본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%8D%B0%EC%9D%B4%ED%84%B0
최신순
조회순
천천히 걸음 속도 높여도 다 아는 인공지능 기술 개발
최근 건강에 관한 관심이 점차 커지면서 일상생활에서 스마트 워치, 스마트 링 등을 통해 자기 신체 변화를 살펴보는 일이 보편화되었다. 그런데 기존 헬스케어 앱에서는 걷기에서 뛰기로 갑자기 변화를 줄 경우는 잘 측정이 되지만 천천히 속도를 높이는 경우는 측정이 안 되는 현상이 발생했다. 우리 연구진이 완만한 변화에도 동작을 정확하게 파악하는 기술을 개발했다. 우리 대학 전산학부 이재길 교수 연구팀이 다양한 착용 기기 센서 데이터에서 사용자 상태 변화를 정확하게 검출하는 새로운 인공지능 기술을 개발했다고 12일 밝혔다. 보통 헬스케어 앱에서는 센서 데이터를 통해 사용자의 상태 변화를 탐지하여 현재 동작을 정확히 인식하는 기능이 필수이다. 이를 변화점 탐지라 부르며 다양한 인공지능 기술이 변화점 탐지 품질을 향상하기 위해 적용되고 있다. 이재길 교수팀은 사용자의 상태가 급진적으로 변하거나 점진적으로 변하는지에 관계없이 정확하게 잘 동작하는 변화점 탐지 방법론을 개발했다. 연구팀은 각 시점의 센서 데이터를 인공지능 기술을 통해 벡터*로 표현하였을 때, 이러한 벡터가 시간이 지남에 따라 이동하는 방향을 주목하였다. 같은 동작이 유지될 때는 벡터가 이동하는 방향이 급변하는 경향이 크고, 동작이 바뀔 때는 벡터가 직선상으로 이동하는 경향이 크게 나타났다. *벡터: 사용자의 시점별 상태 특성(이동속도, 자세, 움직임 등)을 나타내는 가장 좋은 수학적 개념 연구팀은 제안한 방법론을 ‘리커브(RECURVE)’라고 명명했다. 리커브(RECURVE)는 양궁 경기에 쓰이는 활의 한 종류이며, 활이 휘어 있는 모습이 데이터의 이동 방향 변화 정도(곡률)로 변화점을 탐지하는 본 방법론의 동작 방식을 잘 나타낸다고 보았다. 이 방법은 변화점 탐지의 기준을 거리에서 곡률이라는 새로운 관점으로 바라본 매우 신선한 방법이라는 평가를 받았다. 연구팀은 변화점 탐지 문제에서 다양한 헬스케어 센서 스트림 데이터를 사용하여 방법론의 우수성을 검증하여 기존 방법론에 비해 최대 12.7% 정확도 향상을 달성했다. 연구팀을 지도한 이재길 교수는 "센서 스트림 데이터 변화점 탐지 분야의 새로운 지평을 열 만한 획기적인 방법이며 실용화 및 기술 이전이 이뤄지면 실시간 데이터 분석 연구 및 디지털 헬스케어 산업에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 데이터사이언스대학원을 졸업한 신유주 박사가 제1 저자, 전산학부 박재현 석사과정 학생이 제2 저자로 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2024'에서 올 12월 발표될 예정이다. (논문명 : Exploiting Representation Curvature for Boundary Detection in Time Series) 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(RS-2020-II200862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2024.11.12
조회수 835
미토콘드리아 DNA 돌연변이를 밝혀내다
우리 몸의 세포는 평생 동안 DNA 돌연변이를 지속적으로 축적하며, 이는 세포 간의 유전적 다양성(모자이시즘) 및 세포 노화를 초래한다. 한국 연구진이 세포소기관 미토콘드리아 DNA의 인체 내 모자이시즘 현상을 최초로 규명했다. 우리 대학 의과학대학원 주영석 교수 연구팀 안지송 박사과정이 미토콘드리아 DNA 돌연변이 연구를 주도해 국제 과학학술지 ‘네이처 지네틱스(Nature Genetics)’ 7월 22일 字 온라인판에 게재했다고 24일 밝혔다. (논문명: Mitochondrial DNA mosaicism in normal human somatic cells). 이번 연구에는 서울대학교 의과대학, 연세대학교 의과대학, 고려대학교 의과대학, 국립암센터, 그리고 KAIST 교원창업기업 이노크라스의 연구자들도 참여했다. 미토콘드리아는 세포 에너지 대사 및 사멸에 관여하는 세포소기관으로, 세포핵과 독립적으로 자체 DNA를 가지고 있으며 돌연변이도 발생할 수 있다. 하지만 이러한 돌연변이를 정밀하게 찾아내는 데 필수적인 단일세포 전장유전체(whole-genome sequencing) 기술의 한계로 그동안 미토콘드리아 DNA 돌연변이 및 모자이시즘에 대한 연구는 미흡했다. 연구팀은 31명의 정상 대장 상피 조직, 섬유아세포, 혈액에서 확보한 총 2,096개 단일세포의 전장 유전체 서열을 생명정보학 기법으로 분석해 세계 최대 규모의 연구를 수행했다. 세포 사이에서는 평균적으로 3개의 유의미한 미토콘드리아 DNA 차이가 존재했으며, 대부분은 노화 과정에서 생성됐으나 약 6%의 차이는 모계로부터 이형상태(헤테로플라스미; heteroplasmy)로 전달됨이 확인됐다. 또한, 암 발생 과정에서 돌연변이 수가 유의미하게 증가했으며, 이들 변이 중 일부는 미토콘드리아 RNA 불안정성에 기여한다는 사실도 확인했다. 관찰된 데이터를 바탕으로 연구팀은 인간의 배아 발생단계부터 노화 및 발암 과정에서의 미토콘드리아 발생 및 진화 과정을 이해할 수 있는 모델을 구축했다. 이번 연구는 사람의 정상 세포에서 발생하는 미토콘드리아 DNA 돌연변이의 형성 메커니즘을 체계적으로 밝혀내, 향후 미토콘드리아 DNA가 노화와 질병 발생에 미치는 영향을 이해하는 데 중요한 초석을 제공할 수 있을 것으로 기대된다. 의과학대학원 주영석 교수는 “전장유전체 빅데이터를 체계적으로 활용함으로써 미지의 영역이었던 생명과학 현상을 규명할 수 있다”며, “암 발생 과정뿐만 아니라 인간의 배아 발생과정 및 노화과정에서 나타나는 미토콘드리아 DNA의 변화를 체계적으로 이해할 수 있는 방법을 처음으로 수립했다” 라고 연구의 중요성을 설명했다. 한편 이번 연구는 한국연구재단 리더연구, 선도연구센터 및 서경배과학재단 신진과학자 연구지원 사업의 지원을 받아 수행됐다.
2024.07.24
조회수 2350
세계 최대 규모 암 데이터베이스 구축하다
디지털 암 정보 축적의 시대에는 데이터 생산을 넘어서, 데이터의 수집 및 관리 방법을 정립하고 거대 규모의 빅 데이터를 운용하는 것이 가장 큰 경쟁력이 될 수 있다. 전략적으로는 정밀 임상 정보와 연계할 수 있는 국내 생산 데이터와 다양성에 대한 이해를 도모할 수 있는 대규모 국제 데이터를 모두 수집해 통합하는 것은 매우 중요한 과제다. 우리 대학 의과학대학원 박종은 교수, 바이오및뇌공학과 최정균 교수 공동 연구팀(제1 저자: 강준호 박사, 이준형 박사)이 세계 최대 규모의 암 조직 단일세포 및 공간전사체* 데이터베이스를 구성하고, 이를 바탕으로 삼성서울병원 이세훈 교수 연구팀과 함께 면역 치료의 예후 예측에 중요한 세포 생태계 타입을 보고했다고 22일 밝혔다. *단일세포 및 공간전사체: 모든 유전자의 발현 양상을 개별 세포 단위에서 혹은 3차원 조직 구조상에서 분석한 데이터 암은 우리 몸 안에서 스스로 진화하는 특성을 가지고 있어 암 조직 내의 세포 생태계를 구성하는 각 세포의 이질성과 이들의 상호작용을 파악하는 것이 가장 중요하다. 최근 발달하고 있는 단일세포 및 공간 전사체는 미세환경을 구성하는 세포들과 그들의 3차원적 배열 및 상호작용을 정량적으로 측정 및 표현한다는 점에서 미세환경의 이질성 개념을 생태계 수준으로 확장해 디지털 정보의 형태로 저장 및 분석할 수 있게 한다. 연구팀은 암세포 생태계 타입들을 전 암종(pan-cancer) 수준에서 규명하기 위해 약 1,000개의 암 환자 조직 샘플, 500여 명의 정상 조직 샘플에 대한 단일세포 전사체 데이터를 30종 이상의 암종에 대해 수집하여 모든 암에 대한 세포 지도가 총망라된 전 암종 단일세포 지도(pan-cancer single-cell atlas)를 구축했다. 내과 전문의가 포함된 연구진이 직접 데이터를 수집하고, 메타데이터 재처리 및 암종 분류를 진행함으로써 암 조직을 구성하는 100여 개의 세포 상태를 규정하고, 이들의 발생빈도를 바탕으로 각 암종별 조직의 상태를 분류했다. 또한 미국의 암 환자 공공 데이터베이스(TCGA) 등의 대규모 코호트 데이터를 활용해 각 세포 상태가 암 환자의 치료 및 예후에 미치는 영향을 분석했다. 특히 여러 세포 상태 간의 상호작용 분석을 통해서 암세포 생태계 네트워크를 구축하였고, 이 중에서 삼차 림프 구조(tertiary lymphoid structure)* 구성요소를 포함하는 인터페론 연관 생태계가 삼성서울병원 이세훈 교수 연구팀의 폐암 코호트를 포함해 면역관문 억제 치료(immune checkpoint inhibitor)**를 받은 여러 암종들에서 면역관문 억제 치료 반응 예측에 효과적임을 확인했다. *삼차 림프 구조: 림프절과 유사하지만 건강한 조직에서는 형성되지 않고, 만성염증, 감염, 암 등이 있는 곳에서 면역 세포들이 조직화되어 형성되는 구조물 **면역관문 억제치료: T세포 혹은 암세포에서 발현되는 PD-1/PD-L1, CTLA-4와 같은 면역관문(immune checkpoint)을 차단하여 암세포와 싸우는 면역 반응을 활성화시키는 치료방법 연구를 주도한 박종은 교수는 “이번 연구를 통해 세계 최대 규모의 암 조직 데이터베이스를 구축하였고, 이를 바탕으로 면역 치료의 예후 예측에 중요한 영향을 줄 것이다. 또한 소수의 환자에게 아주 좋은 치료반응을 보이나 일부의 경우 면역 관련 부작용을 나타내는 면역 관문 억제제의 치료 대상군 선정에 큰 도움을 줄 것으로 기대된다.”고 말했다. 이번 연구 결과는 국제 학술지 ‘네이쳐 커뮤니케이션즈(Nature Communications)’ 지에 5월 14일 자 출판됐으며, KAIST 세포 아틀라스 웹 포탈 https://cellatlas.kaist.ac.kr 을 통해 공개되고 있다. 한편 이번 연구는 한국연구재단의 차세대바이오유망범용기술연구지원사업과 우수신진연구사업, 한국보건산업진흥원 연구중심병원 육성사업, 융합형의사과학자양성사업 및 포스코사이언스펠로우십의 지원을 받아 수행됐다.
2024.05.22
조회수 3540
인과관계 추정 정확도 높인 새로운 방법론 개발
우리 대학 수리과학과 김재경 교수 연구팀이 수학 모델을 기반으로 시계열 데이터의 인과관계를 추정하는 새로운 방법론을 개발했다. 복잡한 계산 과정을 없애 기존보다 빠른 속도로 추론이 가능하면서도, 정확도는 획기적으로 높였다. 매 순간 다양한 데이터가 기록되고 있다. 그중 시간의 흐름을 기준으로 기록된 ‘시계열 데이터’는 일기 예보와 경제 분야뿐만 아니라 의학 분야에서도 가치 있게 쓰인다. 입원 환자의 심전도 측정을 통해 심장 발작의 직접적인 요인을 찾는 것과 같이 인과관계를 추정하는 것이 대표적이다. 최근에는 스마트 워치 등 웨어러블 기기를 통해 일상에서 건강 데이터를 쉽게 수집할 수 있게 되면서, 의학 분야에서 시계열 데이터 분석의 중요성이 더 커지고 있다. 시계열 데이터에서 인과관계를 추정하는 대표적인 방법으로는 2003년 노벨 경제학상을 수상한 클라이브 그레인저 미국 샌디에이고캘리포니아대(UC샌디에이고) 교수가 제시한 ‘그레인저 인과관계 검정(Granger causality test)’이 있다. 이는 미래 경제지표 예측, 질병 요인분석, 지구온난화의 원인 등 수많은 분야에 걸쳐 응용됐다. 그레인저 인과관계 검정을 개선한 정보 이론 기반의 다양한 인과관계 추정 방법이 개발됐지만, 일련의 방법들은 시계열 데이터가 비슷한 주기로 변화하는 동시성을 가지기만 하면, 인과관계가 있다고 잘못 예측하는 경우가 많았다. 또한, 직접적인 인과관계와 간접적인 인과관계를 구별하지 못한다는 한계도 있었다. 이러한 한계를 극복하기 위해 최근 수리 모델을 기반으로 하는 방법론들이 등장했다. 수리 모델로 주어진 시계열 데이터를 잘 맞출 수 있는지 확인하는 방법을 통해 인과관계를 예측한다. 수리 모델이 정확하기만 하면 기존 그레인저 인과관계 검정의 한계인 동시성과 간접적인 영향을 인과관계와 혼동하지 않는다는 장점이 있다. 그러나 정확한 수리 모델을 알기 힘들고, 현재까지 제시된 수리 모델 기반 방법론들은 복잡한 계산이 필요해 추정 시간이 많이 걸린다는 단점이 있다. 이러한 상황에서 연구팀은 기존 방법론들의 한계를 모두 해결한 새로운 방법론 ‘GOBI(General ODE-Based Inference)’를 개발했다. 우선, 연구팀은 시계열 데이터가 일반적인 수학 모델로 표현될 수 있는지 확인하는 수학 이론을 만들었다. 그리고 이 이론을 바탕으로 정확한 수리 모델이나 복잡한 계산 없이도 시계열 데이터로부터 인과관계를 추정하는 방법론을 개발했다. 개발한 방법론을 인과관계 분석에 적용해 본 결과 세포 내 분자들의 상호작용, 생태계 네트워크, 기상 시스템 등 다양한 분야의 데이터에서 기존 방법론에 비해 월등한 성능을 보여줬다. 특히, 동시성 및 간접적인 영향을 가지는 시계열 데이터에서도 인과관계를 성공적으로 추론했다. 연구진은 GOBI를 통해서 여러 오염 물질 중 이산화질소와 호흡기로 유입되는 부유 미립자(직경 10㎛ 이하의 입자)가 심혈관계 질환에 영향을 미친다는 것을 확인할 수 있었다. 김재경 교수는 “수학과 통계를 결합하여 정확하면서도 다양한 시스템에 유연하게 적용할 수 있는 새로운 인과관계 추정 방법론을 개발했다”며 “사회 및 자연과학 분야에 걸쳐 두루 사용되는 인과관계 추정 연구에 새로운 패러다임을 제시할 것으로 예상된다”고 말했다. 연구결과는 7월 24일 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 17.694)’ 온라인판에 실렸으며, 우리 대학 박세호 학사과정(제1저자)과 하석민 학사과정(제2저자)이 참여했다.
2023.07.26
조회수 5014
취침시간 지리/문화적 영향에 따라 더 늦어져
수면은 건강과 웰빙, 생산성에 큰 영향을 미치지만, 현대인이 얼마나 오래 그리고 잘 수면을 취하는지에 대해 정확히 보고되지 않았다. 수면의 양과 질은 개인의 선택일까, 아니면 문화와 지리와 같은 사회적 요인에 얼마나 영향을 받을까? 우리 대학 전산학부 차미영 교수가 이끄는 IBS(원장 노도영) 연구팀과 영국의 노키아 벨 연구소(Nokia Bell Labs)는 공동 연구를 통해 현대인의 ‘수면’이 어떤 사회적 및 개인적 요인에 영향을 받는다고 6일 밝혔다. 연구팀은 스마트 워치가 상용화되며 데이터의 대량 수집이 가능해진 기회에 주목했다. 노키아에서 개발한 스마트 워치를 착용한 미국, 캐나다, 스페인, 영국, 핀란드, 한국, 일본을 포함 11개국의 30,082명으로부터 4년간 수집한 5,200만 건의 데이터를 분석해 나라별 디지털 로그 기반 수면 패턴을 분석했다. 먼저 연구팀은 나라별 취침 시간, 기상 시간, 총 수면시간이 어떤지를 살폈다. 스마트워치 데이터에 기록된 취침 시간은 기존 설문지 기반 조사에 보고된 결과 대비 나라마다 수십 분에서 한 시간까지도 늦었다. 전 세계 평균 취침 시간은 자정(00:01)이고 기상 시간은 오전 7시 42분이었다. 이러한 차이는 설문조사가 가지는 편향과 함께 스마트 워치의 모션 센서가 뒤척임 없이 수면을 시작하는 순간을 정밀히 기록하는 데서 기인한다. 기상 시간은 나라별 비슷하지만 취침 시간은 지리적 문화적 영향을 상당히 받았다. 특히 국민 소득(GDP)이 높을수록 취침 시간이 늦어졌으며, 문화적으로 개인주의보다는 집단주의 지수가 높을수록 취침 시간이 늦었다. 조사된 나라 중 일본은 총 수면시간이 평균 7시간 미만으로 가장 적었으며 핀란드는 평균 수면시간이 8시간으로 가장 길었다. (그림 1) 연구팀은 이와 더불어 그동안 임상 연구에서 사용된 다양한 수면의 요소들을 정량화하여 수면 효율성(설명: 취침 중 깨지 않고 연속으로 자는 시간의 비율)과 같은 질적 요인을 분석했다. 빅데이터를 사용해 성향 점수 매칭 기법(propensity score matching methods, PSM)으로, 개인마다 문화적 요인을 고정한 상태에서 운동량을 늘어나면 수면이 어떻게 변하는지에 대한 가상 테스트를 진행했다. 그 결과 걸음 수가 늘수록 취침 시 더 빨리 잠들고 밤에 덜 깨는 긍정적 효과를 확인했다. 운동량은 수면의 질을 개선하지만, 총 수면시간을 늘리지는 않았다. 흥미롭게도 이러한 운동의 긍정적 효과는 국가별로 다르며, 특히 미국과 핀란드에서 효과가 강하게 나타난 반면 일본에서는 운동의 효과가 미미했다. 강원대학교 박성규 교수, 우리 대학 차미영 교수, 노키아 연구소의 퀘르시아 박사가 주저자로 참여한 이번 연구 결과는 국제 학술지 네이처 출판 그룹의 ‘사이언티픽 리포트(Scientific Reports)’에 게재됐다. (논문명: Social dimensions impact individual sleep quantity and quality, 사회적 차원이 개인의 수면 양과 질에 미치는 영향) 퀘르시아 박사는 “수면의 양과 질에 사회적 영향이 절반이나 차지했다. 고소득 국가에서 업무 스케줄이 과도하고 근무시간이 길어지며 취침 시간이 늦어지고, 집단주의가 강한 스페인과 일본은 사회적 요구에 부응하기 위해 취침 시간이 지연될 수 있다”고 연구 결과를 해석했다. 차미영 교수는 “수면은 웰빙, 비만, 치매 등과도 연관이 있다고 알려져 중요하다. 고령화 사회에서 국민의 건강 증진을 위해 적절한 수면의 양을 보장하고 수면의 질을 높이기 위해 개인의 노력은 물론 사회적 지원이 함께해야 한다”고 말했다. 연구팀은 이번 연구에서 개발한 수면의 지표를 쉽게 계산하는 코드를 무료로 공개해 첨단 수면 산업 발달에 기여하며, 다양한 생체 신호를 포함하는 수면에 대한 벤치마크 데이터도 추후 공개할 예정이다.
2023.07.06
조회수 3538
고성능 조립형 SSD 시스템반도체 최초 개발
최근 인공지능을 훈련하기 위해 더 많은 데이터가 필요해지면서 그 중요성은 더욱 증가하고 있으며, 이에 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치인 고성능 SSD(Solid State Drive, 반도체 기억소자를 사용하는 저장장치) 제품의 필요성이 높아지고 있다. 하지만, 고성능 SSD 제품일수록 SSD 내부의 구성요소들이 서로의 성능에 크게 영향을 미치는 상호-결합형(tightly-coupled) 구조의 한계에 부딪혀 성능을 극대화하기 어려웠다. 우리 대학 전기및전자공학부 김동준 교수 연구팀이 고성능 조립형 SSD 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높일 뿐 아니라 SSD 수명연장에도 적용 가능한 SSD 시스템 반도체 구조를 세계 최초로 개발했다고 15일 밝혔다. 김동준 교수 연구팀은 기존 SSD 설계가 갖는 상호-결합형 구조의 한계를 밝히고, CPU, GPU 등의 비메모리 시스템 반도체 설계에서 주로 활용되는 칩 내부에서 패킷-기반 데이터를 자유롭게 전송하는 온-칩 네트워크 기술을 바탕으로 SSD 내부에 플래시 메모리 전용 온-칩 네트워크를 구성함으로써 성능을 극대화하는 상호-분리형(de-coupled) 구조를 제안했으며, 이를 통해 SSD의 프론트-엔드 설계와 백-엔드 설계의 상호 의존도를 줄여 독립적으로 설계하고 조립 가능한 ‘조립형 SSD’를 개발했다. ※온-칩 네트워크(on-chip network): CPU/GPU등의 시스템 반도체 설계에 쓰이는 칩 내부의 요소에 대한 패킷-기반 연결구조를 말한다. 온-칩 네트워크는 고성능 시스템 반도체를 위한 필수적인 설계 요소중 하나로서 반도체칩의 규모가 증가할수록 더욱 중요해지는 특징이 있다. 김동준 교수팀이 개발한 조립형 SSD 시스템 구조는 내부 구성요소 중 SSD 컨트롤러 내부, 플래시 메모리 인터페이스를 기점으로 CPU에 가까운 부분을 프론트-엔드(front-end), 플래시 메모리에 가까운 부분을 백-엔드(back-end)로 구분하고, 백-엔드의 플래시 컨트롤러 사이 간 데이터 이동이 가능한 플래시 메모리 전용 온-칩 네트워크를 새롭게 구성해, 성능 감소를 최소화하는 상호-분리형 구조를 제안했다. SSD를 구동하는 핵심 요소인 플래시 변환 계층의 일부 기능을 하드웨어로 가속하여 플래시 메모리가 갖는 한계를 능동적으로 극복할 수 있는 계기를 마련하였고 상호-분리형 구조는 플래시 변환 계층이 특정 플래시 메모리의 특성에 국한되지 않고, 프론트-엔드 설계와 백-엔드 설계를 독립적으로 수행하는 설계의 용이성을 가지는 점이 ‘조립형’ SSD 구조의 장점이라고 밝혔다. 이를 통해, 기존 시스템 대비 응답시간을 31배 줄일 수 있었고 SSD 불량 블록 관리기법에도 적용해 약 23%의 SSD 수명을 연장할 수 있다고 연구팀 관계자는 설명했다. 전기및전자공학부 김지호 박사과정이 제1 저자, 전기및전자공학부 정명수 교수가 공동 저자로 참여한 이번 연구는 미국 플로리다주 올랜도에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `제50회 국제 컴퓨터 구조 심포지엄(50th IEEE/ACM International Symposium on Computer Architecture, ISCA 2023)'에서 6월 19일 발표될 예정이다. (논문명: Decoupled SSD: Rethinking SSD Architecture through Network-based Flash Controllers). 연구를 주도한 김동준 교수는 “이번 연구는 기존의 SSD가 가지는 구조적 한계를 규명했다는 점과 CPU와 같은 시스템 메모리 반도체 중심의 온-칩 네트워크 기술을 적용해 하드웨어가 능동적으로 필요한 일을 수행할 수 있다는 점에서 의의가 있으며 차세대 고성능 SSD 시장에 기여할 것으로 보인다”며, “상호-분리형 구조는 수명연장을 위해서도 능동적으로 동작하는 SSD 구조로써 그 가치가 성능에만 국한되지 않아 다양한 쓰임새를 가진다며”연구의 의의를 설명했다. 이번 연구는 컴퓨터 시스템 저장장치 분야의 저명한 연구자인 KAIST 정명수 교수와 컴퓨터 구조 및 인터커넥션 네트워크(Interconnection Network) 분야의 권위자인 김동준 교수, 두 세계적인 연구자의 융합연구를 통해 이루어낸 연구라는 의미가 있다고 관계자는 설명했다. 한편 이번 연구는 한국연구재단, 삼성전자, 반도체설계교육센터(IDEC), 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2023.06.15
조회수 4668
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다. 이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다. 데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다. 연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다. 연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다. 정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다. 이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search) 한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5209
암세포만 공략하는 스마트 면역세포 시스템 개발
우리 대학 바이오및뇌공학과 최정균 교수와 의과학대학원 박종은 교수 공동연구팀이 인공지능과 빅데이터 분석을 기반으로 스마트 면역세포를 통한 암 치료의 핵심 기술을 개발했다고 밝혔다. 이 기술은 키메라 항원 수용체(Chimeric antigen receptor, CAR)가 논리회로를 통해 작동하게 함으로써 정확하게 암세포만 공략할 수 있도록 하는 차세대 면역항암 치료법으로 기대가 모아진다. 이번 연구는 분당차병원 안희정 교수와 가톨릭의대 이혜옥 교수가 공동연구로 참여했다. 최정균 교수 연구팀은 수백만개의 세포에 대한 유전자 발현 데이터베이스를 구축하고 이를 이용해 종양세포와 정상세포 간의 유전자 발현 양상 차이를 논리회로 기반으로 찾아낼 수 있는 딥러닝 알고리즘을 개발하고 검증하는 데 성공했다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용없이 암세포만 정확하게 공략하는 것이 가능하다. 바이오및뇌공학과 권준하 박사, 의과학대학원 강준호 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 '네이처 바이오테크놀로지(Nature Biotechnology)'에 지난 2월 16일 출판됐다. (논문명: Single-cell mapping of combinatorial target antigens for CAR switches using logic gates) 최근의 암 연구에서 가장 많은 시도와 진전이 있었던 분야는 바로 면역항암치료이다. 암환자가 갖고 있는 면역체계를 활용하여 암을 극복하는 이 치료 분야에는 몇 가지 방법이 있는데, 면역관문억제제 및 암백신과 더불어 세포치료 또한 해당된다. 특히, 키메라 항원 수용체를 장착한 CAR-T 혹은 CAR-NK라고 하는 면역세포들은 암항원을 인식하여 암세포를 직접 파괴할 수 있다. CAR 세포치료는 현재 혈액암에서의 성공을 시작으로 고형암으로 그 적용 범위를 넓히고자 하는 중인데, 혈액암과 달리 고형암에서는 부작용을 최소화하면서 효과적인 암 살상 능력을 보유하는 CAR 세포 개발에 어려움이 있었다. 이에 따라 최근에는 한 단계 진보된 CAR 엔지니어링 기술, 즉 AND, OR, NOT 과 같은 컴퓨터 연산 논리회로를 활용해 효과적으로 암세포를 공략할 수 있는 스마트 면역세포 개발이 활발히 진행되고 있다. 이러한 시점에서, 연구진은 세포 단위에서 정확히 암세포들에서만 발현하는 유전자들을 발굴하기 위해 대규모 암 및 정상 단일세포 데이터베이스를 구축했다. 이어서 연구진은 암세포들과 정상세포들을 가장 잘 구별할 수 있는 유전자 조합을 검색하는 인공지능 알고리즘을 개발했다. 특히 이 알고리즘은, 모든 유전자 조합에 대한 세포 단위 시뮬레이션을 통해 암세포만을 특이적으로 공략할 수 있는 논리회로를 찾아내는데 사용되었다. 이 방법론으로 찾아진 논리회로를 장착한 CAR 면역세포는 마치 컴퓨터처럼 암과 정상 세포를 구별하여 작동함으로써 부작용은 최소화하면서도 항암치료의 효과는 극대화시킬 수 있을 것으로 기대된다. 제1 저자인 권준하 박사는 "이번 연구는 이전에 시도된 적이 없는 방법론을 제시했는데, 특히 주목할 점은 수백만개의 개별 암세포 및 정상세포들에 대한 시뮬레이션을 통해 최적의 CAR 세포용 회로들을 찾아낸 과정이다ˮ라며 "인공지능과 컴퓨터 논리회로를 면역세포 엔지니어링에 적용하는 획기적인 기술로서 혈액암에서 성공적으로 사용되고 있는 CAR 세포치료가 고형암으로 확대되는데 중요한 역할을 할 것으로 기대된다"고 설명했다.ᅠ 이번 연구는 한국연구재단 원천기술개발사업-차세대응용오믹스사업의 지원을 받아 수행됐다.
2023.03.02
조회수 8013
레이블 없이 훈련 가능한 그래프 신경망 모델 기술 개발
최근 다양한 분야 (소셜 네트워크 분석, 추천시스템 등)에서 그래프 데이터 (그림 1) 의 중요성이 대두되고 있으며, 이에 따라 그래프 신경망(Graph Neural Network) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서는 심층 학습 모델을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 소셜 네트워크의 특정 사용자에 `20대'라는 레이블을 부여하는 행위), 이 과정은 일반적으로 수작업으로 진행되므로 노동력과 시간이 소요된다. 따라서 그래프 신경망 모델 훈련 시 데이터가 충분하지 않은 상황을 효과적으로 타개하는 방법의 필요성이 대두되고 있다. 우리 대학 산업및시스템공학과 박찬영 교수 연구팀이 데이터의 레이블이 없는 상황에서도 높은 예측 정확도를 달성할 수 있는 새로운 그래프 신경망 모델 훈련 기술을 개발했다고 25일 밝혔다. 정점의 레이블이 없는 상황에서 그래프 신경망 모델의 훈련은 데이터 증강을 통해 생성된 정점들의 공통된 특성을 학습하는 과정으로 볼 수 있다. 하지만 이러한 정점의 공통된 특성을 학습하는 과정에서, 기존 훈련 방법은 표상 공간에서 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 하지만 그래프 데이터가 정점들 사이의 관계를 나타내는 데이터 구조라는 점을 고려했을 때, 이런 일차원적인 방법론은 정점 간의 관계를 정확히 반영하지 못하게 된다. 박 교수팀이 개발한 기술은 그래프 신경망 모델에서 정점들 사이의 관계를 보존해 정점의 레이블이 없는 상황에서 모델을 훈련시켜 높은 예측 정확도를 달성할 수 있게 해준다. KAIST 산업및시스템공학과 이남경 석사과정이 제1 저자, 현동민 박사, 이준석 석사과정 학생이 제2, 제3 저자로 참여한 이번 연구는 최고권위 국제학술대회 `정보지식관리 콘퍼런스(CIKM) 2022'에서 올 10월 발표될 예정이다. (논문명: Relational Self-Supervised Learning on Graphs) 기존 연구에서는 정점의 레이블이 없는 상황에서 정점에 대한 표상을 훈련하기 위해 표상 공간 내에서 자기 자신을 제외한 다른 정점들과의 유사도가 작아지도록 훈련을 한다. 예를 들어서, 소셜 네트워크에 A, B, C 라는 사용자가 존재할 때, A, B와 C가 표상 공간에서 서로 간의 유사도가 모두 작아지도록 모델을 훈련하는 것이다. 이때 박 교수팀이 착안한 점은 그래프 데이터가 정점 간의 관계를 나타내는 데이터이므로 정점 간의 관계를 포착하도록 정점의 표상을 훈련할 필요가 있다는 점이었다. 즉, A, B와 C 서로 간의 유사도가 모두 작아지게 하는 훈련 메커니즘과는 달리, 실제 그래프상에서는 이들이 연관이 있을 수 있다는 점이다. 따라서 A, B와 C 사이의 관계를 긍정/부정의 이진 분류를 통해 표상 공간에서 유사도가 작아지도록 훈련을 하는 것이 아닌, 이들의 관계를 정의해 그 관계를 보존하도록 학습하는 모델을 연구팀은 개발했다(그림 2). 연구팀은 정점 간의 관계를 기반으로 정점의 표상을 훈련함으로써, 기존 연구가 갖는 엄격한 규제들을 완화해 그래프 데이터를 더 유연하게 모델링했다. 연구팀은 이 학습 방법론을 `관계 보존 학습'이라고 명명했으며, 그래프 데이터 분석의 주요 문제(정점 분류, 간선 예측)에 적용했다(그림 3). 그 결과 최신 연구 방법론과 비교했을 때, 정점 분류 문제에서 최대 3% 예측 정확도를 향상했고, 간선 예측 문제에서 6%의 성능 향상, 다중 연결 네트워크 (Multiplex network)의 정점 분류 문제에서 3%의 성능 향상을 보였다. 제1 저자인 이남경 석사과정은 "이번 기술은 데이터의 레이블이 부재한 상황에서도 그래프 신경망을 학습할 수 있는 새로운 방법ˮ 이라면서 "그래프 기반의 데이터뿐만이 아닌 이미지 텍스트 음성 데이터 등에 폭넓게 적용될 수 있어, 심층 학습 전반적인 성능 개선에 기여할 수 있다ˮ고 밝혔다. 연구팀을 지도한 박찬영 교수도 "이번 기술은 그래프 데이터상에 레이블이 부재한 상황에서 표상 학습 모델을 훈련하는 기존 모델들의 단점들을 `관계 보존`이라는 개념을 통해 보완해 새로운 학습 패러다임을 제시하여 학계에 큰 파급효과를 낼 수 있다ˮ라고 말했다. 한편, 이번 연구는 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 사람중심인공지능핵심원천기술개발 과제로 개발한 연구성과 결과물(No. 2022-0-00157, 강건하고 공정하며 확장 가능한 데이터 중심의 연속 학습)이다.
2022.10.25
조회수 5986
인공지능 심층 학습(딥러닝) 서비스 구축 비용 최소화 가능한 데이터 정제 기술 개발
최근 다양한 분야에서 인공지능 심층 학습(딥러닝) 기술을 활용한 서비스가 급속히 증가하고 있다. 서비스 구축을 위해서 인공지능은 심층신경망을 훈련해야 하며, 이를 위해서는 충분한 훈련 데이터를 준비해야 한다. 특히 훈련 데이터에 정답지를 만드는 레이블링(labeling) 과정이 필요한데 (예를 들어, 고양이 사진에 `고양이'라고 정답을 적어줌), 이 과정은 일반적으로 수작업으로 진행되므로 엄청난 노동력과 시간적 비용이 소요된다. 따라서 훈련 데이터 구축 비용을 최소화하는 방법 개발이 요구되고 있다. 우리 대학 전산학부 이재길 교수 연구팀이 심층 학습 훈련 데이터 구축 비용을 최소화할 수 있는 새로운 데이터 동시 정제 및 선택 기술을 개발했다고 12일 밝혔다. 일반적으로 심층 학습용 훈련 데이터 구축 과정은 수집, 정제, 선택 및 레이블링 단계로 이뤄진다. 수집 단계에서는 웹, 카메라, 센서 등으로부터 대용량의 데이터가 정제되지 않은 채로 수집된다. 따라서 수집된 데이터에는 목표 서비스와 관련이 없어서 주어진 레이블에 해당하지 않는 분포 외(out-of-distribution) 데이터가 포함된다 (예를 들어, 동물 사진을 수집할 때 재규어 `자동차'가 포함됨). 이러한 분포 외 데이터는 데이터 정제 단계에서 정제돼야 한다. 모든 정제된 데이터에 정답지를 만들기 위해서는 막대한 비용이 소모되는데, 이를 최소화하기 위해 심층 학습 성능 향상에 가장 도움이 되는 훈련 데이터를 먼저 선택해 레이블링하는 능동 학습(active learning)이 큰 주목을 받고 있다. 그러나 정제와 레이블링을 별도로 진행하는 것은 데이터 검사 측면에서 중복적인 비용을 초래한다. 또한 아직 정제되지 않고 남아 있는 분포 외 데이터가 레이블링 단계에서 선택된다면 레이블링 노력을 낭비할 수 있다. 이재길 교수팀이 개발한 기술은 훈련 데이터 구축 단계에서 데이터의 정제 및 선택을 동시에 수행해 심층 학습용 훈련 데이터 구축 비용을 최소화할 수 있도록 해준다. 우리 대학 데이터사이언스대학원에 재학 중인 박동민 박사과정 학생이 제1 저자, 신유주 박사과정, 이영준 박사과정 학생이 제2, 제4 저자로 각각 참여한 이번 연구는 최고권위 국제학술대회 `신경정보처리시스템학회(NeurIPS) 2022'에서 올 12월 발표될 예정이다. (논문명 : Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning) 데이터의 정제 및 선택을 동시에 고려하기 위해서 구체적으로 가장 분포 외 데이터가 아닐 것 같은 데이터 중에서 가장 심층 학습 성능 향상에 도움이 될 데이터를 선택한다. 즉, 주어진 훈련 데이터 구축 비용 내에서 최고의 효과를 내도록 데이터의 순도(purity) 지표와 정보도(informativeness) 지표의 최적 균형(trade-off)을 찾는다. 순도와 정보도는 일반적으로 서로 상충하므로 최적 균형을 찾는 것이 간단하지 않다. 이 교수팀은 이러한 최적 균형이 정제 전 데이터의 분포 외 데이터 비율과 현재 심층신경망 훈련 정도에 따라 달라진다는 점을 발견했다. 이 교수팀은 이러한 최적 균형을 찾아내기 위해 추가적인 작은 신경망 모델을 도입했다. 연구팀은 추가된 모델을 훈련하기 위해 능동 학습에서 여러 단계에 걸쳐 데이터를 선별하는 과정을 활용했다. 즉, 새롭게 선택돼 레이블링 된 데이터를 순도-정보도 최적 균형을 찾기 위한 훈련 데이터로 활용했고, 레이블이 추가될 때마다 최적 균형을 갱신했다. 이러한 방법은 목표 심층신경망의 성능 향상을 위해 추가적인 상위 레벨의 신경망을 사용하였다는 점에서 메타학습(meta-learning)의 일종이라 볼 수 있다. 연구팀은 이 메타학습 방법론을 `메타 질의 네트워크'라고 이름 붙이고 이미지 분류 문제에 대해 다양한 데이터와 광범위한 분포 외 데이터 비율에 걸쳐 방법론을 검증했다. 그 결과, 기존 최신 방법론과 비교했을 때 최대 20% 향상된 최종 예측 정확도를 향상했고, 모든 범위의 분포 외 데이터 비율에서 일관되게 최고 성능을 보였다. 또한, `메타 질의 네트워크'의 최적 균형 분석을 통해, 분포 외 데이터의 비율이 낮고 현재 심층신경망의 성능이 높을수록 정보도에 높은 가중치를 둬야 함을 연구팀은 밝혀냈다. 제1 저자인 박동민 박사과정 학생은 "이번 기술은 실세계 능동 학습에서의 순도-정보도 딜레마를 발견하고 해결한 획기적인 방법ˮ 이라면서 "다양한 데이터 분포 상황에서의 강건성이 검증됐기 때문에, 실생활의 기계 학습 문제에 폭넓게 적용될 수 있어 전반적인 심층 학습의 훈련 데이터 준비 비용 절감에 기여할 것ˮ 이라고 밝혔다. 연구팀을 지도한 이재길 교수도 "이 기술이 텐서플로우(TensorFlow) 혹은 파이토치(PyTorch)와 같은 기존의 심층 학습 라이브러리에 추가되면 기계 학습 및 심층 학습 학계에 큰 파급효과를 낼 수 있을 것이다ˮ고 말했다. 한편, 이 기술은 과학기술정보통신부 재원으로 정보통신기획평가원의 지원을 받아 SW컴퓨팅산업원천기술개발사업 SW스타랩 과제로 개발한 연구성과 결과물(2020-0-00862, DB4DL: 딥러닝 지원 고사용성 및 고성능 분산 인메모리 DBMS 개발)이다.
2022.10.12
조회수 6734
세계 최초 네트워크 기술이 적용된 SSD 시스템 반도체 개발
우리 대학 전기및전자공학부 김동준 교수 연구팀이 세계 최초로 `패킷 기반 네트워크' 기술이 적용된 SSD(Solid State Drive, 반도체 기억소자를 사용한 저장장치) 시스템 개발을 통해 차세대 SSD의 읽기/쓰기 성능을 비약적으로 높이는 시스템 반도체를 개발했다고 28일 밝혔다. 패킷이란 다양한 크기를 지닌 데이터를 일정한 크기로 분할한 후 제어 정보를 추가한 데이터 전송의 기본 단위를 말하며, 효율적이고 신뢰성 있게 데이터를 전송할 수 있다는 장점이 있어 주로 컴퓨터 네트워크 기반 정보 기술에서 사용되고 있다. 최근 시스템 반도체 분야에서는 다양한 계산 자원들을 칩 내부 네트워크로 연결하여 효율적으로 활용하는 기술이 적용되고 있다. 본 연구는 이러한 시스템 반도체 분야에서 효과적인 네트워크 연결 기술을 메모리 반도체에 적용하였다는 점에서 큰 의미를 가지고 있다. SSD는 플래시메모리를 이용해 정보를 저장하는 장치로, 기존 자기디스크를 이용한 데이터 저장장치인 `하드디스크 드라이브(HDD)'에 비해 데이터 입출력(읽기/쓰기) 속도가 빠르고 발열과 소음이 적어 데이터 센터 및 클라우드 서비스를 위한 주요 저장장치로 활용되고 있다. 전 세계적으로 수십억 명이 사용하는 페이스북(Facebook), 트위터(Twitter) 등과 같은 SNS 서비스를 제공하는 기업들뿐만 아니라 구글, 마이크로소프트 등과 같이 수십억 명의 사용자 정보를 저장하고 이를 활용해 서비스를 제공하는 기업들은 더 많은 데이터를 저장하고 성능이 좋은 고용량/고성능 SSD 제품을 필요로 한다. 특히 인터넷 서비스 제공 기업들은 많은 양의 정보가 데이터 센터에서 저장되고 처리되면서 더 많은 데이터를 저장할 수 있고, 더 빠르게 데이터를 읽고 쓰는 것이 가능한 고성능 SSD 제품을 요구한다. 따라서 SSD는 지속해서 성능과 용량의 개선을 요구하는 상황에 놓이게 된다. 이에 삼성, SK 하이닉스, 등과 같은 SSD 및 메모리를 제공하는 기업에서는 고성능 SSD 기술에 크게 주목하고 있으며, 이는 많은 애플리케이션의 성능 향상에 도움이 될 뿐만 아니라 비용적인 측면에서도 효율적으로 서버 시스템을 확장하는 데 도움이 될 것으로 기대하고 있다. 하지만 이러한 장점에도 불구하고, 고용량 및 고성능 SSD를 위해 규모를 증가시키는 스케일 업(scale-up)은 하드웨어 패키징 한계에 제한돼 쉽게 확장하기 어렵다. 무엇보다도 기존 SSD 시스템은 사용 가능한 처리량 (bandwidth)이 있음에도 불구하고 효율적으로 사용하지 못하는 비효율적인 데이터 송수신 방식 채택해 사용하고 있다. 이에 김동준 교수 연구팀은 기존 SSD 시스템 설계를 분석해 CPU, GPU 등과 같은 비메모리 시스템 반도체 설계에서 주로 활용되는 네트워크 기술을 적용해 SSD 성능을 크게 높일 수 있는 `네트워크 기술이 적용된 SSD 시스템 반도체'를 개발했다. 김동준 교수팀이 개발한 SSD 시스템은 플래시 인터커넥트(interconnection network) 와 패킷 기반 플래시 컨트롤러 (packet-based flash controller) 등으로 구성되어 있으며, 현재 사용되는 기존 SSD 시스템 대비 2배 많은 처리량을 제공하고 응답시간을 약 10배 줄인 성능을 보인다고 연구팀 관계자는 설명했다. 또한 이번 개발을 통해서 기존 하드웨어의 한계를 비메모리 시스템 반도체에서 주로 사용되는 패킷(packet) 기반 송수신 기법의 사용으로 극복해 고성능 SSD 기술에 도움을 줄 수 있을 것으로 기대된다고 연구팀 관계자는 설명했다. 전기및전자공학부 김지호 박사과정이 제1 저자로, 한양대학교 컴퓨터소프트웨어학과 강석원 박사과정, 박영준 연세대학교 컴퓨터과학과 교수가 공동 저자로 참여한 이번 연구는 미국 시카고에서 열리는 컴퓨터 구조 분야 최우수 국제 학술대회인 `55th IEEE/ACM International Symposium on Microarchitecture (MICRO 2022)'에서 오늘 10월 발표될 예정이다. (논문명 : Networked SSD: Flash Memory Interconnection Network for High-Bandwidth SSD) 연구를 주도한 김동준 교수는 "이번 연구는 지금까지는 없던 네트워크 패킷(packet)이 적용된 SSD 시스템 반도체를 세계 최초로 개발했다는 점에서 의의가 있으며, 데이터 센터 및 클라우드 서비스 시장에서 지속적으로 증가하는 고성능 SSD 요구에 발맞춰 큰 도움을 줄 수 있을 것으로 보인다ˮ며, "SSD의 성능 향상은 인공지능 연구 및 빅데이터 분석 기술을 활용하는 다양한 알고리즘 성능 개선에도 기여할 것으로 보인다ˮ고 연구의 의의를 설명했다. 한편 이번 연구는 한국연구재단과 정보통신기획평가원 차세대지능형반도체기술개발사업의 지원을 받아 수행됐다.
2022.09.28
조회수 7498
인공지능 활용 고용량 배터리 소재 역설계 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 우리 대학 조은애 교수, 변혜령 교수, 이혁모 교수, 신종화 교수, 육종민 교수, 그리고 미국의 르하이 대학교(Lehigh University), 죠수아 C 에이가(Joshua C. Agar) 교수와 협업해 기존 문헌에 발표된 실험값들을 추출하는 데이터 마이닝 과정과 이런 실험값들을 입력변수로 하는 다변수 선형회귀 모형을 기반으로 배터리 소재 역설계 머신러닝(기계학습) 모델을 수립했다고 23일 밝혔다. 인공지능은 고차원의 변수 공간에서 각 매개변수 간의 정량적인 상관관계를 신속하고 정확하게 추출할 수 있다. 이를 공정-구조-물성 간의 상관관계를 기반으로 발전하는 신소재공학에 적용하면 신소재 개발 시간을 단축할 수 있으며, 이런 이유로 많은 연구자가 인공지능을 신소재 개발에 활용하려고 노력하고 있다. 특히, 배터리 소재 개발에 인공지능을 활용하는 예가 가장 많은데, 주로 제1 원리 계산(양자화학에 기반한 계산법으로 계산 시 다른 경험적 수량을 전혀 사용하지 않음)과 머신러닝을 융합해 수많은 전극 소재 조합을 대량으로 스크리닝하는 기술 개발이 주를 이루고 있다. 그런데, 인공지능을 활용해서 새로운 배터리 소재를 탐색하고, 탐색한 소재를 합성 및 특성 평가에 있어 가장 큰 문제점은 데이터의 신뢰성과 양이다. 제1 원리 계산으로 예측한 값들은 실험으로 검증이 돼야 하며, 실험데이터의 경우 실험실마다 편차가 있고, 중요한 공정변수들을 공개하지 않은 경우가 많아 인공지능이 학습할 수 있는 데이터의 크기가 한정적이라는 문제가 대두되고 있다. 연구팀은 배터리 양극재 원료조성, 1차 및 2차 소결 온도와 시간 등의 공정 변수와 컷오프 전위 및 충․방전률과 같은 측정 변수, 그리고 1차 및 2차 입자의 크기와 같은 구조 변수, 마지막으로 충․방전 용량과 같은 성능 변수 간의 상관관계를 정량적으로 수립했고, 이를 활용해 요구되는 에너지 용량에 맞는 합성 조건을 찾는 알고리즘을 개발했다. 홍 교수 연구팀은 고니켈 함량 양극재 관련 논문 415편 안에 발표된 주요 변수들을 추출하고, 그중 16% 정도의 정보가 기입되지 않음을 발견했으며, 머신러닝 기법 중에서 k-최근접 이웃 알고리즘(k-nearest neighbors (KNN)), 랜덤 포레스트(random forest (RF)), 연쇄등식을 이용한 다중대치(multiple imputations by chained equations (MICE))를 활용해 빠진 정보를 예측하여 기입했다. 그리고, 가장 신뢰도가 높은 MICE를 선택해 얻은 입력 데이터 셋을 기반으로 주어진 공정 및 측정 변수에 대해서 성능 변수를 예측하는 순방향 모델을 얻었다. 이어서 입자 군집 최적화(particle swarm optimization, PSO) 알고리즘을 활용하여 주어진 성능 변수에 대응하는 공정 및 측정 변수를 추출하는 역방향 모델을 수립했고, 이 모델을 검증하기 위해 소재를 실제로 합성하여 타깃 용량인 200, 175, 150 mAh/g과 11% 정도의 오차를 보여 상당히 정확하게 역설계할 수 있음을 입증했다. 교신 저자인 홍승범 교수는 "인공지능을 활용해 대량의 논문 및 특허 내에 있는 공정-구조-물성 변수들을 자동으로 분류하고 실험값들을 추출해 각 변수 간의 다차원 상관관계를 기반으로 모델을 수립하는 것이 차세대 배터리 소재의 역설계의 핵심ˮ이라며 "향후 데이터 마이닝 기술, 머신러닝 기술 그리고 공정 자동화 기술을 융합하는 것이 미래의 신소재공학ˮ이라고 말했다. 신소재공학과 치 하오 리오우(Chi Hao Liow) 박사가 제1 저자로 참여한 이번 연구는 국제 학술지 `나노에너지(Nano Energy)'에 게재됐다. (논문명: Machine learning assisted synthesis of lithium-ion batteries cathode materials) 한편 이번 연구는 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.08.23
조회수 6986
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4