본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%83%9D%EB%AC%BC%ED%95%99
최신순
조회순
암세포 발생 순간 되돌리는 분자스위치 발견
조광현 교수 연구팀은 암세포를 죽이지 않고 그 상태만을 변환시켜 정상 세포와 유사한 상태로 되돌리는 암 가역 치료 원천기술을 개발한 바 있다. 이번에는 정상세포가 암세포로 변화되는 순간의 유전자 네트워크에 암 가역화를 유도할 수 있는 분자스위치가 숨겨져 있음을 최초로 밝히는데 성공하였다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 정상세포에서 암세포로 변화하는 순간의 임계 전이(臨界轉移, critical transition) 현상을 포착하고 이를 분석해 암세포를 다시 정상세포로 되돌릴 수 있는 분자스위치를 발굴하는 기술 개발에 성공했다고 5일 밝혔다. 임계 전이란 물이 섭씨 100도에서 증기로 변하는 것처럼 특정 시점에 갑작스러운 상태변화가 일어나는 현상을 말한다. 정상세포가 유전적, 후성유전적 변화의 축적으로 인해 특정 시점에 암세포로 변화되는 과정에도 이러한 임계 전이 현상이 나타난다. 연구팀은 암 발생 과정에서 정상세포가 암세포로 전환되기 직전, 정상세포와 암세포들이 공존하는 불안정한 임계 전이 상태에 놓일 수 있음을 발견하고 이러한 임계 전이 상태를 시스템생물학 방법으로 분석해 암화 과정을 역전시킬 수 있는 암 가역화 분자스위치 발굴 기술을 개발했다. 그리고 이를 대장암세포에 적용해 암세포가 정상세포의 특징을 회복할 수 있음을 분자세포실험으로 확인했다. 암 발생의 임계 전이를 관장하는 유전자 네트워크의 컴퓨터 모델을 단일세포 유전자 발현 데이터로부터 자동 추론해내고 이를 시뮬레이션 분석해 암 가역화 분자스위치를 체계적으로 찾아내는 원천기술을 개발한 것이어서 향후 다른 암종의 가역 치료제 개발에도 응용될 수 있을 것으로 기대된다. 조광현 교수는 "정상세포가 되돌릴 수 없는 암세포 상태로 변화되기 직전의 임계 전이 순간을 포착해 암세포의 운명을 다시 정상세포 상태로 되돌릴 수 있는 분자스위치를 발굴해 낸 것이다ˮ라고 말했다. 이어 “특히 이번 연구에서는 그동안 수수께끼로 여겨졌던 암 발생 과정 이면의 세포 내에 어떠한 변화가 일어나는지를 유전자 네트워크 차원에서 상세히 밝혀냈다”며 “암세포의 운명을 다시 정상세포로 되돌릴 수 있는 중요한 단서가 바로 이러한 변화의 순간에 숨어있다는 것을 처음으로 규명한 연구다”라고 강조했다. 우리 대학 신동관 박사(現 국립암센터), 공정렬 박사, 정서윤 박사과정 학생 등이 참여했으며 서울대학교 연구팀이 대장암 환자 오가노이드(체외배양조직)를 제공해 진행된 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 1월 22일 字 온라인판 논문으로 출판됐다. (논문명: Attractor landscape analysis reveals a reversion switch in the transition of colorectal tumorigenesis) (DOI: https://doi.org/10.1002/advs.202412503) 한편 이번 연구는 과학기술정보통신부 한국연구재단의 중견연구사업과 기초연구실사업, 그리고 보건복지부 한국보건산업진흥원의 질병중심 중개연구사업의 지원을 통해 수행됐다.
2025.02.05
조회수 4873
암세포를 정상세포로 되돌려 치료하는 원천기술 개발
지금까지 다양한 항암 치료 기술이 개발됐음에도 현재 시행되고 있는 모든 항암치료의 공통점은 암세포를 사멸시켜서 치료하는 것을 목표로 하고 있다. 이로 인해 암세포가 내성을 획득해 재발하거나 정상세포까지 사멸시켜 큰 부작용을 유발하는 등 근본적인 한계를 지니고 있다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 대장암세포를 죽이지 않고 그 상태만을 변환시켜 정상 대장세포와 유사한 상태로 되돌림으로써 부작용 없이 치료할 수 있는 대장암 가역 치료를 위한 원천기술을 개발하였다고 22일 밝혔다. 연구팀은 정상세포의 암화 과정에서 정상적인 세포분화 궤적을 역행한다는 관찰 결과에 주목하고, 이를 기반으로 정상세포의 분화궤적에 대한 유전자네트워크의 디지털트윈을 제작하는 기술을 개발했다. 그리고 이를 시뮬레이션 분석해 정상세포 분화를 유도하는 마스터 분자스위치를 체계적으로 탐색해 발굴한 뒤 대장암세포에 적용했을 때 대장암세포의 상태가 정상화된다는 것을 분자세포 실험과 동물실험을 통해 입증했다. 이번 연구성과는 암세포를 정상세포로 가역화 하는 것이 우연한 현상적 발견에 의존하는 것이 아니라 암세포 유전자 네트워크의 디지털 트윈을 제작하고 분석함으로써 체계적으로 접근해 이루어낼 수 있음을 보인 원천기술 개발이며 이 기술을 다른 다양한 암종에 응용하여 암 가역 치료제 개발이 가능함을 제시한 것에 큰 의미가 있다. 조광현 교수는 "암세포가 정상세포로 변환될 수 있다는 것은 놀라운 현상이다. 이번 성과는 이를 체계적으로 유도해낼 수 있음을 증명한 것이다ˮ라고 말했다. 이어 “이번 연구 결과는 암세포를 정상세포로 되돌리는 가역 치료 개념을 최초로 제시한 성과들을 바탕으로 정상세포의 분화궤적을 체계적으로 분석해 암 가역화 치료타겟을 발굴하는 원천기술을 개발한 것이다”라고 강조했다. 우리 대학 공정렬 박사, 이춘경 박사과정 학생, 김훈민 박사과정 학생, 김주희 박사과정 학생 등이 참여한 이번 연구 결과는 와일리(Wiley)에서 출간하는 국제저널 `어드밴스드 사이언스(Advanced Science)' 12월 11일 字 온라인판 논문으로 출판됐다. (논문명: Control of cellular differentiation trajectories for cancer reversion) DOI: https://doi.org/10.1002/advs.202402132 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구사업 및 기초연구실사업의 지원을 통해 수행되었으며 연구 성과는 바이오리버트(주)로 기술이전 되어 실제 암 가역치료제 개발에 활용될 예정이다.
2024.12.23
조회수 6631
미래를 위한 대체 불가 바이오 제조 전략 제시
2021년 서울국제포럼과 KAIST가 공동 개최한 “글로벌 복합위기와 4차 산업혁명의 대전환기, 탄력성장의 도전과 기회” 포럼에서 KAIST 이상엽 특훈교수는 우리나라가 미래 국가경쟁력을 확보하기 위해서는 대체 불가 기술 (non-fungible technology; NFT)을 확보해야 한다고 처음으로 제시한 바 있다. 기후 변화의 심각성에 연간 약 1.1억 톤의 식품 폐기물을 포함한 다양한 유기 폐기물들, 그리고 이산화탄소도 바이오 제조를 위한 원료로 사용하도록 대체 불가능한 바이오기술(Bio-NFT)로 활용하는 것이 이제 선택이 아닌 필수가 됐다. 우리 대학 생명화학공학과 이상엽 특훈교수가 기술 혁신, 원료 공급 최적화 및 적절한 인프라를 통해 바이오 제조의 확장을 포함한 경쟁력 확보 전략 수립에 대한 논문을 네이처 화학공학지(Nature Chemical Engineering)에 월드뷰(Worldview)에 7월 22일 자로 제시했다고 24일 밝혔다. ※ 논문명 : Fungible and non-fungible technologies in biomanufacturing scale-up ※ 저자 정보 : 이상엽(한국과학기술원, 제1 저자, 교신저자) 1명 최근 신진 대사 공학과 합성 생물학의 급성장은 전통적인 화석 자원에 의존하는 제조 공정을 바이오 기반 대안으로 전환할 수 있는 잠재력을 보여주고 있다. 미생물 세포 공장을 통해 화학물질과 재료를 생산하는 바이오 기반 기술은 빠르게 발전하고 있으며, 이는 각각 5.7조 달러, 9.2조 달러, 22.5조 달러의 시장규모를 가진 화학, 식품 및 소비재 등 다양한 산업 부문에 혁신적인 변화를 가져오고 있다. 이는 2조 달러 규모의 제약시장 보다도 훨씬 크다. 그러나 이러한 바이오 제조로의 전환은 기술적, 경제적, 사회적 장벽으로 인해 어려움을 겪고 있다. 점점 더 많은 사람들이 지구 온난화의 현실과 그 악화되는 영향을 인식하면서 환경에 덜 해로운 제품에 대한 선호도가 높아지고 있지만, 실제 구매 결정에 있어서는 가격이 중요한 역할을 한다. 따라서, 각국 정부들은 규제 지원뿐만 아니라 대중과의 소통을 통해 지속 가능한 생산과 소비에 대한 이해와 헌신을 촉진해야 한다. 이 교수는 중요하게 떠오른 바이오 제조 확장, 특히 범용화학물질 생산 등 대체 불가능하지 않은 바이오기술 (not non-fungible)을 위해 풀어야 할 세 가지 주요 과제를 제시했다. 첫째, 미생물 세포 공장의 TRY(titer, rate, yield; 농도, 속도 및 수율)를 최대화하는 것으로 기존 대사공학에 데이터 과학, 인공지능 및 로봇 공학의 통합을 통해 이러한 역량을 강화해야 한다. 둘째, 원료 공급 및 물류의 최적화가 필요하다. 약 6억 톤의 바이오매스가 연간 바이오 기반 재료 생산을 위해 사용될 수 있지만, 최적의 분배 및 공급망이 완전히 구축되지 않았다. 다양한 원료의 사용을 가능하게 하는 기술 개발이 필요하다. 셋째, 인프라 및 시설 건설에 필요한 대규모 자본 투자 문제이다. 최근 들어 건설비용이 급격히 증가하여 최첨단 제조 시설을 구축하는 데 드는 높은 비용은 운영 확장의 재정적 실행 가능성을 어렵게 한다. 바이오 제조시설 구축을 위한 정책자금 투입 등 국가적인 인프라 개념에서의 투자가 요구되며, 단기적인 해결책으로는 완전히 유연한 중형 바이오 정제소를 건설하여 시장에 가장 적합한 제품을 생산할 수 있다고 제시했다. 이 교수는 “기술 혁신, 원료 공급 및 인프라 개발에의 집중적인 노력이 필요하다”고 강조하면서 “이를 통해 산업은 보다 지속 가능하고 경제적으로 실행 가능한 바이오 제조 공정으로 전환할 수 있으며, 이는 글로벌 시장에 큰 영향을 미칠 것이다. 지속 가능한 미래에 기여하고 산업에 상당한 경제적 기회를 제공할 것으로 기대된다.”고 밝혔다. 한편 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.07.25
조회수 4146
암세포 약물반응 예측 ‘그레이박스’ 개발
지난 수십 년간 많은 의생명과학자의 집중적인 연구에도 불구하고 여전히 국내 사망원인 1위는 암이다. 이처럼 암 치료가 난해한 이유는 환자마다 암 발생의 원인이 되는 유전자 돌연변이와 그로 인한 유전자 네트워크 변형이 서로 달라서 전통적인 실험생물학 접근만으로 표적치료를 적용하는 데에는 본질적인 한계가 있기 때문이다. 한편 딥러닝과 같은 소위 블랙박스(black-box) 방식의 인공지능 기술을 활용해 실험을 대체하고 데이터 학습을 통해 약물 반응을 예측할 수 있으나 이에 대한 생물학적 근거를 설명할 수 없어 결과를 신뢰하기 어려웠다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 인공지능과 시스템생물학을 융합해 암세포의 약물 반응 예측 및 메커니즘 분석을 동시에 이룰 수 있는 새로운 개념의 ‘그레이박스’ 기술을 개발했다고 3일 밝혔다. 조광현 교수 연구팀은 높은 예측 성능을 보이지만 그 근거를 알 수 없어 블랙박스로 불리는 딥러닝과 복잡한 대규모 모델의 경우 예측 성능의 한계를 지니지만 예측 결과에 대한 상세한 근거를 제시할 수 있어서 화이트박스로 불리는 시스템생물학 기술을 융합함으로써 두 기술의 한계를 동시에 극복할 수 있는 소위 ‘그레이박스’ 기술을 착안했다. 연구팀은 다양한 암종의 돌연변이 및 표적항암제 타겟 유전자 정보를 집대성해 분자 조절 네트워크 모델을 구축함으로써 여러 암종과 항암제의 약물 반응 예측에 활용될 수 있는 범용적 골격 모델을 우선 정립했다. 특히 다양한 암종에서 돌연변이가 빈번하게 발생하는 유전자들을 중심으로 전암(pan-cancer) 유전자 네트워크를 제작했고 표적항암제별 약물 반응과 관련된 돌연변이 및 연관 유전자들로 구성된 부분네트워크(sub-network)를 추출함으로써 약물 반응 예측을 위한 시스템생물학 모델을 제작했다. 연구팀은 이렇게 제작된 모델의 매개변수를 딥러닝 블랙박스 최적화기를 통해 결정하는 방식으로 트라메티닙, 아파티닙, 팔보시클립 세 개의 표적항암제 및 대장암, 유방암, 위암 세 개의 암종에 대한 그레이박스 모델을 구축했다. 완성된 모델의 약물 반응 컴퓨터시뮬레이션 결과는 각 암종별 약물반응의 민감도 차이를 보이는 세포주(cancer cell lines) 실험을 통해 비교 검증됐다. 특히 개발된 모델은 미국 국립암연구소(National Cancer Institute)의 돌연변이 정보 기반 약물 반응 예측으로는 동일한 반응을 보일 것으로 예상된 암세포주들이 실제로는 서로 다른 약물 반응을 보일 수 있다는 것을 정확히 예측했으며, 약물 반응의 차이가 발생하는 원인 또한 세포 주별 분자 네트워크 동역학의 차이로 상세히 설명할 수 있었다. 이번 연구 성과는 학습에 의한 시뮬레이션 모델 최적화를 통해 블랙박스 모델인 인공지능 기술의 높은 예측력과 화이트박스 모델인 시스템생물학 기술의 해석력을 동시에 달성한 새로운 약물 반응 예측 기술 개발이어서 그 의미가 크다. 특히, 발생 원인이 이질적이고 복잡한 네트워크 질환인 암에 대해 범용적으로 활용가능한 약물 반응 예측 원천기술이므로 향후 기술 고도화를 통해 다양한 종류의 암종 및 환자 맞춤형 치료 전략 제시에 활용될 수 있을 것으로 기대된다. 조광현 교수는 "인공지능 기술의 높은 예측력과 시스템생물학 기술의 우수한 해석력을 동시에 갖춘 새로운 융합원천기술로서 향후 고도화를 통해 신약 개발 산업의 활용이 기대된다ˮ고 말했다. 바이오및뇌공학과 김윤성 박사, 한영현 박사 등이 참여한 이번 연구 결과는 셀 프레스(Cell Press)에서 출간하는 국제저널 `셀 리포트 메소드(Cell Reports Methods)' 5월 20일 字 표지논문으로 출판됐다. (논문명: A grey box framework that optimizes a white box logical model using a black box optimizer for simulating cellular responses to perturbations) 논문링크: https://www.cell.com/cell-reports-methods/fulltext/S2667-2375(24)00117-6 한편 이번 연구는 삼성미래기술육성사업 및 과학기술정보통신부와 한국연구재단의 중견연구사업 등의 지원으로 수행됐다.
2024.06.03
조회수 5177
개인 맞춤형 정밀 의학 정확도 높일 ‘렌즈’ 개발
평균이 아닌 개인차를 고려하는 정밀 의학 시대가 열렸다. 사람마다 다른 유전적 특징을 알아내는 기술이 비약적으로 발전한 덕분이다. 더 빠르고, 정확하게 전사체를 해독할 수 있는 새로운 도구가 개발됐다. 우리 대학 수리과학과 김재경 교수(IBS 수리 및 계산 과학 연구단 의생명 수학 그룹 CI) 연구팀은 전사체 분석 빅데이터에서 유용한 생물학적 정보만 골라내는 새로운 도구인 ‘scLENS(single-cell Low-dimension Embedding using Effective Noise Subtraction)’를 개발했다. 단일세포 전사체 분석은 최근 생물학, 신약 개발, 임상 연구 등 여러 분야에서 주목받는 도구다. 개별 세포 단위에서 유전적 변화를 확인할 수 있기 때문이다. 가령, 단일세포 전사체 분석을 이용하면 암 조직 내 수십 가지 종류의 세포를 구분하고, 유전적 변이가 발생한 세포만 표적하는 정밀 치료가 가능해진다. 단일세포 전사체 분석 기술이 임상에 광범위하게 이용되려면, 도출되는 빅데이터에서 유용한 생물학적 신호를 찾아내는 효율적인 분석 도구 개발이 선행돼야 한다. 단일세포 전사체 분석은 수백~수천 개에 이르는 개별 세포의 수만 개에 이르는 다양한 유전자 발현량을 측정하기 때문에 데이터 용량이 수~수십 GB에 달한다. 이 방대한 데이터 중 생물학적으로 유용한 신호는 3% 내외에 불과하다. 이 방대하고 노이즈(잡신호)가 많은 데이터에서 유용한 생물학적 신호를 골라내기 위해 지금까지 여러 데이터 처리 도구가 개발됐다. 하지만 기존 도구는 사용자가 생물학적 신호와 노이즈의 ‘경계선’을 직접 설정해야 해서 주관이 개입됐다. 즉, 분석가에 따라 결과가 크게 달라지고, 정확도가 떨어진다는 한계가 있었다. 우선, 연구진은 기존 분석 도구들이 부정확한 근본적인 원인을 규명하고 해결책을 제시했다. 사용자가 노이즈의 임계값을 결정하는 데이터 전처리 방식 자체가 생물학적 신호를 왜곡시킨다는 것을 규명하고, 왜곡 없는 새로운 전처리 방식을 개발했다. 나아가 연구진은 수학적 방법론인 ‘랜덤 행렬 이론’을 이용해 사용자의 주관적 선택 없이 자동으로 단일세포 전사체 분석 데이터에서 신호와 노이즈를 구별하는 프로그램인 ‘scLENS’를 개발했다. 제1 저자인 김현 연구원은 “scLENS는 사용자의 선택 없이 데이터에 내재된 구조만을 이용해 자동으로 신호와 노이즈를 구별하기 때문에 사용자 편향성 문제를 원천 차단할 수 있다”며 “연구자들의 노동집약적인 신호 선택 과정을 없애면서도 분석 정확성은 높였다”고 설명했다. 이어 연구진은 기존 개발된 11가지 데이터 분석 프로그램과 scLENS의 상대적 성능을 비교했다. 이를 통해 scLENS가 다른 모든 프로그램보다 우수한 성능을 보인다는 점을 확인할 수 있었다. 널리 쓰이는 프로그램인 ‘Seurat’과 비교했을 때 scLENS는 세포 그룹화 성능이 약 10% 이상 우수하며, 데이터에 내재된 국소 구조를 43% 더 효과적으로 포착하는 것으로 나타났다. 특히, scLENS는 기존 프로그램보다 많은 계산을 하지만 메모리 사용 최적화를 통해 10만 개의 세포와 2만 개의 유전자로 이뤄진 대규모 데이터를 3시간 만에 분석하는 경쟁력 있는 분석 속도를 보였다. 연구를 이끈 김재경 CI는 “지난 십여 년간 단일세포 전사체를 분석할 수 있는 실험 기술의 비약적인 발전했지만, 데이터 분석 방법의 한계로 인해 큰 비용과 시간을 투자해 얻은 데이터를 최대한 활용하지 못하는 경우가 많았다”며 “기초 수학 이론이 생명과학 연구의 혁신을 견인하고, 감춰졌던 생명의 비밀을 빠르고 정확하게 밝히는 데 쓰일 수 있음을 보여주는 연구”라고 말했다. 연구결과는 4월 27일(한국시간) 국제학술지 ‘네이처 커뮤니케이션즈(Nature Communications, IF 16.6)’ 온라인판에 실렸다.
2024.05.09
조회수 5179
미래 식량인 미생물 식품 생산 전략 밝혀
가파른 인구 증가와 기후 변화로 인한 식량 생산성 저하로 인해 전 세계 식량 위기가 고조되고 있다. 더욱이 오늘날의 식량 생산 및 공급 시스템은 인류가 배출하는 총량의 30%에 달할 정도로 막대한 양의 이산화탄소를 배출하며 기후 변화를 가중시키고 있다. 이러한 난국을 타개할 열쇠로서 지속 가능하면서도 영양이 풍부한 미생물 식품이 주목받고 있다. 우리 대학 생물공정연구센터 최경록 연구교수와 생명화학공학과 이상엽 특훈교수가 ‘지속 가능한 원료로부터의 미생물 식품 생산’연구의 방향을 제시하는 논문을 게재했다고 12일 밝혔다. 미생물 식품은 미생물을 이용해 생산되는 각종 식품과 식품 원료를 가리킨다. 미생물의 바이오매스에는 단위 건조 질량당 단백질 함량이 육류에 비견될 정도로 많은 양의 단백질을 함유하고 있으며, 각종 가축이나 어패류, 농작물과 비교해 단위 질량을 생산하는 데 가장 적은 양의 이산화탄소를 배출하고, 필요로 하는 물의 양과 토지 면적 또한 적기 때문에 친환경적이고 지속 가능한 고영양 식량자원이 될 수 있다. 우리 주변에서 가장 쉽게 접할 수 있는 미생물 식품으로는 발효식품을 꼽을 수 있다. 비록 발효식품 내 미생물 바이오매스가 차지하는 비중은 적지만 발효 과정 중 탄수화물과 같이 비교적 영양학적 가치가 낮은 화합물을 소비하며 미생물이 증식함에 따라 단백질이나 비타민 등과 같이 보다 높은 영양학적 가치를 지니는 영양소의 함량이 증진된다. 미생물 배양을 통해 얻은 바이오매스나 배양액으로부터 분리·정제한 각종 식품 화합물 또한 미생물 식품의 한 갈래다. 주변에서 찾아볼 수 있는 예로는 글루탐산나트륨을 비롯한 각종 아미노산과 식품용 단백질·효소, 풍미 화합물, 색소, 생리활성 물질 등이 있다. 마지막으로, 가장 궁극적이며 근본적인 형태의 미생물 식품은 미생물 배양을 통해 생산된 미생물 바이오매스나 추출물 및 이를 이용해 조리한 식품이라고 할 수 있다. 미생물의 바이오매스나 이로부터 추출한 미생물 단백질을 총칭하는 단세포단백질이 대표적인 예라 할 수 있다. 연구진은 이번 논문을 통해 미생물 식품을 보다 지속 가능한 방식으로 생산하는 데 사용할 수 있는 각종 비식용 원료와 이들의 활용 전략을 총망라했다. 더 나아가 해당 원료를 활용해 산업에서 실제로 생산되고 있는 각종 미생물 식품 및 이들의 특징과 함께 지속 가능한 미생물 식품의 생산 및 대중화에 대한 전망 등을 다뤘다. 이번 논문의 제1 저자인 최경록 연구교수는 “여러 지속 가능한 원료로부터 생산된 미생물 식품은 머지않아 우리 식탁에서 흔하게 접하게 될 것”이라고 말했다. 제2 저자인 정석영 박사과정생 역시 “미래의 미생물 식품은 환경에 대한 의무감으로만 소비되는 제한적인 식품이 아닌, 영양과 맛까지 갖춰 소비자들의 선택을 받는 완전식품이 될 것”이라고 말했다. 또한 이상엽 특훈교수는 “우리 자신은 물론 후손들을 위한 지속 가능한 사회를 만들어 나가기 위해 보다 다양한 미생물 식품이 개발되고 대중화될 수 있도록 산·학은 물론 민·관이 더욱 긴밀하게 협력해야 할 때”라고 밝혔다. 이번 논문은 네이처(Nature) 誌가 발행하는 ‘네이처 미생물학(Nature Microbiology)’에 4월 9일 자 온라인 게재됐다. ※ 논문명 : From sustainable feedstocks to microbial foods ※ 저자 정보 : 최경록(한국과학기술원, 제1 저자), 정석영(한국과학기술원, 제2 저자) 및 이상엽(한국과학기술원, 교신저자) 포함 총 3명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제 (과제책임자 KAIST 이상엽 특훈교수) 및 농촌진흥청이 지원하는 농업미생물사업단(단장 장판식 교수)의 ‘미생물 대사시스템 제어를 통한 무기물로부터의 단백질 생산 기술 개발’ 과제 (과제책임자 KAIST 최경록 연구교수)의 지원을 받아 수행됐다.
2024.04.12
조회수 7298
인공지능 결합한 홀로그래픽 현미경 기술 총망라
의생명공학 연구에 일반적으로 사용되는 현미경 기술들은 염색이나 유전자 조작을 해야만 관찰할 수 있다는 한계가 있다. 하지만 염색이 된 세포들은 치료 목적으로 활용할 수 없어 세포나 조직을 살아있는 상태 그대로 관찰할 수 있는 홀로그래픽 현미경과 이를 체계적으로 분석할 수 있는 인공지능을 결합한 의생명공학 연구의 활용 방안 및 문제점에 대한 분석이 필요하다. 우리 대학 물리학과 박용근 교수 연구팀이 국제 학술지 `네이처 메소드(Nature Methods)'에 홀로그래픽 현미경과 인공지능 융합 연구 방법론을 조망한 견해 (perspective)를 게재했다고 14일 전했다. 연구팀은 기존 현미경 기술 대비 홀로그래픽 현미경의 이미지 복원 기술이 시간을 많이 필요하고 전처리 없이 세포나 조직을 찍을 수 있다는 장점이 있지만, 대신에 그만큼 결과물 분석에 많은 시간과 노력을 들여야 한다고도 분석했다. 박용근 교수 연구팀은 이런 문제점을 홀로그래픽 현미경과 인공지능과의 통합을 통해 해결할 수 있다는 방법론을 제시했다. 지난 수년간, 홀로그래픽 현미경과 인공지능을 결합해 의생명공학 연구에 혁신을 일으킨 내용들이 잇달아 국제 학술지에 발표됐다. 인공지능을 통해 홀로그래픽 이미지를 복원하고, 세포의 종류와 상태를 구분하고, 염색 없이 측정된 결과물에 가상으로 염색 정보를 재생산 해내는 등의 연구를 통해 연구팀은 기존의 홀로그래픽 현미경 기술의 효율을 극대화했다. 홀로그래픽 현미경 기술 소개에 더불어 인공지능의 결합이 광범위한 의생명공학 연구에 활용돼 온 내용을 총망라한 이번 리뷰 논문은 제시된 방법론의 혁신성을 인정받아 생명과학 분야의 권위 학술지인 `네이처 메소드(Nature Methods)'에 지난 10월 24일 자 출판됐다. (논문명: Artificial intelligence-enabled Quantitative Phase Imaging Methods for Life Sciences) 제1 저자인 물리학과 박주연 학생은 "홀로그래픽 현미경에 인공지능을 결합하면, 의생명공학 연구의 효율을 기하급수적으로 높일 수 있다ˮ며, "이번 리뷰 논문을 통해 이 융합 기술이 더욱 활발하게 개발됨과 동시에 더욱 다양한 의생명공학 연구에 활용될 것ˮ이라고 기대했다. 한편 이번 논문은 캘리포니아대학교 로스앤젤레스(UCLA) 아이도간 오즈칸(Aydogan Ozcan) 교수팀, 토모큐브(Tomocube) 인공지능 연구팀과 공동 집필했으며, 연구재단의 리더연구사업, 과학기술정보통신부의 홀로그램핵심기술지원사업, 나노 및 소재 기술개발사업의 지원을 받아 수행됐다.
2023.11.14
조회수 7690
폐암 전이를 막고 치료 가능한 세포로 되돌리는 원천기술 개발
고령화에 따라 암의 발생이 늘어나면서 암은 인류의 건강수명을 위협하는 가장 치명적인 질환이 됐다. 특히 조기 발견을 놓쳐 여러 장기로 전이될 때 암의 치명률은 높아진다. 이러한 문제를 해결하기 위해 암세포의 전이 능력을 제거하거나 낮추려는 시도가 이어졌으나 오히려 중간상태의 불안정한 암세포 상태가 되면서 더욱 악성을 보이게 되어 암 치료의 난제로 남아 있었다. 우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 폐암 세포의 성질을 변환시켜 암세포의 전이를 막고 약물에 대한 저항성을 제거할 수 있는 기술을 개발하는 데 성공했다고 30일 밝혔다. 조광현 교수 연구팀은 폐암 세포의 전이능력이 없는 상피(epithelial, 세포 방향성이 있어 유동성 없이 표면조직을 이루는 상태)세포에서 전이가 가능한 중간엽(mesenchymal, 방향성없이 개별적인 이동성을 가진 상태)세포로 변화되는 천이 과정(epithelial-to-mesenchymal transition, 이하 EMT)에서 나타나는 다양한 암세포 상태들을 나타낼 수 있는 세포의 분자 네트워크 수학모델을 만들었다. 컴퓨터 시뮬레이션 분석과 분자 세포실험을 통해 악성종양으로 증식하여 인접한 조직이나 세포로 침입하거나 약물에 내성을 가진 중간엽세포 상태에서 전이가 되지 않은 상피세포 상태로 다시 바뀔수 있도록 세포의 성질을 변환시켜주는 핵심 조절인자들을 발굴했다. 특히 이 과정에서 그동안 난제로 남아 있었던 중간과정의 불안정한 암세포 상태(EMT 하이브리드 세포 상태)를 피하는 동시에 항암 화학요법(chemotherapy) 치료가 잘 되는 상피세포 상태로 온전히 역전하는 데 성공했다. 우리 대학 김남희 박사과정, 황채영 박사, 김태영 연구원, 김현진 박사과정이 참여한 이번 연구 결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치(Cancer Research)' 1월 30일 字 온라인판 논문으로 출판됐다. (논문명: A cell fate reprogramming strategy reverses epithelial-to-mesenchymal transition of lung cancer cells while avoiding hybrid states) 암세포의 EMT 과정에서 불완전한 천이(변화과정)로 인해 발생하는 EMT 하이브리드 상태의 세포들은 상피세포와 중간엽세포의 특성을 모두 갖고 있으며, 높은 줄기세포능*을 획득해 약물저항성 및 전이 잠재성이 큰 것으로 알려져 있다. 불안정한 암세포 상태(EMT)는 매우 복잡하여 높은 전이 능력과 약물저항성을 가지는 EMT 하이브리드 세포 상태를 회피하면서 암세포를 전이 능력과 약물저항성이 제거된 상피세포 상태로 온전히 역전시키는 것은 매우 어려운 일이었다. *줄기세포능: 줄기세포가 지속적 자가복제를 할 수 있도록 하는 세포내 신호전달체계 조광현 교수 연구팀은 복잡한 EMT를 지배하는 유전자 조절 네트워크의 수학모델을 정립한 후, 대규모 컴퓨터 시뮬레이션 분석 및 복잡계 네트워크 제어기술을 적용해 중간엽세포 상태인 폐암 세포를 EMT 하이브리드 세포 상태를 회피하면서 전이 능력이 상실된 상피세포 상태로 역전시킬 수 있는 세 개의 핵심 분자 타깃인 ‘p53 (암 억제 단백질)’, ‘SMAD4 (EMT를 조절하는 대표적 신호전달을 매개하는 중심물질로 SMAD 그룹에 포함된 단백질)’와 ‘ERK1/2 (세포의 성장 및 분화에 관여하는 조절인자)’를 발굴하고 이를 분자 세포실험을 통해 검증했다. 이러한 발견은 실제 인체 내 암 조직의 환경에서처럼 자극이 주어진 상황에서 중간엽세포 상태가 상피세포 상태로 역전될 수 있음을 증명해 그 의미가 크다. 암세포의 비정상적인 EMT는 암세포의 이동과 침윤, 화학요법 치료에 대한 반응성 변화, 강화된 줄기세포능, 암의 전이 등 다양한 악성 형질로 이어지게 된다. 특히 암세포의 전이 능력 획득은 암 환자의 예후를 결정짓는 매우 중요한 요소다. 이번에 개발된 폐암 세포의 EMT 역전 기술은 암세포를 리프로그래밍해 높은 가소성과 전이 능력을 제거하고 항암 화학치료의 반응성을 높이도록 하는 새로운 항암 치료 전략이다. 조광현 교수는 "높은 전이 능력과 약물저항성을 획득한 폐암 세포를 전이 능력이 제거되고 항암 화학요법치료에 민감한 상피세포 상태로 온전히 역전시키는 데 성공함으로써 암 환자의 예후를 증진할 수 있는 새로운 치료전략을 제시했다ˮ라고 말했다. 조광현 교수 연구팀은 암세포를 정상세포로 되돌리는 가역 치료원리를 최초로 제시한 뒤 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구 결과를 발표했고, 2022년 1월에는 가장 악성인 유방암세포를 호르몬 치료가 가능한 유방암세포로 리프로그래밍하는 연구에 성공한 바 있다. 이번 연구 결과는 전이 능력을 획득한 폐암 세포 상태를 전이 능력이 제거되고 약물 반응성이 증진된 세포 상태로 되돌리는 가역화 기술 개발의 세 번째 성과다. 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업 등의 지원으로 수행됐다.
2023.01.30
조회수 9303
합성생물학 기반 차세대 미생물 대사 조절 밸브 개발
국제 공동연구진이 대장균의 모든 전사종결부위*를 해독하고, 이를 바탕으로 미생물의 대사 경로를 수도꼭지처럼 자유자재로 조절하는 합성생물학** 기반 차세대 대사 조절 밸브 기술을 개발했다. *전사종결부위: DNA가 암호화하는 정보를 RNA로 전사할 때, RNA 합성이 종결되도록 조절하는 DNA 서열 **합성생물학: 생명현상의 복잡성, 다양성으로 인해 발생하는 낮은 재현성, 예측효율 저하 등의 기존 바이오기술의 문제를 해결하기 위해 생명체의 구성요소를 설계, 제작, 조립하는 공학적 접근방식의 바이오 기술 우리 대학 생명과학과 조병관 교수, 한국생명공학연구원 이승구 박사, 바이오융합연구소 조수형 교수, 미국 캘리포니아대학교 샌디에이고(UCSD) 생명공학과(Bioengineering)의 최동희 박사, 버나드 팔슨(Bernhard Palsson) 교수 국제 공동연구팀이 대장균에 존재하는 1,600여 개의 전사종결부위를 대량으로 해독 및 발굴하고, 이를 기반으로 고부가가치 바이오화합물 생산을 위한 미생물 대사 회로 설계를 가능케 하는 합성생물학 기반 기술을 개발했다고 14일 밝혔다. 전사종결부위는 DNA가 암호화하는 유전 정보가 RNA로 전사될 때, 원하는 유전자만이 정확히 전사되도록 조절하는 역할을 한다. 그 중요성에도 불구하고 기존에는 전사 종결에 관한 데이터의 부족으로, 구체적인 조절 기작에 대한 이해가 부족했다. 연구진은 전사종결부위가 다양한 세기를 가져 인접한 유전자들의 발현을 정교하게 조절한다는 사실을 발견하고, 이를 대사회로 조절에 이용했다. 한편 미생물은 다양한 유용 바이오화합물 생산에 이용되고 있는데, 효율적인 생산을 위해서는 대사 회로의 조절이 필수적이다. 그 이유는 단순히 원하는 물질 생산을 위한 유전자만을 과도하게 발현할 경우, 미생물 생장에 필요한 양분과 에너지까지 소모해 생산에 실패하기 때문이다. 공동연구진은 개발한 전사종결부위를 통해 서로 다른 대사 회로의 세기를 수도꼭지처럼 조절해 대사물질 생산을 최적화할 수 있는 '대사 밸브 기술'을 개발했다. 기존에는 전사의 시작이 되는 프로모터, 번역의 시작이 되는 리보솜 결합 부위를 통해 유전자 발현을 조절했는데, 이에는 수많은 인자가 관여하고 있어 실험 간 편차가 크고, 고가의 화학물질을 요구하는 등 한계를 지니고 있었다. 하지만 연구진이 개발한 대사 밸브는 실험 간 편차를 기존 시스템 대비 최대 75% 억제할 수 있는 것으로 나타났고, 대사 밸브를 이용한 생산 최적화를 통해 유용 대사물질인 비타민 B8의 생산을 최대 11배 증대하는 데 성공했다. 또한 개발된 기술은 미생물의 생장 조건(영양분 및 배양 환경)에 거의 영향을 받지 않는 것으로 나타나 실험실 조건에서 출발해 산업 규모로 확장할 시 부수적인 최적화 과정을 최소화할 수 있고, 목적 화합물에 따라 첨가하는 원료와 배양 조건이 변화해도 조절 기작이 유지되는 것으로 나타났다. 이번 연구 결과는 기존에 알려지지 않았던 전사종결부위의 특성을 규명하고, 이를 대사 조절에 이용한 획기적인 시도로 차세대 대사 조절 합성생물학 기반 기술로 기대받고 있다. 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 프로그램 및 한국 바이오 그랜드챌린지 프로그램의 지원을 받은 KAIST 조병관 교수 연구진과 한국생명공학연구원이 추진하는 KRIBB 연구 혁신 프로그램(Research Initiative Program)의 지원을 받은 이승구 박사(한국생명공학연구원), 기초과학 연구 프로그램(Basic Science Research Program)의 지원을 받은 KAIST 조수형 교수, 노보 노르디스크 재단(Novo Nordisk Foundation)의 연구지원을 받은 버나드 팔슨(Bernhard Palsson) 교수 연구진의 협업을 통해 수행됐으며, 국제적인 학술지인 `핵산 연구(Nucleic Acids Research, 영향력지수 16.971)' 에 3월 31일 게재됐다. (논문명 : Synthetic 3'-UTR valves for optimal metabolic flux control in Escherichia coli)
2022.04.17
조회수 11089
악성 유방암 세포를 치료 가능한 상태로 되돌리는 암세포 리프로그래밍 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀이 시스템생물학 연구를 통해 악성 유방암세포를 치료 가능한 상태로 되돌리는 암세포 리프로그래밍 기술을 개발하는 데 성공했다고 30일 밝혔다. 연구팀은 유방암 아류 중에서 가장 악성으로 알려진 삼중음성 유방암(basal-like 혹은 triple negative) 환자들과 호르몬 치료가 가능한 루미날-A 유방암(luminal-A) 환자들의 유전자 네트워크를 컴퓨터시뮬레이션을 통해 분석함으로써 삼중음성 유방암세포를 루미날-A 유방암세포로 변환하는데 필요한 핵심 인자를 규명했다. 그리고 이를 조절해 삼중음성 유방암세포를 루미날-A 유방암세포로 리프로그래밍한 뒤 호르몬 치료를 시행하는 새로운 치료 원리를 개발했다. 우리 대학 최새롬 박사과정, 황채영 박사, 이종훈 박사과정 등이 참여한 이번 연구결과는 미국암학회(AACR)에서 출간하는 국제저널 `캔서 리서치 (Cancer Research)' 11월 30일 字 논문으로 출판됐다. (논문명: Network analysis identifies regulators of basal-like breast cancer reprogramming and endocrine therapy vulnerability) 현재 삼중음성 유방암 환자들에게 적용되는 항암 화학요법은 빠르게 분열해 전이를 일으키는 암세포를 공격해 죽임으로써 암세포의 증식을 억제하는 방식이다. 하지만 이러한 치료는 신체 내 정상적으로 분열하고 있는 세포들까지도 함께 사멸시켜 구토, 설사, 탈모, 골수 기능장애, 무기력 등의 심각한 부작용을 일으킨다. 또한 삼중음성 유방암세포들은 이와 같은 독성항암제에 처음부터 내성을 갖거나 새로운 내성을 획득하면서 결국 약물에 높은 저항성을 가지는 암세포로 진화하게 된다. 따라서 삼중음성 유방암에 대한 현재의 항암치료는 내성을 갖는 암세포를 없애기 위해 더 많은 정상세포의 사멸을 감수해야만 하는 큰 한계를 지니고 있다. 이를 극복하기 위해 암세포만을 특이적으로 공격하는 표적 항암요법과 우리 몸의 면역시스템을 활용한 면역 항암요법이 주목을 받고 있으나 각각 효과와 적용대상이 매우 제한적이며 장기치료 시 여전히 내성 발생의 문제가 보고되고 있다. 이처럼 현재 개발된 항암요법들은 암세포를 죽이려는 공통적인 원리 때문에 근본적인 한계를 가진다. 조 교수 연구팀은 시스템생물학 연구기법을 통해 악성 유방암세포인 삼중음성 유방암세포를 호르몬 치료가 가능한 루미날-A 유방암세포로 변환시킨 뒤 치료하는 새로운 개념의 치료전략을 개발했다. 이를 위해 유전자 네트워크의 수학모델을 개발하고 대규모 컴퓨터시뮬레이션 분석과 복잡계 네트워크 제어기술을 적용한 결과 두 개의 핵심 분자 타겟인 `BCL11A'와 `HDAC1/2'를 발굴했다. 조 교수 연구팀은 BCL11A와 HDAC1/2를 억제함으로써 삼중음성 유방암세포를 효과적으로 루미날-A 유방암세포로 변환시킬 수 있음을 분자 세포실험을 통해 증명했다. 삼중음성 유방암세포에서 이 핵심 인자들을 억제했을 때 세포의 분열이 감소하고, 삼중음성 유방암세포의 주요 세포성장 신호 흐름 경로인 `EGFR'과 관련된 인자들의 활동이 감소했으며, 루미날-A 유방암세포의 주요 세포성장 신호흐름 경로인 `ERa' 신호전달 경로 인자들의 활성이 회복되는 것을 확인했다. 이번 연구에서 발굴된 분자 타겟 중 BCL11A 단백질의 활성을 억제할 수 있는 저분자화합물은 아직 개발된 바 없으며 추후 신약개발과 임상실험을 통해 악성 유방암세포를 치료 가능한 세포상태로 리프로그래밍 함으로써 안전하고 효과적으로 치료하는 새로운 치료기술이 실현될 수 있을 것으로 보인다. 특히 이처럼 암세포의 성질을 되돌리거나 변환하는 암세포 리프로그래밍 기반의 새로운 치료전략이 임상에서 실현된다면 현재 항암치료의 많은 부작용과 내성 발생을 근본적으로 해결함으로써 암 환자의 고통을 최소화하고 삶의 질을 크게 향상시킬 수 있을 것으로 기대된다. 조 교수는 "그동안 유방암 중에서도 가장 악성인 삼중음성 유방암은 독성이 강해 큰 부작용을 일으키는 화학 항암치료 외에는 방법이 없었으나 이를 호르몬 치료가 가능하며 덜 악성인 루미날-A 유방암세포로 리프로그래밍해 효과적으로 치료할 수 있는 새로운 가능성을 열었다ˮ라며 "이번 연구는 악성 암세포를 직접 없애려고 하기보다 치료가 수월한 세포 상태로 되돌린 뒤 치료하는 새로운 방식의 항암 치료전략을 제시했다ˮ라고 말했다. 조 교수 연구팀은 2020년 1월에 대장암세포를 정상 대장 세포로 되돌리는 연구에 성공한 바 있으며, 이번 연구 결과는 암세포 리프로그래밍을 통한 가역화 기술 개발의 두 번째 성과다. 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구자지원사업과 한국전자통신연구소 공동연구사업, KAIST Grand Challenge 30의 지원으로 수행됐다.
2021.11.30
조회수 10947
암 환자들이 겪는 섭식장애 원인 찾아
국내 연구진이 암 환자들이 겪는 섭식장애 원인을 규명했다. 암 환자의 섭식장애 개선을 통한 항암치료 부작용을 개선할 수 있을 것으로 기대된다. 우리 대학 의과학대학원 서재명 교수 연구팀이 한국생명공학연구원 유권 질환표적구조연구센터장과 이규선 바이오나노연구센터장 연구팀, 김송철 서울아산병원 교수 연구팀과 공동연구를 통해 암세포에서 특이적으로 분비되는 특정 단백질이 뇌신경세포의 특정 수용체를 통해 식욕조절 호르몬을 조절하는 원리를 발견했다고 18일 밝혔다. 연구결과는 국제학술지 ‘네이처 세포생물학’ 2월 9일자 온라인판에 게재됐다. 암 환자의 대표적인 합병증인 ‘암 악액질 증후군’은 심각한 섭식장애와 지속적인 체중 감소 현상을 동반한다. 암환자 생존율과 항암치료에도 좋지 않은 영향을 주는 것으로 알려져 있지만 암 환자 섭식장애 원인은 아직 규명되지 않았다. 연구팀은 초파리 암 모델과 RNA 전사체 분석으로 암 세포에서 유래된 특정 단백질(Dilp8 펩타이드)의 발현과 분비가 현저하게 증가된다는 사실을 확인했다. 특정 단백질은 뇌신경세포 수용체를 통해 식욕 조절에 관여하는 신경펩타이드 호르몬 발현을 변화시켜 초파리 모델에서 섭식장애를 유도한다는 사실을 알아냈다. 이같은 연구결과를 바탕으로 우리 대학 의과학대학원 서재명 교수 연구팀은 암을 유발한 쥐 모델에서도 특정 단백질과 상동인자인 ‘INSL3’가 현저하게 증가돼 섭식장애를 유발한다는 사실을 확인했다. 특히 암 세포에서 분비되는 단백질 INSL3을 쥐 뇌에 직접 주입할 경우 먹이 섭취량과 체중이 감소했다. 김송철 서울아산병원 연구팀은 암 악액질 증후군 발생 빈도가 가장 높은 췌장암 환자를 대상으로 임상 연관성 연구를 진행했다. 그 결과 섭식장애가 나타는 췌장암 환자에서 INSL3의 농도가 높게 나타났다. 암 세포에서 분비되는 단백질(INSL3)이 뇌신경계의 식욕 조절에 관여하는 신경세포에 작용해 암 환자의 식욕을 감소시킨 것이다. INSL3 단백질이 암 환자 섭식장애를 유발하는 중요한 신호인자라는 사실을 규명했다. 유권 생명연 책임연구원은 “초파리 실험모델에서 발견한 기초·원천 연구결과를 쥐에서 확인했고 암 환자 임상 연구에서 재확인한 연구 사례”라며 “규명된 단백질 진단과 조절로 암 환자의 섭식장애를 해결하는 치료 전략이 개발되면 암 환자의 항암치료 보조제 뿐만 아니라 일반인 대상 대사질환 치료제 개발에도 활용될 수 있을 것”이라고 밝혔다.
2021.03.02
조회수 91449
시스템생물학 이용 세계 최초 알츠하이머성 치매 환자 맞춤형 치료 효능 예측 기술 개발
우리 대학 바이오및뇌공학과 조광현 교수 연구팀 (장소영 박사과정(제1저자), 강의룡 박사과정, 장홍준 박사과정)은 서울대학교 의과대학 묵인희 교수 연구팀과 공동연구를 통해 시스템생물학*과 알츠하이머 환자 유래 뇌 오가노이드** 모델의 융합으로 환자 맞춤형 약물 효능평가 플랫폼(Drug-screening platform)을 세계 최초로 개발했다고 13일 밝혔다. * 시스템생물학: IT의 수학모델링 및 컴퓨터시뮬레이션과 BT의 분자세포생물학 실험을 융합하여 복잡한 생명현상을 규명하고 설명하는 연구 패러다임 ** 뇌 오가노이드: 환자의 역분화 줄기세포(iPSC) 유래 인공 미니 뇌 알츠하이머병은 치매의 약 70%를 차지하는 대표적 치매 질환이나 현재까지 발병 원인이 불명확하며, 근본적인 치료제도 없는 인류가 극복하지 못한 질병 중 하나다. 알츠하이머병 치료제 개발 난제 중 하나는 실제 살아있는 환자의 뇌를 직접 실험 샘플로 사용할 수 없다는 것이었다. 이는 수많은 치료제 후보군의 약물 효능을 정확히 평가하기가 어려워 치료제 개발의 걸림돌로 작용해왔다. 조광현 교수 공동 연구팀은 실제 치매환자에서 유래한 뇌 오가노이드 기반으로 생물학적 메커니즘에 대한 수학 모델링을 융합하여 약물효능 예측이 가능한 플랫폼을 세계 최초로 개발했다. 환자 혈액으로부터 역분화줄기세포(Induced-pluripotent stem cell)*를 구축 후 이를 이용하여 3D 뇌 오가노이드를 제작해 실제 환자의 뇌와 유사한 환경 구축을 통해 실험적 한계를 극복했다. * 역분화줄기세포: 다능성이 없는 혈액 면역세포에 역분화를 일으키는 4가지 특정 유전자를 도입하여 배아 줄기세포와 같이 모든 종류의 세포로 분화할 수 있는 성질(다능성)을 가진 줄기세포 또한, 시스템생물학 기반 수학 모델링 기법으로 알츠하이머병의 신경세포 특이적 네트워크망을 구축하고, 이를 실제 알츠하이머병 환자 및 정상군 유래 뇌 오가노이드를 통하여 신경세포 컴퓨터 모델의 실효성을 검증했다. 이 연구결과는 알츠하이머병의 시스템생물학 기반 신경세포 컴퓨터 모델을 실제 환자 유래 뇌 오가노이드로 검증한 세계 최초의 사례이다. 이는 환자 맞춤형 치료(Precision medicine)의 불모지로 여겨졌던 뇌 질환분야에서도 알츠하이머병 환자의 유전형에 따른 최적의 약물 효능 예측이 가능하게 됨을 의미하며 향후 약물 타겟 발굴에 기여할 것으로 기대된다. 조광현 교수는 “이번에 개발한 시스템생물학 기반 알츠하이머성 치매환자 약물 효능평가 플랫폼을 통해 향후 치매 치료제 개발 경쟁에서 우리나라가 국가적 우위를 선점할 수 있을 것으로 기대한다”고 밝혔다. 이번 연구는 보건복지부 한국보건산업진흥원의 국가치매극복기술개발 사업 및 한국연구재단의 중견연구자지원사업으로 수행됐으며, 연구성과는 국제학술지 네이처 커뮤니케이션즈(Nature Communications)의 2021년 1월 12일자 논문으로 게재됐다. (https://www.nature.com/articles/s41467-020-20440-5)
2021.01.13
조회수 73074
<<
첫번째페이지
<
이전 페이지
1
2
3
4
>
다음 페이지
>>
마지막 페이지 4