본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%8C%80%EB%87%8C%ED%94%BC%EC%A7%88
최신순
조회순
뇌 신경활동의 시간적 스케일 규명
두뇌가 수행해야 하는 여러 가지 기능 중에는 감각 정보 처리와 같이 순간적인 것에서부터 기억과 같이 상대적으로 긴 시간 동안 그 내용이 보존되어야 하는 것도 있다. 한미 공동 연구진은 이런 뇌 신경 활동이 이루어지는 다양한 시간적 스케일에 대한 보편적 패턴을 파악하여 뇌의 다양한 기능을 가능하게 하는 신경망 회로 구조를 이해하는 길을 열었다. 우리 대학 뇌인지과학과 백세범 교수와 생명과학과 정민환 교수, 존스홉킨스대학교 이대열 교수 연구팀이 다양한 포유류 종의 뇌에서 공통적으로 나타나는 영역별 신경 활동의 시간적 스케일 패턴을 확인함으로써 뇌가 정보를 표상하는 원리를 이해하는 데에 한 걸음 더 나아갔다고 24일 밝혔다. 인간의 뇌에서 가장 두드러지는 영역인 대뇌피질은 시각피질과 같이 감각 정보를 담당하는 영역부터 전전두엽 피질과 같이 고등 인지를 담당하는 영역까지 순차적인 위계 구조로 되어있다. 연구팀은 신경 활동의 시간적 스케일이 위계가 낮은 영역에서부터 위계가 높은 영역에 이르기까지 점점 증가하는 것을 관측했다. 즉, 뇌의 상위 영역으로 갈수록 정보처리를 위해 상대적으로 긴 시간적 스케일을 사용하는 신경 활동이 나타난다는 것이다. 또한 연구팀은 이와 같은 경향성이 영장류와 설치류에서 공통적으로 존재함을 확인함으로써, 포유류의 뇌 진화에서 다양한 과제 처리를 위한 시간적 스케일이 중요한 공통의 변수였음을 밝혀냈다. 한편 시상(thalamus)*과 같은 영역은 대뇌피질과 강하게 연결돼 있음에도 시간적 스케일의 위계적 변화가 나타나지 않는다는 점도 알아냈다. *시상: 대뇌 깊은 곳에 위치한 타원형의 핵 집합체로서, 감각 정보를 대뇌피질로 전달하는 ‘중계국’ 역할을 함. 시상을 통해 들어온 정보는 대뇌피질의 각 부분으로 전달되어, 인식·판단·조절과 같은 더 높은 수준의 처리 과정을 거치게 됨. 이전의 연구들은 인간, 원숭이, 설치류 뇌의 대뇌피질 영역에서 자발적 신경 활동의 시간 스케일이 해부학적 계층이 높을수록 길어지는 상관관계를 보였다. 그러나 실제로 정보를 표상하는 활동을 할 때 시간 스케일이 어떻게 달라지는지는 알려진 바가 없었다. 연구팀은 의사 결정 행동을 수행하고 있는 원숭이, 쥐(rat), 생쥐(mouse)의 뇌에서 측정한 신경 활동을 자발적 요소와 행동 관련 요소로 나눠 두 유형의 시간 스케일의 변화가 여러 대뇌피질 영역에서 계층이 높아질수록 길어지는 양상을 나타내는지 분석했다. 나아가 대뇌피질과 직접적인 연결이 존재하는 영역인 시상까지 분석의 범위를 확장하여 신경 활동의 시간적 스케일을 비교했다. 연구 결과, 연구팀은 뉴런의 자발적 활동뿐 아니라 의사 결정 행동 관련 활동의 시간 스케일 역시 세 종의 대뇌피질에서 상위 정보 처리 영역으로 올라갈수록, 즉 해부학적 계층이 높아질수록 길어지는 반면, 뇌의 다른 영역인 시상에서의 신경 활동 시간 스케일은 대뇌피질의 신경 활동의 시간보다 전반적으로 짧고, 계층적 변화의 양상이 없는 것을 확인했다. 백세범 교수는 “포유류의 뇌가 정보를 처리하는 원리를 이해하는데 중요한 단서인 신경 활동의 시간적 스케일이 해부학적 계층에 따라 변하는 보편적인 구조적 패턴을 밝힘으로써, 뇌의 다양한 기능을 구현하기 위해 필요한 신경망 구조에 대한 구체적인 설명이 가능해질 것으로 기대된다”고 말하며 “이번 성과는 연구진들의 밀접한 국제적 협력을 통한 결과이기에 더 뜻깊다”고 덧붙였다. 이번 연구는 미국국립과학원회보 (Proceedings of the National Academy of Sciences, PNAS)에 지난 13일 게재됐다. (논문명: Hierarchical gradients of multiple timescales in the mammalian forebrain, DOI: 10.1073/pnas.2415695121) 한편 이번 연구는 한국연구재단의 이공분야기초연구사업, KAIST 특이점교수 사업 및 기초과학연구원의 지원을 받아 수행됐다.
2024.12.24
조회수 2254
이정호 교수, 박상민 연구원, 후천적 뇌 돌연변이로 인한 뇌발달 장애 원인 규명
〈 박 상 민 연구원 〉 우리 대학 의과학대학원 이정호 교수 연구팀이 후천적인 뇌 돌연변이로 인한 뇌전증(간질) 및 자폐증 환자에게 나타나는 신경 세포 이동 장애 증상이 발생하는 원리를 규명했다. 연구팀의 이번 연구 결과는 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 치료에 기여할 수 있을 것으로 기대된다. 박상민 석박사통합과정이 1저자로 참여한 이번 연구 결과는 신경생물학 분야 국제 학술지 ‘뉴런(Neuron)’ 6월 21자에 게재됐다. (논문명: ‘Brain somatic mutations in MTOR disrupt neuronal ciliogenesis, leading to focal cortical lamination’) 이정호 교수 연구팀은 후천적인 뇌 돌연변이가 뇌전증과 자폐증을 유발할 수 있고, 이 돌연변이로 인해 신경 세포 이동 장애 증상이 발생한다는 사실을 이전 연구에서 증명한 바 있다. 그러나 이 신경 세포의 이동 장애가 발생하는 근본적인 원리에 대해서는 완벽하게 밝혀내지 못했다. 연구팀은 난치성 뇌전증 및 자폐증과 밀접하게 연관된 대뇌 피질 발달장애 환자의 뇌 조직에서 엠토르(mTOR) 유전자의 후천적인 뇌 돌연변이가 발생함을 확인했다. 이를 반영한 동물 및 세포 모델을 이용해 대뇌 피질 발달 이상의 원리를 연구했다. 그 결과 엠토르(mTOR) 돌연변이를 가진 신경 세포에서 세포 소기관인 일차 섬모의 생성 기능이 망가져 있음을 확인했고 이것이 환자에게서 발견되는 신경 세포 이동 장애의 원리임을 밝혔다. 엠토르(mTOR) 유전자가 OFD1이라는 단백질을 적절하게 제거하는 역할을 수행해야 하지만 엠토르(mTOR)에 돌연변이가 발생함으로써 OFD1 단백질이 과하게 축적됐고 그것이 신경 세포 이동의 장애 현상으로 이어진 것이다. 연구팀은 돌연변이를 가진 신경 세포에서 과하게 축적돼 일차 섬모 생성을 방해하는 역할인 OFD1 단백질의 발현을 억제시킴으로써 일차 섬모의 생성을 회복시켰다. 이를 통해 신경 세포의 이동을 정상 수준으로 되돌렸다. 1저자인 박상민 석박사통합과정은 “후천적 뇌 돌연 변이로 인한 뇌 발달 장애 환자에서 관찰되는 대표적 증상인 신경 세포 이동 결함이 그동안 주목받지 않았던 일차 섬모라는 세포소기관의 생성으로 설명할 수 있다는 점을 발견했다”고 말했다. 연구팀은 이번 연구 결과를 바탕으로 후천적 뇌 돌연변이로 인한 뇌 발달 장애 환자의 새로운 치료제 개발을 위한 후속 연구를 진행 중이다. 이번 연구는 서경배 과학재단, 보건복지부 세계선도 의생명과학자 육성 사업, 질병중심 중개 중점 연구 사업을 통해 수행됐다. □ 그림 설명 그림1. 후천적 뇌 돌연 변이의 대뇌 피질 발달 장애 환자의 뇌 조직, 동물 모델에서 망가진 일차섬모 생성 그림2. 일차섬모 생성을 회복시킨 대뇌 피질 발달 장애 모델에서 신경 세포의 이동이 정상 수준으로 돌아옴
2018.06.25
조회수 11015
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1