본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A6%AC%ED%8A%AC%EC%9D%B4%EC%B0%A8%EC%A0%84%EC%A7%80
최신순
조회순
4.55V 고전압 리튬이온전지 전해액 기술 개발
전기차 시대의 가속화에 따라 1회 충전에 긴 주행거리를 가능하게 하는 고용량, 고에너지밀도 이차전지 개발과 더불어 빠르게 충전을 할 수 있는 고속 충전 기술 개발의 중요도가 커지고 있다. 우리 대학 생명화학공학과 최남순 교수 연구팀이 고전압 조건에서 리튬이온전지의 높은 효율과 에너지를 유지하고 고속 충전이 가능한 전해액 설계 기술을 개발했다고 6일 밝혔다. 개발된 전해액은 점도가 낮으면서 고전압에 안정적인 용매를 사용하였으며 안정적인 전극-전해질 계면 반응을 확보할 수 있는 첨가제 기술을 통해 리튬이온전지의 수명 특성을 획기적으로 향상시켰다. 최남순 교수 연구팀은 상용 리튬이온전지에 사용되고 있는 카보네이트 계열의 용매 대신 점도가 낮고 고전압 조건에서 안정적으로 작용할 수 있는 용매 조성 기술과 전극계면 보호 기술을 적용해 기존 연구 결과보다 현저하게 향상된 *가역 효율 (99.9% 이상)을 달성했다. ☞ 가역 효율 : 매 사이클마다 전지의 방전용량을 충전용량으로 나누어 백분율로 나타낸 값으로 배터리의 가역성을 의미함. 가역 효율이 높을수록 매 사이클마다 배터리 용량 손실이 적음을 의미함. 아무리 높은 용량을 구현하는 배터리라도 가역성이 높지 않다면 실용화가 어려움. 또한, 첫 사이클 방전 기준 용량 대비 200 사이클에서의 방전 기준 용량까지를 용량 유지율 측정하였는데 개발된 전해액 기술은 고온 (45도)에서 4.5 V의 충전 전압 조건에서 89.9%의 높은 용량 유지율을 보였으며 4.53 V의 충전 전압 조건에서도 77.0%의 높은 용량 유지율을 보였다. 개발 전해액 조성의 경우 기존 상용 최고 수준 기술 대비 약 10~15% 이상의 높은 용량 유지율을 보여줬다. 뿐만 아니라, 4.55 V의 혁신적인 충전 전압 조건에서도 200회 사이클 후 61.7%의 높은 용량 유지율을 보여주는 등 우수한 수명 특성을 보여줬다. 이번 연구에서 개발된 전해액 설계 기술은 리튬 코발트 산화물 양극을 사용해 4.5 V 이상의 고전압 그리고 1.5C (45분 충전)의 빠른 충전 조건에서 극대화된 성능을 얻었다는 점에서 그 의미가 크다. 여기에 더해 60도 고온 저장에서도 저장 성능이 향상됨도 확인했다. 특히 고에너지밀도 리튬이온전지용 전해액 기준 프레임을 제시한 바, 이는 리튬이차전지 전해액 설계에서 새로운 기준이 될 것이라고 연구진은 설명했다. 이번 논문의 공동 제1 저자인 우리 대학 생명화학공학과 김세훈 박사과정은 “높은 산화안정성 및 저점도 특성을 가지는 용매 적용에 따른 고전압 안정성 및 고속 충전 특성 향상과 전해액 첨가제에 의한 안정적인 전극-전해질 계면 형성의 시너지 효과에 의해 기존에 보고된 리튬이온전지용 전해액 기술 개발의 한계를 뛰어넘는 기술을 개발하게 됐다ˮ라고 말했다. 또한, “상용 리튬이온전지에서 사용하는 수준의 높은 로딩의 리튬 코발트 산화물 양극을 사용하여 전지의 수명 특성을 극대화했기 때문에 산업에의 빠른 적용 및 향후 고에너지밀도 전지 시스템 설계에 있어 이정표로 작용할 수 있을 것이다”라고 전했다. 최남순 교수는 "개발된 전해액 기술은 상용 용매로 사용되고 있는 카보네이트 유기용매의 부족한 고전압 내구성을 에스테르 용매로 획기적으로 극복하였으며 이를 통해 배터리 충전과정에서 가스 발생을 최소화하는 고전압 전해액 시스템을 구축했다ˮ라고 말했다. 또한, "이러한 고전압 용매 조성과 전해액 첨가제 조합 기술은 리튬이온전지의 한계 에너지밀도를 끌어올리기 위한 전해액의 고전압화를 위한 돌파기술이라는 점에서 그 의미가 크다고 하겠다ˮ라고 연구의 의미를 강조했다. 이번 연구에서 생명화학공학과 최남순 교수와 김세훈, 이정아 연구원은 리튬이온전지의 고전압 구동을 위한 새로운 전해액 조성 기술을 개발하고 이에 대한 효과를 검증하였으며 작동 메커니즘을 규명하였다. 경상국립대학교 나노신소재융합공학과 (나노·신소재공학부 고분자공학 전공) 이태경 교수와 이동규, 손준수 연구원은 전해액 용매 및 첨가제의 작동 메커니즘을 계산화학을 통해 구체화하는 연구를 진행하였다. 이번 연구는 저명한 국제 학술지 `에이시에스 에너지 레터즈 (ACS Energy Letters)'에 1월 12일자로 발간되었으며 커버 논문으로 선정되었다 (논문명 : Designing Electrolytes for Stable Operation of High-Voltage LiCoO2 in Lithium-Ion Batteries). 이번 연구 수행은 삼성 에스디아이 (Samsung SDI)의 지원을 받아 수행됐다.
2024.02.06
조회수 5277
리튬이차전지 실리콘 기반 음극의 수명과 관련된 전자전도도 퇴화를 나노스케일에서 영상화 성공
고에너지 밀도를 갖는 리튬이차전지 개발에 대한 수요가 폭발적으로 증가하면서, 실리콘 기반 음극 개발에 관한 연구가 활발히 이뤄지고 있다. 실리콘 활물질은 기존 음극 활물질인 흑연 대비 높은 용량 값(4200 mAh/g)을 가지고 있어, 고에너지 밀도를 가지는 리튬이차전지용 음극의 유력한 후보로 자리 잡고 있다. 하지만 충전 및 방전 간 400%에 달하는 높은 부피 팽창/수축률이 실리콘 활물질의 상업화를 방해하고 있다. 실리콘 기반 음극의 급격한 부피 변화는 특히 전극 내 전자 전달 시스템에 큰 악영향을 미치고 있으며, 이를 보완하기 위해 다양한 도전재 시스템을 적용하는 연구가 활발히 진행 중이다. 전극 내 전자 전도 채널의 확보는, 활물질 내 균등한 전기화학 반응을 유발하기 위해 필수적이지만, 이를 나노스케일 공간 분해능을 갖고 영상화하는 방법론에 관해서는 많은 연구가 진행되지 않은 실정이다. 우리 대학 신소재공학과 홍승범 교수 연구팀이 LG에너지솔루션과 협업해, 나노스케일 분해능으로 전극 내 전자 전도 채널을 왜곡 신호 없이 정량적으로 추출하는 방법론을 개발하는 데 성공했다고 8일 밝혔다. 연구팀은 전극 소재와 같이 표면 거칠기가 큰 시료에서 전도성 원자간력현미경(Conductive Atomic Force Microscopy, C-AFM) 운용 시 발생하는 왜곡 정보인 용량성 전류(capacitive current)의 원인을 규명하고, 피어슨 상관 분석 방법을 기반으로 해당 왜곡 정보를 제거했다. 이 방법론을 실리콘/흑연 기반 복합 음극에 적용해 도전재 성분에 따른 전자 전도 채널 영상화를 실시했으며, 이를 통해 단일벽 탄소나노튜브(Signle-Walled Carbon Nano Tube, 이하 SWNCT)가 적용된 전극의 전기적, 전기화학적 우수성을 입증하는 데 성공했다. 연구팀은 이번 연구를 통해 실리콘 기반 전극과 같이 활물질의 부피 변화가 큰 시스템에서는 기존의 점형 도전재 대비 선형의 구조적 장점을 갖고 있는 SWCNT가 안정적인 전자 전도 채널을 확보하는 데 유리함을 보였다. 또한 SWCNT가 포함된 복합 전극의 경우, 130 사이클 이후에도 활물질의 분쇄가 보다 억제됐음을 보여주며, 전자 전도 채널의 불균일성이 활물질의 구조적 안정성에도 영향을 미칠 수 있음을 가설을 들어 설명했다. 제1 저자인 신소재공학과 박건 박사과정은 "전자 전도 채널 불균일이 유발한 전극의 전기화학 특성 퇴화라는 주제로 후속 연구를 진행 중이다ˮ라며 "나노스케일 영상화를 기반으로 지금껏 관찰하지 못했던 현상을 탐구할 수 있어 즐겁다ˮ라고 말했다. 교신 저자인 홍승범 교수는 "왜곡 신호의 원인을 규명하고, 이를 정량적으로 제거하는 연구는 영상화 분야에서 매우 중요하다ˮ라며 "이번에 개발한 방법론이 전극 내 전자 전도 채널을 강화하는데 적용돼, 실리콘 기반 복합 음극의 고도화를 앞당기는 데 도움이 되면 좋겠다ˮ라고 말했다. 이번 연구는 국제 학술지 `에이씨에스 어플라이드 머티리얼즈 앤드 인터페이시스(ACS Applied Materials & Interfaces)'에 게재됐다. (논문명: Nanoscale Visualization of the Electron Conduction Channel in the SiO/Graphite Composite Anode) 한편 이번 연구는 LG에너지솔루션-KAIST 프론티어 리서치 랩(Frontier Research Lab)과 KAIST 글로벌 특이점 사업의 지원을 받아 수행됐다.
2022.11.08
조회수 7563
뼈 형성 모방, 고성능 리튬전지 소재 개발
- 재료분야 세계적 학술지 Advanced Materials지 온라인판 게재- 리튬이차전지, 차세대 유․무기 나노복합소재 개발에 응용 가능해 우리학교 신소재공학과 강기석(35세) 교수팀과 박찬범(41세) 교수팀이 뼈의 형성 과정을 모방해 우수한 나노구조를 갖는 ‘리튬이차전지용 전극소재 합성을 위한 원천기술개발’에 성공했다고 22일 밝혔다. 뼈는 자연계에 존재하는 대표적인 나노복합소재로써 콜라겐이라는 단백질 섬유를 따라 칼슘인산염 나노결정이 생성․성장함으로써 생성된다.연구팀은 이러한 자연현상을 모방해 차세대 고안전성 리튬전지용 양극소재인 철인산염을 나노튜브 형태로 합성하는 데 성공했다. 리튬이차전지의 성능을 향상시키기 위해서는 에너지를 저장하거나 방출하기 위한 리튬의 빠른 이동이 필수적이다. 이를 위해 전극소재의 구조를 나노화하게 되면 표면적이 넓어지고 리튬의 확산에 필요한 거리가 짧아지기 때문에 보다 효과적으로 에너지를 저장하거나 방출할 수 있다. 이 기술의 핵심은 3차원 나노 구조를 갖는 생체재료 위에 철인산염을 균일하게 성장시킨 후 생체재료를 효과적 제거해 나노튜브구조를 얻는 것이다. 연구팀은 간단한 단백질의 일종인 펩타이드의 자기조립공정을 이용해 콜라겐 섬유와 유사한 구조 및 물성을 지니는 단백질 나노섬유를 합성한 뒤, 철 이온과 인산이온의 수용액상 침착반응을 이용해 단백질 나노섬유를 철인산염으로 균일하게 코팅했다. 이후 열처리를 통해 펩타이드 나노섬유를 탄화시키면, 내벽이 전도성 탄소층으로 코팅된 철인산염 나노튜브를 얻을 수 있었다 (그림). 연구팀은 철인산염 나노튜브가 차세대 리튬이차전지 전극소재로써 매우 우수한 특성을 가짐을 확인했다. 이번 연구는 생체재료분야와 리튬전지분야의 융합연구를 통해 이뤄졌으며, 기술적인 돌파구가 필요한 리튬전지개발에 이러한 접근방식이 새로운 해결방안이 될 수 있다는 가능성을 제시한 우수한 연구사례로 평가받고 있다. 이 기술을 이용하면 철인산염 외에 각종 다른 기능성 소재 개발에 응용이 가능해 리튬이차전지 뿐만 아니라 차세대 유․무기 나노복합소재 개발이 기여할 것으로 예상된다. 한편, 이번 연구결과는 재료분야 세계적 학술지 어드밴스드 머티리얼스(Advanced Materials) 12월 21일자 온라인판에 실렸다. 또한, 그 중요성을 인정받아 ‘네이처 퍼블리싱 그룹(Nature Publishing Group)’ 아시아 판에도 소개됐다.
2010.12.22
조회수 17076
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1