본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EB%A9%94%ED%83%80%EC%84%BC%EC%8A%A4
최신순
조회순
학습되지 않은 환경에서 스스로 학습하는 모바일 센싱 기술 개발
우리 대학 전산학부 이성주 교수 연구팀이 학습되지 않은 환경에 적은 양의 데이터로 스스로 적응하는 모바일 센싱 학습 기술 <메타센스(MetaSense)>를 개발했다. 모바일 센싱이란 스마트폰과 같은 모바일 기기의 다양한 센서를 이용하여 서비스(예: 수면의 질 평가, 걸음 수 추적 등)를 제공하는 기술이다. 최근 학계에서는 기계학습 기술의 발전과 더불어 우울증 진단, 운동 자세 관리 등 진보된 모바일 센싱의 가능성을 보여줌으로써 모바일 센싱의 범위를 더욱 확장하고 있다. 하지만 이러한 센싱 기술은 아직 널리 쓰이지 못하고 있다. 사용자 개인마다 가지고 있는 모바일 센싱의 환경이 다르기 때문이다. 사람마다 가지고 있는 고유한 생활패턴과 행동방식, 서로 다른 모바일 기기와 그 사양은 센서의 값에 큰 영향을 미친다. 다른 센서 값은 사람마다 고유한 센싱 환경을 만들고, 이는 센싱 모델이 미리 학습되지 않은 새로운 환경에서 작동할 때 사용이 어려울 만큼 성능 저하를 일으킨다. 연구팀은 이런 학습되지 않는 환경에서 적은 양의 데이터 (최소 1-2 샘플)만 가지고 적응할 수 있는 '메타러닝 프레임워크'를 제시했다. 메타러닝 (meta learning) 이란 적은 양의 데이터를 가지고도 새로운 지식을 학습할 수 있도록 하는 기계학습 원리다. 연구팀이 제시한 기술은 최신 전이학습 (transfer learning) 기술과 비교하여 18%, 메타러닝 기술과 비교하여 15%의 정확도 성능향상을 보였다. 이성주 교수는 ”최근 활발히 제안되고 있는 다양한 모바일 센싱 서비스가 특정 환경에 의존하지 않고 수많은 실제 사용 환경에서 우수한 성능을 보일 수 있게 해주는 연구다. 모바일 센싱 서비스가 연구에 그치지 않고 실제 많은 사람들에게 사용될 수 있는 가능성을 제시해 의미가 있다“라고 했다. 또한 신진우 교수는 “최근 메타러닝 방법론들이 기계학습 분야에서 크게 각광을 받고 있는데 주로 영상 데이터에 국한되어 왔었다. 본 연구에서 비영상 데이터에도 범용적으로 동작하는 메터러닝 기술을 개발하여 성공한 것은 앞으로도 관련 분야 연구에 큰 영향을 주리라 기대한다“라고 덧붙였다. 연구에 대한 설명이 담긴 비디오를 다음 링크에서 확인할 수 있고, (https://youtu.be/-6y0I1pd6XI) 자세한 정보는 프로젝트 웹사이트에서 볼 수 있다. (https://nmsl.kaist.ac.kr/projects/metasense/) 이성주 교수, 신진우 AI대학원 교수, 공태식 박사과정, 김연수 학사과정이 참여한 이번 연구 결과는 2019년 11월 11일 센싱 컴퓨팅 분야 국제 최우수학회 ACM SenSys에서 발표됐다. (논문명: MetaSense: Few-Shot Adaptation to Untrained Conditions in Deep Mobile Sensing). 이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단과 정보통신기술진흥센터, 한국연구재단 차세대 정보 컴퓨팅 기술개발사업의 지원을 받아 수행됐다.
2020.06.09
조회수 15805
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1