본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%86%8C%ED%8F%AC%EC%B2%B4
최신순
조회순
김유천 교수, 암세포 사멸 유도하는 새 방식의 항암제 개발
〈 김유천 교수, 이대용 박사 〉 우리 대학 생명화학공학과 김유천 교수 공동 연구팀이 세포의 이온 항상성을 교란하는 새로운 원리로 암세포 자가사멸을 유도하는 항암제를 개발했다. 연구팀이 개발한 이온 교란 펩타이드는 세포의 활성산소 농도를 급격하게 높이고 소포체에 강력한 스트레스를 부여해 최종적으로 자가사멸을 유도할 수 있다. 또한, 물에 대한 용해성이 좋아 향후 임상에 적용 가능할 것으로 기대된다. 생명화학공학과 이대용 박사와 한양대학교 생명공학과 이수환 박사과정이 공동 1 저자로 참여하고, 한양대학교 생명공학과 윤채옥 교수가 공동 교신저자로 참여한 이번 연구결과는 국제 학술지 ‘어드밴스드 사이언스(Advanced Science)’ 7월 17일 자 표지논문(Back cover)으로 게재됐다. (논문명 : A helical polypeptide-based potassium ionophore induces endoplasmic reticulum stress-mediated apoptosis by perturbing ion homeostasis) 세포 안팎의 이온 기울기는 세포 성장 및 대사과정에 중요한 역할을 해, 세포 이온 항상성을 교란하게 되면 세포의 중요한 기능이 억제돼 자가사멸(Apoptosis)을 촉진할 수 있다. 기존의 이온 항상성 교란 물질은 물에 대한 용해도가 낮아 동물 실험에 적용하기 매우 어렵고 이온 항상성 교란을 통한 자가사멸 원리가 구체적으로 밝혀지지 않아 실제 적용에 한계가 있다. 연구팀은 수용성을 지니고 칼륨 이온을 운반할 수 있는 알파나선 펩타이드 기반 항암물질을 개발했다. 펩타이드 끝에 양이온성을 지니며 물에 잘 녹는 친수성이 강한 그룹과 칼륨 이온 운반이 가능한 그룹을 결합해 이온 수송 능력과 친수성을 동시에 지니게 했다. 이 항암 펩타이드는 세포 내의 칼륨 농도를 낮추는 동시에 세포 내 칼슘 농도를 증가시킨다. 증가한 세포 내 칼슘 농도는 세포 내의 활성산소 농도를 크게 높여, 소포체 스트레스를 일으키며 최종적으로 자가사멸을 유도한다. 연구팀은 종양을 이식한 실험용 동물 모델에 새로운 항암물질을 투여해 높은 항암 효과와 소포체 스트레스를 통한 자가사멸 신호를 확인해 암 성장을 저해할 수 있음을 증명했다. 연구를 주도한 이대용 박사는“이온 교란 펩타이드는 세포 내의 활성산소 농도를 크게 높여 세포 자가사멸을 유도하기 때문에 기존의 항암 치료보다 더 효과적일 것으로 기대한다”라고 말했다. 김유천 교수는 “새로운 기작으로 암세포를 사멸하는 항암 펩타이드는 기존 항암요법의 한계점을 대체할 수 있는 새로운 방법으로 사용될 것이라 기대한다”라고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업을 통해 수행됐다. □ 그림 설명 그림1. Advanced Science 표지 그림2. 동물 실험을 통한 소포체 스트레스를 통한 자가사멸 신호 규명
2019.08.01
조회수 14442
효모 사용해 종양에 항암제 전달한다
〈 전 상 용 교수 〉 우리 대학 생명과학과 전상용 교수 연구팀과 GIST 생명과학부 전영수 교수 공동연구팀이 효모 기반의 바이오소재를 이용해 항암제를 표적 암에 효과적으로 전달할 수 있는 원천기술을 개발했다. 이번 연구결과는 지난해 12월 28일 미국학술원회보인 PNAS 온라인 판에 게재됐다. 이번 기술은 효모(yeast)에 존재하는 천연 소포체(vesicle)인 액포(vacuole)를 항암제를 전달하는 약물전달체로 이용했다. 동물 실험에서 높은 생체 적합성과 항암효능을 보여 기존 치료법의 대안이 될 것으로 기대된다. 약물전달시스템은 기존의 합성의약품 기반 항암 치료에 비해 독성을 크게 낮출 수 있다. 현재 美 식약청의 허가를 받아 치료에 사용되는 약물전달시스템은 리포좀(liposome) 제제와 알부민 나노입자(Abraxane)가 있다. 이러한 나노입자 기반 약물전달시스템은 특정 암을 표적해 치료하는 기술은 아니다. 따라서 최근에는 특정 암을 표적해 부작용을 낮추고 치료 효능은 개선시키는 표적형 약물전달시스템에 대한 연구가 활발히 진행 중이다. 그러나 대부분의 표적형 약물전달시스템은 고분자, 무기 나노입자같은 인공소재 기반이다. 인공소재들은 생체 적합성이 낮고 몸속에 장기간 남아 잠재적 독성을 유발할 수 있다는 한계를 갖는다. 연구팀은 문제 해결을 위해 빵, 맥주의 발효에 사용되는 효모를 이용했다. 효모 안의 소포체인 액포를 항암제 전달 소재로 사용했다. 연구팀은 기존 효모를 유전자변형 시켰다. 유방암에 결합가능한 표적 리간드(ligand)가 도입된 표적형 효모액포로 제조한 것이다. 여기에 항암제로 사용되는 독소루비신(Doxorubicin)을 표적형 효모액포에 선적해 약 100나노미터 직경을 갖는 암 치료용 표적형 약물전달시스템을 구축했다. 이 액포의 구성성분은 인간의 세포막에 존재하는 지질 성분들과 비슷해 암 세포와의 막융합이 수월하게 이뤄진다. 따라서 항암제를 암 세포 안으로 효과적으로 전달할 수 있고, 생체 적합성이 높아 안전한 약물전달시스템이 될 수 있다. 실제로 유방암 동물실험에서 표적형 효모액포 약물전달시스템은 기존 독소루비신 치료 그룹에 비해 약 3배 이상의 항암제를 암 조직에 전달해 우수한 치료 효능을 보였다. 이 기술을 통해 다른 생물체 기반의 나노 소포체를 이용한 약물전달시스템 개발에도 활용 가능할 것으로 기대된다. 전 교수는 “이 기술을 통해 생물체 유래 천연 나노 소포체가 약물전달시스템으로 개발될 것으로 보인다”며 “전임상 연구 및 임상 적용 가능성을 평가해 궁극적인 암 치료 방안 중 하나가 되기를 기대한다”고 말했다. 이번 연구는 한국연구재단의 글로벌프론티어 사업인 지능형바이오시스템 및 합성연구단과 광주과학기술원 실버헬스바이오연구센터의 실버헬스바이오기술개발사업의 지원으로 수행됐다. □ 그림 설명 그림1. 표적형 효모액포를 정맥주사 한 후 6시간 뒤 암 조직으로의 약물분포 결과 그림2. 유방암 생쥐모델에서 독소루비신 항암제가 선적된 표적형 효모액포 약물전달시스템의 항암 결과 그림3. 최종 항암 치료용 표적형 약물전달시스템을 제조하는 모식도
2016.01.12
조회수 19033
종양 전역에 약물 전달하는 항암치료나노기술 개발
<박 지 호 교수> 우리 대학 바이오 및 뇌공학과 박지호 교수 연구팀이 종양의 전역에 약물이 골고루 전달되게 해 항암효과를 현저히 높일 수 있는 새 항암치료 나노기술을 개발했다. 이번 연구는 나노분야 학술지 ‘나노 레터스(Nano Letters)’3월 31일자 온라인 판에 게재됐다. 일반적으로 수술이 어려운 종양의 치료를 위해 항암약물치료법이 사용된다. 하지만 종양이 외부로 들어오는 약물의 접근을 여러 방법으로 막기 때문에 종양 전체에 항암효과를 보기 어려웠다. 혈류로 투여된 약물들의 대부분이 혈관주위의 종양세포들에만 전달되고, 중심부의 종양세포에는 전달되지 않아 재발 문제가 자주 발생한 것이다. 연구팀은 문제 해결을 위해 리포좀과 엑소좀이라는 소포체를 이용했다. 리포좀은 인공나노소포체로서 혈류를 통해 혈관 주위의 종양 세포 부위까지 약물을 전달한다. 종양 세포에서 자연적으로 분비되는 생체나노소포체인 엑소좀에 약물을 무사히 탑재하는 것이 리포좀의 역할이다. 엑소좀은 종양에서 세포 내부의 생물학적 물질들을 전달하기 때문에 종양의 진행 및 전이에 중요한 요소로 알려져 있다. 리포좀이 항암 약물을 엑소좀에 탑재하면, 엑소좀이 이동하는 종양 내의 모든 위치로 약물이 전달됨으로써 질병이 치료되는 것이 연구의 핵심이다. 연구팀은 이 기술을 이용해 빛에 반응해 항암효과를 내는 광과민제를 종양이 이식된 실험용 쥐에 주입했다. 이후 종양 부위에 빛을 노출시켜 항암효과를 유도한 후 분석한 결과 종양조직 전역에서 항암효과를 관찰할 수 있었다. 연구팀의 핵심 성과는 종양 및 다른 질병들의 미세 환경을 파악해 질병에 대항하는 맞춤형 약물전달 기술 개발의 발판을 마련한 것이다. 연구팀은 이 기술을 제약회사에서 개발 중인 항암제에 적용해 약물전달이 어려운 악성 종양의 치료효과를 실험 진행 중이다. 박 교수는 “엑소좀이 세포에서 끊임없이 분비되는 특성과 주변 세포로 생물학적 물질을 전달하는 특성을 응용해 종양 중심부까지 약물을 전달 가능하게 만든 최초의 연구”라고 말했다. 박지호 교수 지도아래 이준성 박사, 김지영 석사가 주 저자로 참여한 이번 연구는 한국연구재단이 추진하는 신진연구자지원사업, 글로벌프론티어사업, 미래유망융합기술파이오니어사업의 지원을 받아 수행됐다. □ 그림설명 그림 1. 종양 전역에 약물이 골고루 전달되게 해 항암효과를 높이는 새 종양투과 약물전달 나노기술 세포막과 결합하는 리포좀에 의해서 세포로 전달된 물질이 그 세포가 분비하는 엑소좀에 효율적으로 탑재돼 주변세포로 전달되는 과정을 보여주는 모식도(좌). 이러한 엑소좀기반 세포간 약물전달이 실제로 종양 스페로이드 및 생체 내 종양모델에서 관찰된 결과들 (우).
2015.04.06
조회수 14376
윤태영 교수팀, 생체막 단백질 기능 첫 규명
우리대학 윤태영 물리학과 교수 주도하에 생체막 단백질인 시냅토태그민1(Synaptotagmin1)이 신경세포 통신을 능동적으로 제어한다는 사실을 세계 최초로 규명하였다. 시냅토태그민1은 신경전달물질 분출을 조절하는 양대 핵심 단백질로서, 지금까지 학계는 단순히 칼슘 이온이 유입되면 시냅토태크민1이 신경전달물질을 분출하는 것으로 추정해 왔지만, 명확히 그 기능을 밝혀내지 못했다. △카이스트 윤태영 물리학과 교수, △이한기 박사 △신연균 교수(포항공대, 아이오와주립대) △권대혁 교수(성균관대) △현창봉 교수 (고등과학원) 등이 참여한 이번 연구는 교육과학기술부(장관 안병만)와 한국연구재단(이사장 박찬모)이 추진하는 ‘기초연구실육성사업(BRL)"과 ‘세계 수준의 연구중심대학(WCU)육성사업’의 지원을 받아 수행되었고, 연구결과는 세계 최고 권위의 과학저널인 ‘사이언스(Science)’誌 5월 7일자에 게재된다. 이번 연구결과는 젊은 국내 토종박사들이 주축이 되어 불굴의 도전정신으로 일궈낸 값진 연구성과이다. 총 9명으로 구성된 연구팀에서 8명이 국내 연구자들로, 이중 7명이 만 40세를 넘지 않은 신진 연구자이다. 특히 연구를 주도한 윤태영 교수는 만 34세로 2004년 서울대에서, 이한기 박사는 만 33세로 명지대에서, 권대혁 교수는 만 38세로 서울대에서 박사학위를 받은 토종박사들이다. 또한 이번 연구성과는 정부의 대표적인 연구지원사업(BRL)과 인력 양성사업(WCU)의 지원을 받아 시너지 효과를 발휘하여, 세계 최고의 과학저널에 발표했다는 점에서 의의가 있다. [그림1. 신경전달물질 분출에 있어서 시냅토태그민1의 동적제어 스위치 모델] 윤태영 교수 연구팀은 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어하는 스위치 역할을 한다는 새로운 사실을 밝혀냈다. 연구팀은 신경세포 내에 적정농도(10μmol/L, 1리터당 10마이크로 몰)의 칼슘 이온이 유입되면 시냅토태그민1은 신경전달물질을 빠르게 분출하지만, 적정농도 이상의 칼슘이 유입되면 오히려 그 기능이 감소된다는 사실을 최초로 확인하였다. 이것은 시냅토태그민1이 신경세포에서 나오는 칼슘 농도에 따라 다양하게 반응한다는 사실을 의미하는 것으로, 시냅토태그민1이 신경세포 통신의 강약을 자유자재로 제어할 수 있다는 사실을 새롭게 규명한 것이다. 윤태영 교수팀의 이번 연구는 지난 10년간 학계의 풀리지 않은 수수께끼인 시냅토태그민1의 기능에 대한 명쾌한 해답을 제시하였다. 이번 연구는 낮은 농도의 칼슘에서 시냅토태그민1이 가장 활발히 활동한다는 사실을 최초로 발견하여, 기존 연구가 밝히지 못한 시냅토태그민1의 기능을 정확히 설명하였다. 특히 연구팀은 시냅토태그민1을 생체막으로부터 분리하면, 제어 스위치 기능이 상실된다는 사실도 확인하여, 시냅토태그민1의 생체막 부착 여부가 그 기능에 핵심인 것을 밝혀냈다. 또한 윤 교수팀은 차세대 신약개발의 주요 타깃인 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발하는데 성공하였다. 생체막 단백질은 물질 수송 등 세포내 필수적인 역할을 하는데, 암, 당뇨, 비만 등 각종 질병과 밀접하게 관련되어 있어, 차세대 신약개발 표적 단백질의 최대 70%를 차지하는 것으로 알려져 있다. 연구팀은 ‘단소포체 형광 기법(single-vesicle fluorescence detection)’을 개발하는데 성공하여, 생체막 단백질의 기능을 단분자 혹은 수개 분자 수준에서 관찰할 수 있는 세계 최고 수준의 기술을 보유하게 되었다. [그림2. 단소포체 형광기법] 윤 교수는 “이번 연구결과는 지난 10년간 학계가 밝혀내지 못한 시냅토태그민1의 기능을 명쾌히 밝혀내고, 복잡한 생체막 단백질의 기능을 분자수준에서 관찰할 수 있는 신기술을 개발한 것이다. 이번 연구로 생체막 단백질을 활용하여, 암, 당뇨, 비만 등 현대인의 질병에 대한 신약을 개발할 수 있는 가능성을 열었다“라고 연구 의의를 밝혔다.
2010.05.07
조회수 25036
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1