 이용했다. 그리고 비키랄성 분자에 오른원편광, 왼원편광을 따로 노출시켜 분자들이 원편광의 방향에 따라 다른 방향의 나선을 그리며 쌓이는 것을 확인했다. 기존의 방법으로 나선형 구조체를 만들 때 반드시 키랄성 분자가 필요했던 것을 뒤집는 결과가 나온 것이다. 이처럼 단순히 특정 방향의 원편광을 비추는 것만으로 원하는 방향의 나선형 구조체를 만들 수 있고, 다시 반대 방향의 원편광을 비추면 나선의 방향을 뒤집는 것 또한 가능하다는 것을 증명했다. 뿐만 아니라 광중합을 이용해 나선형 구조체를 굳히는 방법을 개발해 구조체의 제작부터 방향을 고정시키는 전 과정을 빛을 이용해 제어하는 데 성공했다. 김상율 교수는 “원평광의 방향에 따라 비키랄성 분자의 자기조립 경로가 좌우되고, 자기조립을 통해 키랄성이 증폭되므로 결국 원편광의 방향이 나선 방향을 결정할 수 있다는 것이다”며 “키랄성의 기원에 대해 흥미로운 가능성을 제시하고 있다”고 말했다. 연구팀은 키랄성 센서를 만들거나 키랄성 분자를 분리하는 등의 응용 분야에 개발된 나선형 나노 구조체가 유용하게 사용될 것으로 전망했다. 한국연구재단 중견연구자 지원사업과 선도연구센터 육성사업의 지원을 받아 진행된 이번 연구는 김상율 교수와 서명은 교수가 교신 저자로, 김지성 학생이 제1저자로 참여했다. □ 그림 설명 그림1. 빛에 의해 형성된 나노 구조체의 주사전자현미경 사진 그림2. 전체 실험과정 모식도
2015.04.30
조회수 10417
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1