본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%87%8C%ED%94%BC%EC%A7%88
최신순
조회순
바이오및뇌공학과 김진우 학사과정, 국제 학술지 표지 논문 게재
우리 대학 바이오및뇌공학과 백세범 교수 연구팀에 소속된 대학생(학사과정)의 연구논문이 뇌신경과학 분야 저명 국제학술지에 게재됐음은 물론 해당 저널의 표지 논문으로 선정돼 화제가 되고 있다. 바이오및뇌공학과 4학년에 재학 중인 김진우 학생(22세)이 백세범 교수의 지도하에 수행한 학부생 개별연구 프로젝트에서 두뇌의 *시각 피질에서 관측되는 주요 신경망 연결 구조 중 하나인 '장거리 수평 연결(Long-range horizontal connection)'이 두뇌 발생 초기에 형성되는 원리를 규명한 연구결과가 뇌신경과학 분야 '저널 오브 뉴로사이언스'의 표지 논문으로 선정됐다. ☞ 시각 피질(Visual Cortex): 두뇌에서 시각 정보처리를 담당하는 영역. 망막 신경망 영역을 통해 입력받은 외부 공간에 대한 시각 정보를 처리하여 인지 과정을 구현하는 기능성 신경망 구조로 이루어져 있다. 연구팀은 이번 연구를 통해 어린 포유류 동물이 눈을 뜨기 전, 시각적인 학습이 전혀 이뤄지지 않은 상태, 즉 두뇌 발생 초기 상태에서 *망막 내 신경세포들의 자발적인 활동으로부터 발생하는 '*망막 파동'이 두뇌 시각 피질의 신경세포들을 특정한 공간적 패턴으로 자극하고, 이를 통해 시각 정보 처리에서 중요한 역할을 담당하는 '장거리 수평 연결'을 형성한다는 사실을 밝혀냈다. ☞ 망막(Retina): 눈의 안쪽을 둘러싸고 있는 신경세포의 얇은 층으로, 시각 시스템에서 외부 시각 정보가 신경세포 신호로 처음 변환되는 영역 ☞ 망막 파동(Retinal Wave): 포유류의 초기 발달과정의 망막에서 나타나는, 신경절 세포들이 차례대로 발화하며 파도와 같은 파형으로 활동패턴이 확산하는 현상 김진우 학생과 송민 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 뇌신경과학 분야의 대표 국제학술지인 '저널 오브 뉴로사이언스 (Journal of Neuroscience)' 19일 字에 게재되는 한편 해당 호 표지 논문으로 선정됐다. (논문명: Spontaneous retinal waves generate long-range horizontal connectivity in visual cortex) 포유류의 시각 피질에서는 신경세포들이 외부 시각 자극의 특정 요소에만 선택적으로 반응하는 신경 선택성(neural tuning)을 보이는데, 비슷한 신경 선택성을 가지는 세포들은 공간적으로 멀리 떨어져 있어도 '장거리 수평 연결'이라는 특별한 상호 연결망 회로로 이어져 있다. 이처럼 특이한 신경망 연결 구조는 포유류의 시각 인지기능에 중요한 역할을 하는 것으로 생각돼왔지만, 이러한 회로가 뇌의 발생 초기 단계에서 외부 시각 정보에 의한 자극 없이 어떻게 자발적으로 발생하는지는 아직까진 명확히 알려진 바가 없었다. 백 교수 연구팀은 망막 내 신경망 구조를 모델화하고, 이를 통해 망막 파동의 패턴이 시각 피질 내 구조 형성에 미치는 영향을 시뮬레이션했다. 그 결과, 연구팀은 망막의 신경절에서 자발적으로 발생하는 망막 파동이 시각 피질로 전달되는 과정에서 형성되는 선택적 활동 패턴이 시각 피질 내의 장거리 연결 구조를 형성함을 밝혀냈고, 이 모델을 기반으로 동물실험에서 관측되는 초기 시각 피질의 특징적인 신경 활동 패턴을 재현하는 데 성공했다. 이 연구를 통해 연구팀은 동물실험에서 관측된 시각 피질의 장거리 수평 연결이 형성되는 과정과 주요 인자들을 정확히 확인했다. 이 결과를 기반으로 연구팀은 뇌 피질 내에서의 활동 패턴이 피질 구조를 결정한다는 기존 모델의 오류를 지적하는 한편, 망막에서 전달된 활동 패턴이 시각 피질의 구조를 형성하는 데 결정적인 영향을 끼친다는 새로운 발생 모델을 제시했다. 백세범 교수는 "외부의 정보를 학습할 수 없는 감각 신경망의 발생 초기 단계에서, 감각기관 말단의 신경 활동 패턴이 뇌 신경망의 주요 구조 형성에 결정적으로 기여한다는 새로운 뇌 구조 발생 모델을 제시한 연구라는 점에서 의미가 크다ˮ고 설명했다. 김진우 학생은 "이번 연구는 뇌가 외부 세계에 대한 감각 정보를 처음으로 경험하기 이전에 어떻게 비 지도적으로 학습을 하는지에 대해, 알려진 실험 데이터에 기반한 명확한 이론적 설명을 제공한다는 점에서 흥미롭다ˮ고 말했다. 그는 이어 "이와 같은 방향의 연구가 향후 데이터 학습에 의존하지 않는 새로운 형태의 인공신경망 연구에도 큰 도움이 될 것으로 기대가 된다ˮ고 덧붙였다. 이번 연구는 한국연구재단의 이공분야기초연구사업 및 원천기술개발사업의 지원을 받아 수행됐다.
2020.08.23
조회수 26226
광유전학 · 광치료 연구를 위한 투명 전극 개발
우리 대학 전기및전자공학부 이현주 교수와 이정용 교수, 의과학대학원 이정호 교수 공동연구팀이 폴리머 전기방사 기술을 미세 전자 기계 시스템(MEMS, Micro Electro Mechanical Systems) 공정에 접목해 실시간으로 뇌피질 전도 측정이 가능한 투명하고 유연한 미세전극 어레이(배열)를 개발했다고 15일 밝혔다. ☞ 폴리머: 한 종류 또는 수 종류의 구성단위가 서로에게 많은 수의 화학결합으로 중합돼 연결된 상태의 분자로 구성된 화합물. 통상적으로 고분자 화합물(분자량이 1만 이상의 화합물)과 같은 의미로 사용되는 경우가 많은데 고분자를 영어로는 폴리머(polymer)라고 부른다. ☞ 전기방사: 폴리머(고분자) 용액에 고전압을 인가해 나노파이버(나노섬유)를 생산하는 첨단 기술 ☞ 미세 전자 기계 시스템: 마이크로 단위의 기계적 구조물과 전자 회로가 결합된 초소형 정밀 기계 제작 기술. 전자(반도체) 기술·기계 기술·광 기술 등을 융합해 마이크로 단위의 작은 부품 및 시스템을 설계·제작하고 응용하는 기술을 의미 이번에 개발된 뇌피질 전도 미세전극 어레이는 기존의 불투명한 금속 전극과는 달리 빛에 의해 발생하는 잡음 신호가 매우 작고 자유로운 빛의 전달이 가능해 광유전학 및 광 치료 연구에 큰 도움을 줄 것으로 기대된다. 최근 빛의 새로운 활용법과 생체 내 효능에 대한 발견으로 인해 빛을 생체 내의 특정 영역에 조사해 생기는 반응과 효과에 관한 연구들이 주목을 받고 있다. 대표적인 예가 광유전학, 광 치료 기술 등이다. 광유전학은 기존 신경 자극기술과는 달리 매우 국소적인 부위의 신경 세포를 자극하고, 광 치료법은 수면장애와 알츠하이머병의 치료 가능성으로 이 분야에 관한 연구들이 활발히 진행되고 있다. 빛에 의한 생체 내 반응을 측정하는 대표적인 방법으로는 체내에 센서 등을 장착해서 호르몬의 분비과정에서 발생하는 전기생리 신호를 측정하는 방법이다. 통상적으로 전기생리 신호 측정을 위해 사용하는 일반적인 금속 박막 전극은 높은 반사도와 낮은 투과도 때문에 빛의 전달을 방해할 뿐만 아니라 빛을 쬘 때 베크렐 효과(금속 전극이 빛을 받으면 전극에 전위차가 생겨 전류가 흐르는 현상)에 의해 '포토일렉트릭 아티팩트'라는 잡음 신호가 발생한다. 따라서 일반 금속 박막 전극은 정확한 전기생리 신호를 측정하기가 어렵다. 이현주 교수팀은 그간 이런 문제해결을 위해 MEMS 공정을 통해 제작되는 미세전극 어레이를 투명화하기 위한 연구를 지속적으로 수행해왔는데 최근 폴리머 전기방사 기술을 MEMS 공정에 접목해 뇌피질 전도(ECoG, ElectroCorticoGram)측정을 위한 유연하고 투명한 미세전극 어레이를 제작하는데 성공했다. 이 장치는 높은 투과도를 지니고 있어 '포토일렉트릭 아티팩트'가 매우 약하고 또 빛의 전달이 매우 용이하기 때문에 다른 투명 미세전극 어레이와 비교해 보면 전기화학 임피던스가 낮아 뇌피질 전도 측정이 매우 유리하다. 연구팀은 자체개발한 유연·투명한 미세전극 어레이 성능평가를 위해 외부 변형에 따른 저항 변화와 전기방사 시간에 따른 전기화학 임피던스, 전하 저장 용량 등을 측정한 결과, 전극 자체의 특성을 쉽게 조절이 가능한 점 등 여러 면에서 우수한 성능을 보였다고 설명했다. 연구팀은 특히 미세 전극에서 발생하는 `포토일렉트릭 아티팩트'를 비교 분석했는데 10배 이상 감쇄 효과가 있음을 확인했다. 이와 함께 쥐 뇌의 다양한 피질 영역에 걸쳐 유연·투명한 미세전극 어레이를 위치시킨 후 광 자극을 통해 발생하는 뇌피질 전도 신호를 측정한 결과, 신호를 정량적으로 비교하고 빛이 원활하게 전달되는 현상을 관측하는데 성공했다. 연구팀은 현재 이 신기술을 기반으로 광 자극과 함께 정확한 뇌피질 전도를 실시간으로 측정할 수 있는 미세전극과 미세광원이 집적된 다기능성 미세전극 어레이 개발을 위한 후속연구를 진행 중이다. 광원과 전극이 함께 집적된 다기능성 소자 개발에 성공할 경우 광유전학이나 광 치료 등의 연구를 진행하는 뇌과학자들이 편하게 사용할 수 있는 뉴로 툴(Tool) 개발로 이어질 것으로 전문가들은 예상하고 있다. 이현주 교수는 "기존에는 광전 효과로 인해 불가피하게 발생하는 잡음 신호로 인해서 광 자극과 동시에 뇌피질 전도 측정이 불가능했지만 유연하고 투명한 미세전극 개발을 계기로 광 자극과는 무관하게 실시간으로 뇌피질 전도 측정이 가능하게 됐다”고 말했다. 이현주 교수 연구팀의 서지원 박사와 김기업 박사과정생, 그리고 이정용 교수 연구팀의 서기원 박사과정생이 각각 주도하고 의과학대학원 이정호 교수와 김정욱 박사가 참여한 이번 연구결과는 국제 학술지 '어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials)'誌 7월 2일 字에 게재됐으며 표지논문(Front Cover)으로 선정됐다. (논문명: Artifact-Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array) 한편, 이 연구는 과학기술정보통신부 한국연구재단의 선도연구센터 사업의 지원으로 수행됐다.
2020.07.15
조회수 27068
이정호 교수, 박상민 연구원, 후천적 뇌 돌연변이로 인한 뇌발달 장애 원인 규명
〈 박 상 민 연구원 〉 우리 대학 의과학대학원 이정호 교수 연구팀이 후천적인 뇌 돌연변이로 인한 뇌전증(간질) 및 자폐증 환자에게 나타나는 신경 세포 이동 장애 증상이 발생하는 원리를 규명했다. 연구팀의 이번 연구 결과는 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 치료에 기여할 수 있을 것으로 기대된다. 박상민 석박사통합과정이 1저자로 참여한 이번 연구 결과는 신경생물학 분야 국제 학술지 ‘뉴런(Neuron)’ 6월 21자에 게재됐다. (논문명: ‘Brain somatic mutations in MTOR disrupt neuronal ciliogenesis, leading to focal cortical lamination’) 이정호 교수 연구팀은 후천적인 뇌 돌연변이가 뇌전증과 자폐증을 유발할 수 있고, 이 돌연변이로 인해 신경 세포 이동 장애 증상이 발생한다는 사실을 이전 연구에서 증명한 바 있다. 그러나 이 신경 세포의 이동 장애가 발생하는 근본적인 원리에 대해서는 완벽하게 밝혀내지 못했다. 연구팀은 난치성 뇌전증 및 자폐증과 밀접하게 연관된 대뇌 피질 발달장애 환자의 뇌 조직에서 엠토르(mTOR) 유전자의 후천적인 뇌 돌연변이가 발생함을 확인했다. 이를 반영한 동물 및 세포 모델을 이용해 대뇌 피질 발달 이상의 원리를 연구했다. 그 결과 엠토르(mTOR) 돌연변이를 가진 신경 세포에서 세포 소기관인 일차 섬모의 생성 기능이 망가져 있음을 확인했고 이것이 환자에게서 발견되는 신경 세포 이동 장애의 원리임을 밝혔다. 엠토르(mTOR) 유전자가 OFD1이라는 단백질을 적절하게 제거하는 역할을 수행해야 하지만 엠토르(mTOR)에 돌연변이가 발생함으로써 OFD1 단백질이 과하게 축적됐고 그것이 신경 세포 이동의 장애 현상으로 이어진 것이다. 연구팀은 돌연변이를 가진 신경 세포에서 과하게 축적돼 일차 섬모 생성을 방해하는 역할인 OFD1 단백질의 발현을 억제시킴으로써 일차 섬모의 생성을 회복시켰다. 이를 통해 신경 세포의 이동을 정상 수준으로 되돌렸다. 1저자인 박상민 석박사통합과정은 “후천적 뇌 돌연 변이로 인한 뇌 발달 장애 환자에서 관찰되는 대표적 증상인 신경 세포 이동 결함이 그동안 주목받지 않았던 일차 섬모라는 세포소기관의 생성으로 설명할 수 있다는 점을 발견했다”고 말했다. 연구팀은 이번 연구 결과를 바탕으로 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 새로운 치료제 개발을 위한 후속 연구를 진행 중이다. 이번 연구는 서경배 과학재단, 보건복지부 세계선도 의생명과학자 육성 사업, 질병중심 중개 중점 연구 사업을 통해 수행됐다. □ 그림 설명 그림1. 후천적 뇌 돌연 변이의 대뇌 피질 발달 장애 환자의 뇌 조직, 동물 모델에서 망가진 일차섬모 생성 그림2. 일차섬모 생성을 회복시킨 대뇌 피질 발달 장애 모델에서 신경 세포의 이동이 정상 수준으로 돌아옴
2018.06.25
조회수 10082
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1