본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%82%98%EB%85%B8%EC%B4%89%EB%A7%A4
최신순
조회순
강한 빛을 쏘아 나노 촉매 제조해 황 기반 가스 검출센서 구현 성공
우리 대학 신소재공학과 김일두 교수 연구팀과 전기및전자공학부 최성율 교수 연구팀이 공동연구를 통해 강한 빛(400 나노미터~900 나노미터 파장)을 금속산화물 나노 시트에 짧게 조사해, 0.02초 만에 다성분계 금속 합금 나노입자 촉매를 합성하고, 이를 극미량의 황 기반 생체지표(biomarker) 가스를 감지할 수 있는 가스 센서 플랫폼에 성공적으로 적용했다고 18일 밝혔다. 이 가스 센서 플랫폼은 사람의 날숨에 포함된 다양한 질병과 관련된 미량의 생체지표 가스를 선택적으로 감지해 관련된 특정 질병을 실시간 모니터링할 수 있는 기술이다. 날숨만으로 각종 질병 여부를 파악하는 비침습적 호흡 지문 센서 기술은 핵심 미래 기술이다. 날숨 속 특정 가스들의 농도변화를 검사해 건강 이상 여부를 판단할 수 있다. 날숨 가스의 성분에는 수분 외에도 구취의 생체지표 가스인 황화수소(hydrogen sulfide), 메틸머캅탄(methyl mercaptan), 디메틸설파이드(dimethyl sulfide)의 3종 황 화합물이 포함된다. 그중에서 황화수소는 구취, 메틸머캅탄 가스는 잇몸병 환자에게서 높은 농도로 배출되는 생체지표 가스로서 상기 3종 황화합물 가스를 선택적으로 감지하는 것이 매우 중요하다. 공동연구팀은 이번 연구에서 전자(electron)가 속박 상태에서 자유롭게 벗어나기 위해 필요한 에너지 차를 의미하는 밴드 갭(band gap, 물질의 전기적, 광학적 성질을 결정하는 요인)이 커 빛 흡수율이 낮은 백색 산화물 나노소재에서의 광열효과를 극대화하는 전략을 최초로 제시했다. 일반적으로 소재의 밴드갭이 커질수록 빛 흡수율이 낮아지며, 유리와 같이 밴드 갭이 매우 큰 물질은, 빛이 투과되어 투명하게 보이게 된다. 연구팀은 주석산화물(SnO2)이 10 나노미터 이하의 나노 결정립들로 구성된 나노 시트 형상을 나타낼 때, 흡수된 빛에너지가 열에너지로 효과적으로 전환됨을 최초로 관찰하였다. 또한, 높은 기공 구조와 나노 시트 내 다수의 결함을 통해 열 전도도를 인위적으로 낮춰 발생 된 열이 소재 외부로 잘 빠져나가지 않게 했다. 대면적 제논 램프(Xenon lamp)의 빛이 조사된 부분은 소재의 온도가 1,800oC 이상까지 급격하게 상승하는 것을 적외선 센서 시스템을 통해 확인했다. 공동연구팀은 이를 활용해 금속산화물의 상을 제어함과 동시에 다성분계 금속 나노입자 촉매를 대기 중에서 0.02초 만에 광열 합성하는 데 성공했다. 합성한 다성분계 입자 촉매들이 결착된 금속산화물 나노 시트를 센서 소재로 활용해 세계 최고 수준의 황 기반 가스 감지 성능을 구현했다. 특히, 백금(Pt)과 3성분계 백금-루테늄-이리듐(PtRuIr) 촉매가 각각 결착된 주석산화물의 경우 1ppm(백만분의 일) 수준의 황화수소 (H2S)와 디메틸 설파이드 (C2H6S)가스에 대해 약 3,165배, 6,080배의 세계 최고 수준의 저항 변화비 특성을 나타냄을 확인했다. 추가로, 연구팀은 미세전자기계시스템(MEMS) 기반 휴대용 가스 센서를 개발했다. MEMS 센서는 센서부 크기가 0.1밀리미터 크기로 작아서, 1g의 감지 소재로 8천여 개 정도의 센서를 제작할 수 있다. 연구팀은 MEMS 가스 센서 어레이화와 모바일 기기와의 연동을 통해 초저전력(< 10 mW), 초소형 생체지표 검출 가스 센서 플랫폼을 개발했다. 우리 대학 최성율 교수와 김일두 교수는 "강한 빛을 1초도 안되는 짧은 시간동안 간편하게 조사하는 방식과 소재의 광열효과를 극대화하는 합성기법은 금속산화물의 상(phase) 조절과 촉매 기능화를 초고속, 대면적으로 가능하게 하는 새로운 공정 플랫폼이 될 것으로 기대된다ˮ고 밝혔다. 특히, "램프 조사 횟수에 따라 단일원자 촉매의 대기 중 합성도 성공해, 세계 최고 수준의 가스 감지 성능 결과를 유도했다는 측면에서 매우 의미가 있는 연구 결과이며 매일같이 호흡 가스를 분석해 질병을 조기 모니터링하는 자가 진단 호흡 센서기기의 상용화에 효과적으로 적용될 수 있는 기술이 될 것이다ˮ고 밝혔다. 이번 연구는 공동 제1 저자인 김동하 박사(우리 대학 신소재, 현 MIT 박사후 연구원)와 차준회 박사(KAIST 전기및전자공학부)의 주도하에 진행됐으며, 최성율 교수(KAIST 전기및전자공학부)와 김일두 교수(KAIST 신소재)가 교신저자로 참여했다. 이번 연구 결과는 나노 및 화학 분야의 권위적인 학술지이자 Cell지의 자매지인 `켐(Chem)' 4월호에 표지 논문으로 선정됐으며, ‘광열램핑(Flash-Thermal Lamping) 합성’으로 켐 프리뷰(Chem Preview)로도 소개되었다. 본 연구는 한국연구재단 중견연구자지원 사업, 과학기술정보통신부와 산업통상자원부 사업, 한국연구재단 미래소재디스커버리 사업의 지원을 받아 수행됐다.
2022.04.19
조회수 10389
저온 엑솔루션 현상을 통한 나노촉매-금속산화물 기반 황화수소 가스 센서 개발
삼성미래기술육성사업이 지원하고 우리 대학이 POSTECH, GIST 등 국내 과학기술특성화대학 공동 연구진과 협업해 온 *엑솔루션 연구가 결실을 맺었다. ☞ 엑솔루션(Ex-solution): 금속 및 금속산화물 고용체를 가열해 성분을 분리하고, 이를 통해 실시간으로 금속 나노 입자 촉매를 금속산화물 표면에 균일하면서도 강하게 결착시키는 기법이다. 특별한 공정 과정 없이 열처리만을 활용하기에 친환경적인 미래 기술로 주목받고 있다. 우리 대학 신소재공학과 김일두 교수·정우철 교수 연구팀이 POSTECH 한정우 교수팀과 GIST 김봉중 교수팀과의 공동연구를 통해 단 한 번의 열처리로 금속산화물 감지 소재 표면에 나노촉매를 자발적으로 형성시켜 황화수소 기체만 선택적으로 감지하는 고 안정성 센서를 개발했다고 24일 밝혔다. 나노입자 촉매를 금속산화물에 형성하기 위한 기존 방식들은 진공을 요구하거나 여러 단계의 공정이 필요하기 때문에 시간과 비용이 많이 들뿐더러 촉매가 쉽게 손실되고 열에 불안정하다는 문제가 발생한다. 공동 연구진은 문제해결을 위해 낮은 공정 온도에서도 열적 안정성을 유지하면서 나노입자 촉매들을 금속산화물 지지체에 균일하게 결착시키기 위해 금속산화물의 실시간 상변화를 활용한 저온 엑솔루션 기술을 새롭게 개발했다. 이 기술은 열처리만으로 금속이 도핑된 금속산화물에다양한 상변화를 일으켜, 손쉽게 나노입자 촉매들을 금속산화물 표면에 형성시키는 새로운 기술이다. 공동 연구진은 저온 엑솔루션 기술을 기반으로 합성된 재료를 활용해 악취의 근원이 되는 황화수소 기체만 선택적으로 감지할 수 있으면서 기존 가스 센서보다 훨씬 안정성이 향상된 가스 센서를 개발하는 데 성공했다. 연구팀이 개발한 저온 엑솔루션 기술은 우리 생활에서 쉽게 접할 수 있는 구취 진단기에 응용이 가능할 뿐만 아니라 산화 촉매, *개질 반응 등 다양한 나노입자 촉매가 활용되는 물리화학 촉매 개발에 쉽게 활용할 수 있다. ☞ 개질(Reforming): 열이나 촉매의 작용으로 탄화수소의 구조를 변화시켜 가술린의 품질을 높이는 조작을 말한다. 이번 연구를 주도한 김일두 교수는 "새로 개발한 저온 엑솔루션 공정은 고성능·고 안정성 나노촉매 합성을 위한 핵심적 기술로 자리를 잡을 것ˮ이라면서 "연구에서 발견한 구동력과 응용 방법을 활용하면, 다양한 분야에 폭넓게 활용될 것으로 기대된다ˮ 고 말했다. 이번 연구는 KAIST 김일두·정우철 교수와 POSTECH 한정우 교수, GIST 김봉중 교수 외에 KAIST 신소재공학과 장지수 박사와 김준규 박사과정 학생이 제1 저자로 참여했다. 연구 결과는 재료 분야의 권위 학술지인 '어드밴스드 머터리얼즈(Advanced Materials)' 10월 온라인판에 실렸고 연구의 우수성을 인정받아 같은 저널 11월호 속표지 논문으로 선정됐다. 또한, 관련 기술은 국내·외에 특허 출원을 신청할 예정이다.
2020.11.24
조회수 36253
정우철, 김상욱 교수, 수소 연료전지 성능 높일 수 있는 나노촉매기술 개발
〈 정우철, 김현유(충남대), 김상욱 교수 연구팀 〉 우리 대학 신소재공학과 정우철, 김상욱 교수와 충남대학교 김현유 교수 공동 연구팀이 금속 나노 소재를 이용해 수소에너지 기술의 핵심인 연료전지의 성능을 대폭 높일 수 있는 새 나노촉매기술을 개발했다. 이 기술을 통해 연료전지 외에도 물 분해 수소생산 등 다양한 환경친화적 에너지기술에 폭넓게 적용할 수 있을 것으로 기대된다. 최윤석, 차승근 박사, 그리고 충남대 하현우 박사과정 학생이 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 나노테크놀로지 (Nature Nanotechnology)’ 2월 18일 자 온라인판에 게재됐고, 3월호 표지로 선정됐다. (논문명: Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes). 10나노미터 이하 크기의 금속 나노입자는 극도로 적은 양으로 높은 촉매 활성을 보일 수 있다는 가능성 때문에 최근 에너지 및 환경기술 분야에서 큰 관심을 받고 있다. 그러나 이러한 신소재들은 가격이 매우 비싸고 높은 온도에서 입자들끼리 뭉치면서 촉매 활성이 저하되는 고질적인 문제점이 남아 있었다. 600도 이상의 높은 온도를 활용해 초고효율 발전 방식으로 주목받는 고체산화물 연료전지도 활용성 측면은 회의적인 시각이 존재했다. 또한 각 금속 입자의 촉매 효율 향상 수치에 대한 정확한 연구결과가 없어 해당 분야 발전에 한계가 있었다. 연구팀은 문제 해결을 위해 세계적으로 인정받는 블록공중합체 자기조립을 이용한 금속 나노패턴기술을 통해 산화물 연료전지 전극 표면에 10나노미터 크기의 균일한 금속 나노입자들을 균일하게 합성하는 데 성공했고, 이를 통해 하나의 입자가 갖는 촉매 특성을 고온에서 정확히 분석해 연료전지의 성능을 극대화하는 기술을 개발했다. 연구팀은 대표적 귀금속 촉매인 백금의 경우 300나노그램(약 0.015원 가치)의 적은 양으로도 연료전지의 성능을 21배까지 높일 수 있음을 확인했다. 나아가 백금 외에 많이 활용되는 촉매인 팔라듐, 금, 코발트 등의 금속 촉매 특성을 정량적으로 파악 및 비교했고 이론적 규명을 통해 촉매 성능이 향상되는 정확한 원리를 밝혔다. 정우철 교수는 “단순히 값비싼 촉매의 양을 늘리는 비효율적인 방법을 사용하던 기존 틀을 깨고 매우 적은 양의 나노입자를 이용해 고성능 연료전지를 개발할 수 있다는 명확한 아이디어를 제시한 의미 있는 결과이다”고 말했다. 또한 “해당 기술은 금속촉매가 사용되는 다양한 산업 분야에 적용할 수 있는 높은 유연성을 가지고 있어 추후 연료전지, 물 분해 수소생산 장치 등 친환경 에너지기술 상용화에 크게 기여할 것으로 기대한다”라고 말했다. 이번 연구는 한국연구재단 나노소재원천기술사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 금속나노입자의 고온 전기화학적 촉매 특성 정밀 평가를 위한 전극 구조의 모식도 그림2. 10 nm 크기의 여러 금속나노입자 (백금, 팔라듐, 코발트, 금)의 고온 전기화학적 촉매 특성 정밀 비교 평가 결과
2019.02.25
조회수 14962
송현준 교수, 이산화탄소를 99% 순수연료로 바꾸는 광촉매 개발
〈 송현준 교수, 김진모 박사과정, 임찬규 박사과정 〉 우리 대학 화학과 송현준 교수 연구팀이 탄산수에 포함된 이산화탄소를 99% 순수한 메탄 연료로 바꿔주는 금속산화물 혼성 광나노촉매를 개발했다. 태양광을 이용해 메탄으로 직접 변환하는 기술은 태양전지를 이용해 전기를 생산 후 이를 전지에 저장하는 방식보다 저장 가능한 에너지의 양 측면에서 매우 효율적이다. 이번 연구는 값싼 촉매 물질을 이용해 반응 효율과 선택성을 크게 높인 화학에너지 저장방법을 구현했다는 의의를 갖는다. 목포대 남기민 교수와 공동으로 연구하고 배경렬 박사, 김진모 박사과정이 공동 1저자로, 임찬규 박사과정이 3저자로 함께 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 7일자 온라인 판에 게재됐다. 태양광은 차세대 에너지원으로 주목받고 있지만 해가 떠있는 동안에만 이용하고 발전량이 날씨에 따라 일정하지 않다는 단점이 있다. 태양광 에너지를 연료 등의 화학에너지로 직접 변환할 수 있다면 에너지 저장 및 이용에서의 문제점을 해결할 수 있다. 특히 온난화의 주범으로 지목되는 이산화탄소를 태양광을 이용해 변환하는 기술이 에너지와 환경 문제를 함께 해결할 수 있어 주목받고 있다. 하지만 이산화탄소는 매우 안정적인 물질이기 때문에 다른 분자로의 변환이 어려워, 이를 극복하기 위해 효율과 선택성이 좋은 촉매를 개발해야 한다. 송 교수 연구팀은 선크림에 주로 사용되는 아연산화물 나노입자를 합성한 뒤 표면에 구리산화물을 단결정으로 성장시켜 콜로이드 형태의 아연-구리산화물 혼성 나노구조체를 제작했다. 구리산화물은 빛을 받으면 높은 에너지를 가진 전자를 생성하며 이는 탄산수에 녹아있는 이산화탄소를 메탄으로 바꿔주는 역할을 한다. 또한 아연산화물도 빛을 받아 전자를 생성한 뒤 구리산화물로 전달해 주기 때문에 마치 나뭇잎에서 일어나는 광합성 현상과 유사한 원리를 통해 오랜시간 반응 시간을 유지했다. 그 결과 수용액에서 반응 실험을 실시했음에도 불구하고 이산화탄소에서 99%의 순수한 메탄을 얻을 수 있었다. 기존의 불균일 광촉매는 고체의 분말 형태이기 때문에 구조가 균일하지 않고 물에 분산되기 어려웠다. 송 교수 연구팀은 나노화학 합성 방법을 이용해 촉매 입자의 구조를 일정하게 조절하고 높은 표면적을 유지시켰다. 이를 통해 기존 촉매보다 수용액에서의 이산화탄소 변환 활성을 수백 배 증가시켰다. 송현준 교수는 “태양광을 이용한 이산화탄소의 직접 변환 반응의 상용화에는 많은 시간이 필요하다. 그러나 이번 연구처럼 나노 수준에서의 촉매 구조의 정밀한 조절은 광촉매 반응의 효율 향상 및 원리 연구에 큰 도움을 줄 것이다”며 “이를 다양한 광촉매에 접목시키면 촉매 특성의 최대화가 가능할 것이다”고 말했다. □ 그림 설명 그림1. 광나노촉매를 이용한 수용액에서의 이산화탄소 변환 반응 개념도 그림2. 아연-구리산화물 나노촉매의 구조와 이를 이용한 광촉매 CO2 변환 반응 및 안정성 테스트 결과
2017.11.09
조회수 18018
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉 우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다. 대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다. 이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다. 촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다. 청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다. 학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다. 연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다. 연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다. 특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다. 연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다. 당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다. 이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다. 박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다. □ 그림 설명 그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도 그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 12256
나노촉매의 활성도를 효과적으로 높일 수 있는 원리 규명
박정영 교수 - Nano Letters 발표,“활성도는 높이고 소모는 줄이는 신개념 촉매물질 개발 가능”- 나노촉매*에 산화막을 형성하여 활성도를 자유자재로 제어할 수 있는 기술이 국내 연구진에 의해 개발됨에 따라, 활성도를 극대화하고 소모를 최소화하는 새로운 촉매물질 개발에 가능성이 열렸다. * 나노촉매(Nanocatalysts) : 표면적이 높은 산화물 지지체에 나노미터(10억분의 1미터) 크기의 금속입자가 분산되어 있는 구조로, 표면에서 기체 반응을 원활하게 하는 재료 우리 학교 EEWS대학원 박정영 교수(42세)가 주도하고 캄란 카디르 박사과정생(Kamran Qadir, 제1저자), 울산과기대 주상훈 교수, 한양대 문봉진 교수 및 UC버클리대 가보 소모자이 교수가 참여한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 이승종)이 추진하는 중견연구자지원사업(도약연구)과 WCU육성사업 및 지식경제부 둥의 지원으로 수행되었고, 나노분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(10월 15일)에 게재되었다.(논문명: Intrinsic Relation between Catalytic Activity of CO Oxidation on Ru Nanoparticles and Ru Oxides Uncovered with Ambient Pressure XPS) 우리가 일상생활에서 사용하고 있는 제품의 대부분(80% 이상)은 촉매를 이용해 만들어질 정도로, 촉매는 우리 생활에서 꼭 필요하고 중요한 물질이다. 특히 전 세계 연구자들은 인류가 직면한 중요 이슈인 에너지문제와 환경문제 등을 근본적으로 해결하기 위해 친환경적인 화학공정에 사용될 새로운 나노촉매 물질을 집중적으로 개발하고 있다. 현재 실생활에서 주로 사용되는 촉매는 나노입자와 산화물로 이루어져 있다. 그 중 나노입자는 촉매의 표면적을 최대한 넓혀 촉매의 활성도를 높이는 역할을 한다. 활성도가 높은 촉매를 효과적으로 제조하기 위해서는 나노입자의 표면 산화막이 중요한 요인으로 알려져 왔다. 그러나 이를 과학적으로 입증하기 위해서는 촉매가 반응하는 환경에서 나노입자의 산화상태를 정확히 측정해야 하지만, 그 동안 많은 분석이 진공에서 이루어져와서 이를 정확히 보여주기가 힘들었다. 즉 촉매가 반응하는 환경에서 측정이 이루어지기 위해서는 상압측정이 필요하다. 최근에 개발된 상압 엑스선 광전자 분광법으로 이러한 상압에서 표면의 성분과 산화상태의 연구가 가능하게 되었다. 지금까지 연구자들이 무엇 때문에 정확히 측정하지 못했을까요? 박정영 교수 연구팀은 상압 엑스선 광전자 분광법*으로 나노입자의 산화상태를 촉매환경에서 측정하는데 성공하였다. * 엑스선 광전자 분광법(X-ray Photoelectron Spectroscopy) : 엑스선을 물질에 쬐었을 때 나오는 광전자의 운동에너지를 조사하여 물질의 성분과 산화상태 등을 연구하는 표면분석법 박 교수팀은 2.8나노미터와 6나노미터 크기의 루테늄 나노입자 2개를 콜로이드 합성법*으로 제작하고, 랭뮤르 블라짓 기법**으로 나노입자 한 층을 표면에 증착시켰다. 연구팀은 나노입자의 산화상태를 온도와 압력을 바꿔가며 측정하였고, 크기가 큰 루테늄 나노입자가 얇은 산화막을 가진다는 결과를 도출하였다. * 콜로이드 합성법 : 금속염과 안정제가 함께 용해되어 있는 용매에 환원제를 투입 또는 혼합하여 나노입자를 제작하는 방법. 제작 과정의 여러 인자를 바꿈으로써 입자의 크기와 모양, 성분의 제어가 가능하다. * * 랭뮤르 블라짓(Langmuir-Blodgett) 기법 : 금속나노입자를 단층으로 제작하는 기법. 나노입자가 용액 위에 떠 있을때, 표면압력을 조절하여 나노입자 사이의 평균 간격을 조절할 수 있다. 또한 연구팀은 측정결과를 바탕으로 산화상태가 촉매의 활성도에 미치는 영향을 확인하여, 크기가 큰 루테늄 나노입자의 얇은 산화막이 촉매의 활성도를 높일 수 있고, 산화상태를 바꾸면 활성도도 제어할 수 있다는 사실을 입증하였다. 박정영 교수는 “나노입자의 산화막이 촉매환경에서 만들어지고 촉매활성도에도 직접적인 관계가 있음을 규명한 이번 연구는 활성도가 높은 촉매물질을 만드는데 응용되어 환경오염에 주요한 원인이 될 수 있는 촉매물질의 소모를 획기적으로 줄이는데 기여할 것으로 기대한다”고 연구의의를 밝혔다. 루테늄(Ru) 나노입자의 촉매환경 도중 산화상태조사 : 루테늄 나노입자에서 일어나는 촉매반응 (일산화탄소 산화반응)을 보여줌 (왼쪽). 방사광 가속기에 설치된 상압 엑스선 광전자 분광법을 이용하여 촉매환경에서 루테늄 나노입자의 산화상태가 분석이 됨 (아래). 루테늄 나노입자의 산화막의 두께가 나노입자의 크기에 관계가 되고 이는 촉매의 활성도에 직접적으로 영향을 줌 (오른쪽)
2012.11.08
조회수 18851
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1