-
화재 위험 차단한 자가발전형 수소 생산 시스템 개발
현재 그린 수소 생산의 한계를 극복할 새로운 수소 생산 시스템을 KAIST 연구진이 개발하여 수용성 전해질을 사용한 물분해 시스템을 활용해 화재의 위험을 차단하고 안정적인 수소 생산이 가능할 것으로 예상된다.
우리 대학 신소재공학과 강정구 교수 연구팀이 우수한 성능의 아연-공기전지* 기반의 자가발전형 수소 생산 시스템을 개발했다고 22일 밝혔다.
*공기전지: 일차 전지 중 하나로 공기 중 산소를 흡수해 산화제로 사용하는 전지이며, 수명이 긴 것이 장점이지만 기전력이 낮은 것이 단점임.
수소(H2)는 고부가가치 물질 합성의 원료로 기존 화석연료(휘발유, 디젤 등) 대비 3배 이상 높은 에너지밀도(142MJ/kg)를 지녀 청정 연료로 주목받고 있다. 그러나 현재 수소 생산 방식 대부분 이산화탄소(CO2)를 배출하는 문제가 있다.
아울러 그린 수소 생산은 태양전지, 풍력 등 신재생에너지를 동력원으로 물을 분해해 수소의 생산이 가능하나, 신재생에너지 기반의 동력원은 온도, 날씨 등에 영향을 받아 불규칙한 발전량에 따른 낮은 물 분해 효율을 보인다.
이를 극복하기 위해 물 분해를 통한 수소 생산에 충분한 전압(1.23V 이상)을 방출할 수 있는 공기전지가 동력원으로 주목받고 있지만, 충분한 용량 구현을 위해 귀금속 촉매를 사용해야 하고, 장시간 충·방전시 촉매 소재의 성능이 급격히 저하되는 한계가 있다.
이에 물 분해 반응(산소 발생, 수소 발생)에 효과적인 촉매와 반복적인 아연-공기전지 전극의 충·방전 반응(산소 환원, 산소 발생)에 안정적인 물질의 개발이 필수적이다.
이에 강 교수 연구팀은 산화 그래핀에 성장시킨 나노 사이즈의 금속-유기 골격체를 활용해 3가지 다른 촉매반응(산소 발생-수소 발생-산소 환원)에 모두 효과적인 비귀금속 촉매 소재(G-SHELL)의 합성법을 제시했다.
연구팀은 개발된 촉매 물질을 공기전지의 공기극 물질로 구성해 기존 배터리 대비 약 5배 높은 에너지밀도(797Wh/kg), 높은 출력 특성(275.8mW /cm²), 그리고 반복적인 충·방전 조건에서도 장시간 안정적인 구동이 가능함을 확인했다.
또한 수용성 전해질로 구동돼 화재의 위험으로부터 안전한 아연-공기전지는 차세대 에너지 저장 장치로서 수전해 시스템과 연동시켜 수소 생산을 위한 친환경적인 방법으로 적용할 수 있을 것으로 기대된다.
강 교수는 “낮은 온도, 간단한 방법으로 3가지 다른 전기화학 촉매반응에서 높은 활성도와 수명을 지닌 촉매 소재를 개발해 구현된 아연-공기전지 기반 자가발전형 수소 생산 시스템은 현재 그린 수소 생산의 한계를 극복할 수 있는 새로운 돌파구가 될 것이다”고 밝혔다.
신소재공학과 김동원 박사과정과 김지훈 석사과정이 공동 제1 저자로 참여한 이번 연구 결과는 융복합 분야(MATERIALS SCIENCE, MULTIDISCIPLINARY)의 국제 학술지 `어드밴스드 사이언스(Advanced Science)'에 9월 17일 字 게재됐다.
(논문명: Trifunctional Graphene-Sandwiched Heterojunction-Embedded Layered Lattice Electrocatalyst for High Performance in Zn-Air Battery-Driven Water Splitting)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2024.10.22
조회수 1095
-
전기 공급만으로 공기 중 CO₂를 제거하다
대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다.
고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시스템 구현에 성공했다.
외부 열에너지의 공급 없이 전기만으로 구동할 수 있는 본 기술은 태양광, 풍력 등 다양한 재생에너지원을 직접 이용할 수 있고, 시스템의 부피가 매우 작아 기존 탄소 포집기가 적용될 수 있는 영역의 한계를 뛰어넘을 수 있다.
공기 중 극미량 존재하는 이산화탄소를 포집하는 기술을 기술 수준 하단에서 상단까지, 즉 실험실 단계에서 상업적 규모로 확대하는 것은 매우 어려운 일이다. 첫째, 대기 중 이산화탄소 농도가 낮아 이를 효과적으로 포집하기 위해서는 매우 효율적인 흡착제가 필요하다. 둘째, 포집된 이산화탄소를 경제적이고 에너지 효율적으로 분리하는 시스템이 필요하다. 셋째, 이 모든 과정을 대규모로 구현하기 위해서는 안정하고 일관성 있는 공정이 보장돼야 한다.
연구팀은 이러한 도전에 맞서 전기 가열원이 통합된 흡착제 및 시스템을 개발해 이산화탄소 포집기의 성능을 극대화했다. 이 흡착제는 대량 생산이 가능하며, 넓은 비표면적을 제공해 이산화탄소를 더 효율적으로 흡착할 수 있다. 또한, 빠른 흡착 및 탈착 속도를 자랑하며, 구조적으로 강해 반복적인 사용에도 변형이 적다.
연구팀이 개발한 탄소 포집기는 고성능의 흡착 소재에 이산화탄소를 흡착한 후 전기로 작동하는 가열원을 통해 발생하는 열을 이용해 순수한 이산화탄소 얻어내는 방식으로, 에너지 효율이 높고 정밀한 온도 제어가 가능하다. 이 시스템의 큰 장점 중 하나는 재생에너지로만 가동이 가능할 정도로 에너지 효율적이라는 점이다. 이는 전기에 접근성이 있는 모든 지리적 환경에 배치가 가능해, 다양한 장소에서 이산화탄소를 포집할 수 있게 한다.
현재 실험실 스케일에서는 하루 약 1~3kg의 이산화탄소를 처리할 수 있을 것으로 예상된다. 이 기술은 향후 하루 포집량 1톤 규모 이상으로 스케일업 및 대규모 배치도 가능하며 대기 중 이산화탄소를 포집하는 용도 뿐만 아니라 화력발전소, 시멘트 공장, 철강 공장 등 대규모 이산화탄소 배출원을 대상으로도 중요한 역할을 할 것으로 기대된다.
김규남 박사과정 연구원은 "이번 연구는 대기 오염 문제 해결에 한 발 더 다가설 수 있는 중요한 성과이며, 앞으로도 지속적인 연구를 통해 기술을 발전시키고 실제 환경에서의 적용 가능성을 높이겠다”라고 말했다.
연구팀은 본 기술의 혁신성을 인정받아 2022년에는 랩 스타트업(Lab Startup) KAIST 최우수상 수상, 2023년에는 미국 R&D 100 어워즈(Awards)의 파이널리스트(Finalist)로 선정됐으며, 2024년 1월에는 라스베이거스에서 개최된 국제전자제품박람회(CES 2024)에 e-DAC 데모 유닛을 전시하고 부스 발표를 하며 기술의 우수성을 널리 알린 바 있다.
이번 연구는 사우디 아람코-KAIST 이산화탄소 연구센터의 지원으로 이루어졌으며, 양 기관의 지속적인 협력을 통해 더욱 혁신적인 기술 개발이 기대된다.
2024.07.29
조회수 2303
-
‘일기 쓰는 공기청정기’, ACM DIS 우수 픽토리얼상 수상
인공지능의 발달로 의식, 생각, 감정과 같은 속성이 있다고 여겨지는 스마트 사물이 등장하고 있다. 그러나 그러한 속성이 사물에서는 어떤 방식으로 포함되고 드러나며 사람들에게 어떤 영향을 주는지에 관한 연구는 세계적으로 미비하다.
우리 대학 산업디자인학과 남택진 교수팀의 일기 쓰는 공기청정기 개발 논문이 국제학술대회인‘ACM DIS(Designing Interactive Systems) 2023’에서 국내 최초로 우수 픽토리얼상(Honorable Mention Award)을 수상했다고 16일 밝혔다.
ACM DIS 학술대회는 인간-컴퓨터 상호작용 분야의 최우수 학술대회 중 하나로 올해는 7월 10일부터 14일까지 미국 피츠버그 카네기멜론 대학에서 개최됐다. 이 학술대회의 픽토리얼이란, 글과 수식만이 아닌 주석이 있는 그림이나 사진과 같은 시각 자료를 충분히 활용해 지식을 전달하는 새로운 형식의 논문을 말한다.
남택진 교수팀은 2021년 아날로그 제품을 간편하게 사물 인터넷(IoT)화하는 기기인 ‘아이오타이져(IoTIZER)’ 개발로 국내 연구팀으로는 처음 픽토리얼을 발표한 데 이어 올해는 국내 최초 논문 수상 성과를 거두었다.
남택진 교수팀은 사물 관점에서 스스로 일기를 쓰는 공기청정기인 ‘아레카(Areca)’라는 제품을 개발하고, 사물에 포함되는 의식의 속성을 정의하고 표현하는 디자인 과정을 소개했다. 의식이 있다고 느껴지는 미래 사물의 구체화 사례로써 아레카의 하드웨어와 인터랙션을 디자인하였다. 실제로 작동하는 시작품을 구현함으로써 미래 사물이 인간에 미치는 영향을 사유하고 깊이 탐구할 수 있게 됐다.
이번 학술대회에서 구두 발표와 시연을 주도한 제1 저자 조형준 박사과정은 “인공지능(AI)과 같은 기술의 발전으로 인공물의 디자인 작업에서 새롭게 대두될 의식과 같은 비물질적 요소를 제시하고 실제 예시를 제시했다는 점이 높은 평가를 받은 것 같다”라고 말했다.
남택진 교수는 “아레카(Areca)는 재미있는 상상을 현실로 구현한 단순한 사례가 아니라 앞으로 AI가 탑재될 고도로 지능화된 제품의 원형을 보여준 연구 제품이며, 앞으로 새로운 유형의 스마트 제품디자인 연구를 이어갈 것이다”라고 말했다.
2023.08.16
조회수 3912
-
물방울로 코로나19 바이러스 잡는다
우리 대학 기계공학과 이승섭 교수와 정지훈 박사팀이 코로나19 바이러스 살균 기능이 있는 초미세 물방울의 대량 생성이 가능한 '정전분무' 기술을 개발했다고 14일 밝혔다.
이승섭 교수팀의 '정전분무(electrostatic atomization)' 기술로 만들어진 마이크로/나노 크기의 초미세 물방울 안에는 *'OH 래디컬'이 함유돼 있다. OH 래디컬은 불안정한 화학구조로 반응성이 매우 높고 강력한 산화력 때문에 세균과 바이러스 살균 기능을 보유하고 있지만 인체에는 전혀 해를 끼치지 않는 천연물질이다.
☞ OH 래디컬(hydroxyl radical): 거의 모든 오염물질의 살균·소독에 관여하며 화학적으로 분해하고 제거할 수 있는 가장 강력한 효과를 발휘하면서도 인체에는 무해한 물질. 현존하는 물질 중에서 OH 래디컬의 산화력(살균·소독·분해하는 능력)은 불소(F) 다음으로 강력하고 오존과 염소보다 강력하지만 불소·염소·오존처럼 독성이 있거나 인체에 유해하지는 않다.
OH 래디컬은 높은 반응성으로 공기 중에서는 수명이 매우 짧아 효과적인 살균 기능에 어려움이 있으나, OH 래디컬을 물방울에 가두면 수명을 크게 늘릴 수가 있어 살균에 유용하게 이용할 수 있다. OH 래디컬을 함유하는 초미세 물방울은 일본 파나소닉 社의 나노이(nanoeTM) 기술이 세계적으로 가장 앞서있다. 다만, 나노이 기술은 공기 중의 수분을 차가운 금속 팁 위에 응결시켜 정전분무 하는 방식이어서 생성되는 초미세 물방울의 양이 매우 적고 인가전압이 높아 인체에 해로운 오존이 발생되는 단점이 있다.
일본 파나소닉은 자사의 나노이 기술로 만들어진 초미세 물방울이 코로나19 바이러스에 살균 효과가 있다는 실험 결과를 올 7월 말 발표한 바 있다.
이승섭 교수 연구팀은 세계 최초로 멤스(MEMS) 기술로 제작된 폴리머 재질의 초미세 노즐을 이용해 정전분무 하는 방식으로, 인가전압이 낮아 정전분무가 오존 발생 없이 안정적으로 구현된다. 또한 초미세 노즐 어레이를 이용해 외부 환경과는 무관하게 초미세 물방울을 대량으로 생성하는 데도 성공했다.
머리카락보다 가는 초미세 노즐은 피뢰침과 같이 높게 솟아있는 구조로 초미세 노즐의 주위는 마이크로 돌기로 소수성 처리가 돼 있다. 이승섭 교수팀은 지난 수년간 폴리머 초미세 노즐 개발과 물 정전분무 기술을 이용해 가습·탈취·미세먼지제거·항균 등과 같은 공기정화에 관한 연구를 수행해왔다.
이승섭 교수팀은 현재 초미세 물방울의 양산이 가능한 '폴리머 초미세 노즐 정전분무' 기술을 기반으로 코로나19 바이러스 살균용 공기정화기를 개발 중이다. 순수한 물을 이용한 살균 방법으로 인체에 해가 없고 친환경이라는 장점 때문에 향후 코로나19 방역에도 큰 도움을 줄 것으로 기대하고 있다.
한편 이승섭 교수팀의 폴리머 초미세 노즐을 이용한 물 정전분무 연구는 올 4월 국제학술지 '폴리머(Polymer)'에 소개된 바 있다. (논문명; Polymer micro-atomizer for water electrospray in the cone jet mode). 아울러 이 교수팀은 올 8월부터 KAIST 코로나 뉴딜사업의 지원을 받아 후속 연구를 진행 중이다.
2020.10.14
조회수 29792
-
공기중 산소로 충전되는 차세대 배터리용 에너지 저장 소재 개발
우리 연구진이 공기 중에 널리 퍼져있는 산소로 충전되는 차세대 배터리인 리튬-공기 배터리의 에너지 저장 소재를 개발했다. 기존 리튬-이온 배터리에 비해 약 10배 큰 에너지 밀도를 얻을 수 있어 친환경 전기자동차용 배터리에 널리 쓰일 것으로 기대된다.
우리 대학 신소재공학과 강정구 교수가 숙명여대 화공생명공학부 최경민 교수 연구팀과 공동연구를 통해 원자 수준에서 촉매를 제어하고 분자 단위에서 반응물의 움직임 제어가 가능해 차세대 배터리로 주목받는 리튬-공기 배터리용 에너지 저장 전극 소재(촉매)를 개발했다.
연구팀은 이번 소재개발을 위해 기존 나노입자 기반 소재의 한계를 극복하는 원자 수준의 촉매를 제어하는 기술과 금속 유기 구조체(MOFs, Metal-Organic Frameworks)를 형성해 촉매 전구체와 보호체로 사용하는 새로운 개념을 적용했다. 금속 유기 구조체는 1g만으로도 축구장 크기의 넓은 표면적을 갖기 때문에 다양한 분야에 적용 가능한 신소재다.
이와 함께 물 분자의 거동 메커니즘 규명을 통해 물 분자를 하나씩 제어하는 기술도 함께 활용했다. 이 결과, 합성된 원자 수준의 전기화학 촉매는 금속 유기 구조체의 1nm(나노미터) 이하 기공(구멍) 내에서 안정화가 이뤄져서 뛰어난 성능으로 에너지를 저장한다는 사실을 밝혀냈다.
KAIST 신소재공학과 최원호 박사과정이 제1 저자로 참여한 이 연구결과는 재료 분야 저명 국제 학술지 `어드밴스드 사이언스 (Advanced Science)' 5월 6일 字에 게재됐다. (논문명 : Autogenous Production and Stabilization of Highly Loaded Sub-Nanometric Particles within Multishell Hollow Metal-Organic Frameworks and Their Utilization for High Performance in Li-O2 Batteries)
리튬-이온 배터리는 낮은 에너지 밀도의 한계로 인해 전기자동차와 같이 높은 에너지 밀도를 요구하는 장치들의 발전 속도를 따라잡지 못하고 있다. 이를 대체하기 위해 다양한 종류의 시스템들이 연구되고 있는데 이 가운데 높은 에너지 밀도의 구현이 가능한 리튬-공기 배터리가 가장 유력한 후보로 꼽힌다. 다만 리튬-공기 배터리는 사이클 수명이 매우 짧아서 이를 개선하기 위해 공기 전극에 촉매를 도입하고 촉매 특성을 개선하려는 연구가 활발히 진행되고 있다. 공동연구팀은 원자 수준의 촉매 도입 후 사이클 수가 3배 정도 증가하는 결과를 얻었다.
또 촉매의 경우 크기가 1nm(나노미터) 이하로 작아지면 서로 뭉치는 현상이 발생해서 성능이 급격하게 떨어진다. 공동연구팀은 이런 문제 해결을 위해 원자 수준 촉매 제어기술을 사용했는데 물 분자가 금속 유기 구조체의 1nm(나노미터) 이하의 공간에서 코발트 이온과 반응해 코발트 수산화물을 형성했고, 그 공간 내부에서도 안정화를 이뤘다. 안정화가 이뤄진 코발트 수산화물은 뭉침 현상이 방지되고, 원자 수준의 크기가 유지되기 때문에 활성도가 향상되면서 리튬-공기 배터리의 사이클 수명 또한 크게 개선되는 결과를 얻었다.
강정구 교수는 "금속-유기 구조체 기공 내에서 원자 수준의 촉매 소재를 동시에 생성하고 안정화하는 기술은 수십만 개의 금속-유기 구조체 종류와 구현되는 촉매 종류에 따라 다양화가 가능하다ˮ면서 "이는 곧 원자 수준의 촉매 개발뿐만 아니라 다양한 소재개발 연구 분야로 확장할 수 있다는 의미ˮ라고 설명했다.
한편 이번 연구는 과학기술정보통신부의 글로벌프론티어사업 및 수소에너지혁신기술개발사업의 지원을 받아 수행됐다.
2020.06.01
조회수 14862
-
이도창, 김신현 교수, 반도체 나노막대로 초박막 편광필름 개발
우리 대학 생명화학공학과 이도창, 김신현 교수 연구팀이 반도체 나노막대가 일렬로 배열된 수 나노미터 두께의 편광필름을 개발했다.
이 교수 연구팀은 나노막대입자의 상호작용력을 미세하게 조절해 나노막대들이 스스로 공기-용액 계면에서 일렬종대로 조립되게 설계했다. 이러한 자기조립기술은 전기장이나 패터닝된 기판 등 외부의 도움이 필요하지 않기 때문에 다양한 분야에 폭넓게 응용 및 적용될 수 있을 것으로 기대된다.
김다흰 연구원이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 레터스(Nano letters)’ 2월 19권 2호에 출판됐다. (논문명 : Depletion-mediated interfacial assembly of semiconductor nanorods).
반도체 나노막대는 막대의 긴 방향을 따라 편광 빛을 내는 독특한 광학 특성이 있어 디스플레이 분야에서 막대한 빛 손실을 가져왔던 기존 편광판을 대체할 수 있는 전도유망한 나노소재로 주목받고 있다.
단일 나노막대의 편광 특성을 소자 면적의 필름에서 구현하기 위해서는 구성하는 모든 나노막대가 한 방향으로 정렬된 뗏목 형태인 스멕틱(smectic) 자기조립 구조가 필요하다.
그러나 수십 나노미터의 길이와 수 나노미터 두께의 나노막대를 대면적에서 정렬하기 위해서는 전기장을 유도하는 전극 기판 혹은 한정된 공간에서 입자를 조립할 수 있는 패터닝된 기판을 필요로 해 실제 소자에 적용하기에는 한계가 있다.
이렇게 조립된 나노막대 필름은 두께가 불균일하고 두꺼워 균일한 초박막 층을 사용해야 하는 필름 소자에는 적합하지 않았다.
연구팀은 문제 해결을 위해 공기-용액 계면과 나노막대 간의 인력, 나노막대와 나노막대 간의 인력을 순차적으로 유도해 단일층 두께의 나노막대 스멕틱 필름을 제작했다.
연구팀의 고배향 필름 제작 기술은 기판으로 사용된 공기-용액 계면을 용액 증발과 함께 제거할 수 있고 조립 면적에 제한이 없어 소자 종류에 상관없이 적용할 수 있다.
연구팀은 길이 30나노미터, 지름 5나노미터의 나노막대들이 수십 마이크로 제곱 면적에 걸쳐 88%의 정렬도로 초박막 필름을 형성함을 확인했다.
나아가 계면과 나노막대, 나노막대와 나노막대 간 상호작용력을 정량적으로 계산 및 비교함으로써 나노막대가 계면에서 조립되는 원리를 밝혔고, 계면에서 얻을 수 있는 다양한 형태의 자기조립구조를 증명했다.
연구팀이 개발한 반도체 나노막대의 스멕틱 필름은 편광 발광층으로 디스플레이 분야에 활발히 적용돼 소자 두께의 최소화, 비용 절감, 성능 강화 등에 이바지할 수 있을 것으로 기대된다.
1 저자인 김다흰 연구원은 “입자의 상호작용력 조절을 통해 단일층 두께에서 나노막대 스스로가 방향성을 통제하며 고배열로 정렬할 수 있다는 것을 보였다. 이는 외부 힘 없이도 더욱 정교한 자기조립구조가 가능하다는 것을 보여주는 결과이다”라며 “고배열, 고배향을 갖는 다양한 나노입자의 초박막 필름 제작 및 필름 소자에 활발히 사용될 것이다”라고 말했다.
이번 연구는 한국연구재단 나노․소재원천기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 공기-용액 계면에서 나노막대의 자기조립 과정을 보여주는 모식도
그림2. 나노막대 표면을 감싸고 있는 리간드 층 밀도에 따른 자기조립구조 모식도와 전자현미경 이미지
2019.03.20
조회수 12125
-
윤동기 교수, 공기로 대면적의 모자이크만화경 패턴 구현
〈 윤동기 교수 〉
우리 대학 나노과학기술대학원/화학과 윤동기 교수 연구팀이 액정의 결함을 이용해 마이크론 크기의 공기 기둥을 만들고, 이를 이용해 모자이크 만화경(kaleidoscope) 패턴을 구현하는 데 성공했다.
이번 연구는 향후 자연계에서 존재하는 다양한 형태의 반복적 모자이크 구조의 형성에 대한 이해를 도울 수 있는 기초연구가 될 수 있을 것으로 기대된다. 이를 기반으로 액정기반의 나노 재료를 활용해 디스플레이, 광학 및 화학 센서 등의 응용기술에 다양하게 기여할 것으로 기대된다.
김대석 박사가 1저자로 참여하고 슬로베니아 루블라냐 대학(University of Ljubljana)의 우로스 트칼렉(Uros Tkalec) 교수와의 국제 공동 연구로 수행된 이번 연구는 국제 학술지 사이언스의 자매지 ‘사이언스 어드밴시스(Science Advances)’ 11월 23일 자 온라인판에 게재됐다. (논문명: (영문)Mosaics of topological defects in micropatterned liquid crystal textures, (국문)마이크로 패턴이 형성된 액정의 위상 결함 모자이크 패터닝)
액정 재료는 손쉬운 배향 제어, 빠른 반응 속도, 이방적(anisotropic)인 광학 특성으로 인해 액정표시장치(LCD), 광학 센서 등에 활용되는 대표적 유기 소재이다.
이때 액정의 결함을 최소화하는 것이 성능 유지를 위해 유리한 것으로 알려졌지만 물질의 특성상 액정의 결함은 불가피하게 발생한다.
그러나 최근 액정의 결함이 오히려 광학적, 구조적 및 탄성적 기능을 가진 것으로 주목받으면서 액정물질은 더 이상 LCD 광학 소재의 전유물이 아닌 전기광학 및 센서 분야를 포함한 다양한 분야에서 용용 가능성이 매우 큰 것으로 평가받고 있다.
하지만 액정물질은 물풀처럼 흐르는 특성과 마치 도미노처럼 한 부분의 영향으로 전 영역이 변하는 장범위 규칙(long range order)을 갖는 탄성 때문에 결함 구조를 대면적에 규칙적, 일관성 있게 패터닝 하는 것은 매우 어렵다.
연구팀은 문제 해결을 위해 대기 상태의 공기층이 액정물질을 만났을 때 수직 배향을 유도한다는 사실에 주목했다.
이를 효과적으로 이용하기 위해 마이크로 크기 패턴의 기판과 유리기판 사이에 액정을 주입해 공기주머니를 자발적으로 형성함으로써 수십 마이크론 내에서 액정분자들을 사방으로 잡아주는(anchoring) 시스템을 개발했다. 이를 통해 효과적으로 액정의 결함 구조를 대면적에서 제어해 모자이크 문양의 패터닝에 성공했다.
이번 연구의 핵심기술은 액정물질이 공기층 패턴 내에서 온도에 따라 변하는 상전이(phase transition) 속도에 있다. 상전이 속도가 빠르면 빠를수록 액정이 급속으로 성장하며 더욱 균일한 패턴을 형성한다. 반면 느린 상전이 속도에서는 액정물질의 탄성과 공기층의 고정 에너지(anchoring anergy)의 균형이 비대칭적으로 전개되며 불균일한 결함 구조를 만든다.
연구팀은 이런 상전이 속도에 따른 비대칭 및 비가역적 결함 구조 형성은 다양한 비 평형적 자연현상에서도 유사한 패턴으로 관찰된다는 점에 착안해 물리적 경제적으로 거의 불가능한 자연현상에 대한 실험 모델로 이번 연구를 접목할 수 있다고 밝혔다.
예를 들어 반도체 물질의 결정 성장에서 형성되는 결함 구조, 블랙홀을 포함한 특이점(singularity)을 형성하는 중력 점 간의 형성 원리, 응집물리(condensed matter)에서 원자들 간 상호작용 등 넓은 범위의 자연현상에 대해 유사성을 표현할 수 있는 실험적 모델을 정립할 수 있을 것으로 기대된다.
윤 교수 연구팀은 위상결함(topological defect)의 밀도 조절을 통해 복잡하고 다양한 2차원 모자이크 패턴을 형성하는 기술도 선보였다.
위상학적 결함 구조는 마치 전기의 음양 전하처럼 위상학적 전하(topological charge)를 갖는 음양 결함으로 정의할 수 있다. 이때 항상 음과 양이 짝을 이루어 위상학적 중립을 가지려는 규칙을 갖는다.
연구팀은 이러한 액정결함의 물리적 현상을 바탕으로 상기 공기층과 기판의 화학처리를 결합해 규칙적인 배열을 유지하는 동시에 위상결함의 밀도를 조절해 기술을 완성했다.
이러한 면적분할(tiling) 기반의 모자이크 패턴은 다양한 산업 및 실용 디자인에 적용할 수 있는 예술적 가치를 가지고 있을 뿐 아니라 세포막의 이중구조, 유기탄화시료 및 다양한 무기 결정구조면 등에 활용 가능할 것으로 보인다.
윤 교수는 “우리나라가 액정 디스플레이 산업의 강국이지만 액정 기초연구는 세계적 수준에 비해 높지 않다”라며 “이번 연구를 계기로 국내 관련 기초연구 관심도가 높아지는 계기가 되길 바란다”라고 말했다.
이번 연구는 미래창조과학부와 더불어 한국연구재단이 추진하는 미래유망융합기술파이오니어 사업과 전략연구과제의 일환으로 수행됐다.
□ 그림 설명
그림1. 공기 층의 사각 및 다이아몬드 패턴에서 형성 된 네마틱 액정의 편광현미경 사진
그림2. 액정패턴이 형성되는 편광현미경 이미지들
2018.11.26
조회수 10587
-
김희탁, 박정기 교수, 보호막 씌워 리튬공기전지 수명 연장
〈 김 희 탁 교수 〉 〈 박 정 기 교수 〉
우리 대학 생명화학공학과 김희탁(44) 교수와 박정기 (65) 교수 공동 연구팀이 차세대 리튬공기전지의 수명연장 기술을 개발했다.
이 기술은 리튬공기전지 리튬금속을 보호막을 씌워 발생 가능한 문제점을 차단하는 방식으로 전지기술의 한계를 극복할 수 있을 것으로 기대된다.
이 성과는 재료과학 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 2월 3일자에 게재됐고, 우수성을 인정받아 표지논문으로 선정됐다.
리튬공기전지는 공기 중의 산소와 리튬금속으로 구동되는 이차전지로 기존 리튬이차전지보다 5배에서 10배 높은 에너지 밀도를 구현할 수 있다.
따라서 전기 자동차 등의 차세대 대용량 전지로 각광받고 있지만 양극에서의 낮은 가역성 및 에너지 효율, 급속한 수명 저하가 한계로 지적됐다.
이런 단점을 극복하기 위해 ‘산화환원 중계물질(Redox mediator)’이라는 촉매가 들어간 리튬공기전지가 개발돼 중계물질에 의한 가역성이 획기적으로 향상됐다.
그러나 반응성이 높은 리튬 금속을 음극 소재로 사용하기 때문에 음극 표면이 쉽게 산화돼 전지 수명이 제한된다는 한계를 갖는다.
특히 가역성 향상을 위한 중계물질이 리튬 금속에 노출되면 양극에서의 중계 효과가 제한되고 중계물질이 소실돼 효율 및 수명이 급격히 감소하는 현상은 큰 문제로 남아있었다.
연구팀은 문제 해결을 위해 리튬 금속에 보호막을 씌우는 방법을 개발했다. 리튬 금속과 전해액의 직접 접촉을 물리적으로 차단하면서 리튬 이온만 효과적으로 전도시킬 수 있는 유무기 복합 보호층을 개발해 리튬 음극 표면에 도입한 것이다.
이 유무기 복합 보호층은 리튬 금속 음극의 급격한 산화를 억제하고 중계물질과 리튬금속 간의 반응을 물리적으로 차단하는 역할을 한다.
보호층은 산화된 중계물질이 리튬 금속 표면에서 스스로 환원되는 현상을 물리적으로 차단한다. 이를 통해 중계물질이 양극 표면에서 방전 생성물 분해에만 집중할 수 있고, 리튬 금속 표면에서의 분해로 인한 소실 문제를 차단할 수 있다.
연구팀은 리튬금속 음극 안정성과 중계물질의 지속성을 동시에 증대시켜 리튬공기전지의 충전 및 방전 사이클 수명을 3배 연장하는 데 성공했다.
개발한 유무기 복합 보호층을 통한 리튬 표면 안정화 기술은 리튬-황, 리튬 금속 전지와 같은 차세대 리튬 전지에도 적용 가능해 향후에도 활용 가능성이 높을 것으로 기대된다.
김 교수는 “차세대 에너지 저장장치인 리튬공기전지의 수명 한계를 극복할 단서를 제시했다”며 “이는 리튬공기전지의 실용화를 위한 유용한 전략이 될 것이다”고 말했다.
이번 연구는 한국연구재단의 일반연구자사업과 기후변화대응기술개발사업의 지원을 받아 수행됐다.
□ 그림 설명
그림1. 어드밴스드 머티리얼스 표지논문
그림2. 전기화학 구동 후 리튬 금속 음극형상
2016.03.09
조회수 14216
-
박인규 교수, 공기오염 측정 센서 원천기술 개발
<박인규 교수>
우리 대학 기계공학과 박인규(38) 교수팀이 스마트폰 등 모바일 기기에 탑재 가능한 초소형, 초절전 공기오염 측정 센서의 원천기술 개발에 성공했다고 밝혔다.
연구 결과는 네이처(Nature)의 자매지인 사이언티픽 리포트(Scientific Reports) 1월 30일 자 온라인 판에 게재됐다.
각종 공기오염 물질이 증가하고 사람들의 건강관리에 대한 관심이 높아지면서 개인의 주변 공기오염도에 대한 측정 기술의 필요성이 커지고 있다.
하지만 기존의 공기오염 측정 센서는 소모 전력과 부피가 크고, 여러 유해가스를 동시에 측정할 때의 정확도가 낮았다. 이는 기존에 개발된 반도체 제작공정을 사용해도 해결이 쉽지 않았다.
박인규 교수팀은 수백 마이크로미터 폭의 미세유동과 초소형 가열장치로 수 마이크로미터만을 국소적으로 가열하는 극소영역 온도장 제어기술을 이용해 여러 종류의 기능성 나노소재를 하나의 전자칩에 쉽고 빠르게 집적하는 기술을 개발했다.
대표적으로 공기오염 측정에 사용되는 센서 소재인 반도체성 금속산화물 나노소재 기반의 전자칩을 제작하였다.
박 교수팀의 기술은 다종의 센서용 나노소재를 적은 양으로도 동시제작 할 수 있어 모바일 기기에 탑재할 초소형, 초절전 가스 센서를 만들 수 있다.
이 기술은 고밀도 전자회로, 바이오센서, 에너지 발전소자 등 다양한 분야에 응용이 가능하고, 특히 소형화 및 소비전력 감소에 어려움을 겪는 휴대용 가스센서 분야에 혁신을 가져올 것으로 예상된다.
박 교수는 “모바일 기기용 공기오염 센서 뿐 아니라 바이오센서, 전자소자, 디스플레이 등의 다양한 융합기술 발전에 크게 기여할 수 있을 것”이라고 말했다.
이번 연구는 교육부의 글로벌프론티어 사업, 미래창조과학부의 나노소재 기술개발사업, BK21 사업의 지원을 받아 수행됐다.
이번 연구에는 박인규 교수를 비롯해 기계공학과 양대종 박사후 연구원, 강경남 박사과정 연구원, 한국전력공사 김동환 연구원, 미국 휴렛 팩커드(Hewlett Packard) 사의 지용 리 (Zhiyong Li) 박사가 참여했다.
□ 그림설명
그림1. 다종 나노소재 제작 원리 및 미세 유동 컴퓨터 시뮬레이션 결과
그림2. 초미세 영역에서 동시에 제작된 다종의 나노소재
2015.02.24
조회수 15628
-
리튬공기 이차전지 핵심기술 개발
- KAIST-경기대 공동연구팀, 나노섬유·그래핀 복합촉매 개발 -- 리튬이온 이차전지보다 5배 용량 향상, 최대 800km 주행가능 -
서울-부산을 전기차로 왕복할 수 있는 시대가 열릴까? 차세대 초고용량 전지로 주목받고 있는 리튬공기 이차전지의 핵심기술이 개발됐다.
우리 학교 신소재공학과 김일두·전석우 교수와 경기대학교 신소재공학과 박용준 교수 공동연구팀은 나노섬유·그래핀 복합촉매를 개발하고 리튬공기 이차전지에 적용해 리튬이온 이차전지 보다 용량이 5배 높은 ‘리튬공기 이차전지’를 만드는 데 성공했다.
연구 결과는 나노 분야 권위 있는 학술지 ‘나노레터스(Nano Letters)’ 8월 8일자 온라인판에 게재됐다.
‘리튬이온 이차전지’의 음극과 양극에는 각각 흑연, 리튬전이금속산화물로 구성돼 있다. 이 전지는 핸드폰, 노트북 등에 널리 사용되고 있는데 전기차에 적용할 경우 한 번 충전에 약 160km 정도만 주행할 수 있어 아직은 전기차용으로는 용량이 충분하지 않다는 것이 일반적인 평가다.
연구팀이 이번에 개발한 ‘리튬공기 이차전지’는 음극은 리튬, 양극은 산소를 사용한다. 무게가 가벼우면서도 실제 얻을 수 있는 에너지밀도가 리튬이온 이차전지보다 훨씬 높아 차세대 이차전지 중 가장 큰 각광을 받고 있다.
그러나 방전 시 리튬과 산소가 서로 만나 리튬산화물(Li2O2)이 형성되고 충전 시 다시 분해되는데 이 과정이 원활하게 일어나지 않는 문제점으로 인해 높은 저항이 발생하며, 수명이 짧아 상용화에 어려움이 있었다. 따라서 리튬산화물의 형성 및 분해반응을 보다 수월하게 해주는 고효율 촉매 개발이 필수적이었다.
연구팀은 전기방사 방법으로 대량생산이 가능한 코발트산화물 나노섬유와 그래핀을 섞어 나노 복합촉매를 개발했다.
촉매활성이 매우 높은 ‘코발트산화물 나노섬유’에 큰 비표면적과 높은 전기전도도를 가지고 있는 ‘비산화그래핀’을 결착시킴으로써 리튬공기 이차전지의 성능을 극대화 시킬 수 있었다고 연구팀은 전했다.
개발된 나노 복합촉매를 리튬공기 이차전지의 양극에 적용하면 리튬이온 이차전지 용량의 5배에 달하는 1000mAh/g 이상의 고용량에서도 80회 이상의 충·방전이 가능한 우수한 수명특성을 보였다.
연구팀이 이번에 확보한 충·방전 특성은 현재까지 보고된 성능 중 가장 높은 수준이며, 금속 산화물과 그래핀을 소재로 활용했기 때문에 저렴하게 만들 수 있다. 상용화에 성공해 전기차에 적용하면 한 번 충전에 800Km이상 주행할 수 있어 서울-부산을 왕복 가능해질 것으로 기대된다.
김일두 교수는 “안정성 등 상용화까지는 해결할 과제들이 많이 있지만 본격적인 전기차 시대를 위해 여러 기관들과 협력해 연구할 것”이라며 “우리나라에서 리튬공기 이차전지 분야의 핵심 소재 중에 하나인 나노촉매 합성 기술 개발을 주도해 차세대 리튬공기 이차전지 분야의 활성화에 기여하고 싶다”고 말했다.
한편, 이번 연구에는 KAIST 신소재공학과 류원희 박사, 송성호 박사과정 학생, 경기대학교 윤택한 석사과정 학생이 참여했다.
그림1. 나노복합촉매로 구성된 리튬공기 이차전지 개념도
그림2. 코발트산화물 나노섬유/그래핀 나노 복합촉매 이미지
그림3. 리튬공기 이차전지용 코발트산화물 나노섬유/그래핀 나노 복합촉매 제조과정 이미지
2013.09.05
조회수 18351
-
신소재공학과 박종욱 교수팀, 신소재 이용 전기화학식 이산화탄소 계측기 개발
공기중 산화물 이용, 옥외의 열악한 환경에서도 사용 가능
기존 광학방식보다 가격 저렴, 정확한 이산화탄소 농도 측정
습도에 영향 적게 받아 농산물 재배 등에 광범위하게 활용
대덕밸리 창업경진대회 금상, 대한민국창업대전 국무총리상 수상
신소재공학과 박종욱(朴鍾郁, 50) 교수팀이 자체 개발한 신소재를 이용, 전기화학식 이산화탄소 계측기를 개발하는데 성공했다.
이 계측기는 대기 중에 있는 이산화탄소와 선택적으로 반응하는 신소재(전극 보조물질)를 이용, 전기 화학 반응으로 발생하는 전압 상태를 이산화탄소 농도(ppm)로 환산하는 독창적인 원리를 적용했다.
기존의 이산화탄소 계측기는 이산화탄소가 특정 파장(4.26㎛)의 적외선만을 흡수하는 성질을 이용하여 적외선의 흡수 정도를 측정하는 엔디아이알(NDIR / Non-Dispersive Infra red) 광학방식이 주로 사용되었다. 그러나 이 방식은 민감한 광학측정계가 오염에 취약해 옥외의 열악한 환경에서는 사용하기 어려웠으며, 고가로 인하여 대중적인 사용에도 제한이 있었다.
朴 교수팀이 개발한 이 계측기는 공기 중의 산화물을 이용하기 때문에 옥외의 열악한 환경(상대습도 90%)에서도 사용이 가능하며, 광학방식에 비해 가격이 저렴하고, 이산화탄소 농도를 정확히 측정할 수 있는 장점을 가지고 있다. 또한 간단한 부품의 교환만으로 측정 센서의 교정이 가능해 기존 계측기의 정기적이고 복잡한 측정 센서 교정과정을 대폭 개선했을 뿐만 아니라 초미세 화학공정, 나노 공정에 활용 가능성을 열었다.
이산화탄소 가스는 지구의 온실효과를 유발하는 주범이기 때문에 교토 의정서를 기초로 최근 세계 각국은 이산화탄소세를 신설하여 이산화탄소 총배출량을 규제하고 있다. 반면, 이산화탄소는 농식물 생식 작용과 밀접한 관계가 있어 이산화탄소의 양을 적절히 조절하면 농작물의 질이나 생산성을 혁신적으로 향상시킬 수 있는 장점도 가지고 있다. 예로서 버섯재배의 경우 800-1200 ppm의 이산화탄소를 유지시킬 경우 버섯의 질이나 생산성이 좋아지는 것으로 보고되고 있다.
또한 최근 실내 공기의 질에 대한 인식이 점차 높아지면서 올해부터 우리나라도 빌딩 관리법에 의한 빌딩 내 이산화탄소 양을 1000ppm 이하로 낮추도록 규제하고 있다. 그러나 과도한 환기는 에너지의 낭비를 가져오기 때문에 여러 사람들이 모이는 공공장소나 학교 교실에 이산화탄소 계측기를 설치하여 실내 환기시스템을 효율적으로 운영하는 것이 필요하다.
朴 교수는 “대기오염감시나 실내공기청정화, 농작물 관리 등을 위하여 이산화탄소 계측기 수요가 급속하게 늘고 있으나 수입에만 의존하고 있어 국산화가 시급하다.”며 “이번에 개발한 전기화학식 이산화탄소 계측기는 기존 광방식에 비해 습도에 영향을 거의 받지 않아 농산물 재배 등에 광범위하게 활용될 수 있을 것이다.”고 말했다.
이 이산화탄소 계측기는 대덕 밸리 창업경진대회에서 금상을, 2005 대한민국 창업대전에서 국무총리상을 수상한 바 있다. 현재 국내 특허를 출원한 이 제품의 양산을 위한 실험실 창업을 추진 중에 있다.
2006.01.06
조회수 20760