본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%8B%9C%EA%B0%84%EB%B6%84%ED%95%B4
최신순
조회순
6밀리초에 단백질 반응 순간 포착 성공
생명현상을 이해하고 나아가 신약 개발을 위해 단백질 상호 작용 및 효소-기질 반응 등 마이크로초(micro-second)~밀리초(milli-second) 수준의 짧은 시간 동안 일어난 현상을 이해하는 것이 핵심이다. KAIST 연구진이 생명 현상을 이해하는데 필수적인 생화학 반응의 변화를 수 밀리초 수준에서 정지시키고 분석하는 방법을 개발했다. 우리 대학 화학과 강진영 교수와 물리학과 이원희 교수의 공동 연구팀이 초고속 생화학 반응 연구를 위한 ‘패릴렌(parylene)’* 기반 박막 미세유체 혼합-분사 장치’를 개발했다고 24일 밝혔다. *패릴렌: 단백질 반응을 초고속으로 관찰하기 위한 미세유체(microfluidics) 장치를 만드는 핵심 재료로 수 마이크로미터의 얇은 박막형태로 스프레이 제작이 가능하게 만든 소재임 이번 연구는 기존에 제시됐던 시간 분해 초저온 전자현미경(이하 TRCEM, Time-resolved cryo-electron microscopy) 기법의 한계를 극복해 기존 대비 시료 소모량을 1/3 수준으로 줄이면서 분석가능한 최소 반응시간을 기존 기술 대비 수십 배 향상하여 6밀리초(1,000분의 6초)까지 단축했다. 시간 분해 초저온 전자현미경은 단백질 복합체의 반응 중간 상태를 초저온에서 빠르게 냉동해 구조를 분석하는 기술로 최근 특별히 많은 주목을 받고 있다. 통상적인 초저온 전자현미경 분석에서는 짧은시간 존재하고 사라지는 반응 중간체를 포착하기 어려웠다. 이를 해결하기 위해 다양한 TRCEM 기법이 개발됐으나, 기존 기술은 많은 시료 소비와 제한된 시간 해상도 등의 한계로 어려움이 있었다. 연구침은 이를 극복하기 위해 초박막 패릴렌 소재를 적용한 새로운 혼합-분사장치를 개발했다. 본 장치는 시료의 양을 기존 대비 1/3 수준으로 줄여 실질적인 연구의 어려움을 개선했으며, 미세유체역학 소자 내에서 반응 개시에 드는 시료 혼합 시간을 0.5밀리초로 줄여 전체 반응시간을 6밀리초까지 줄였다. 연구팀은 또한 소자의 일체형 설계를 통해 실험의 정밀도와 재현성을 향상했다. 강진영 교수는 “이번 연구는 TRCEM 기법을 더욱 실용적으로 만들었으며, 구조 생물학 및 신약 개발, 효소 반응연구, 바이오 센서 개발 등 다양한 생명과학 및 의약 분야에서 패럴린 박막 소자의 폭넓은 활용 가능성을 제시했다”고 연구의 의의를 설명했다. 이원희 교수는 “연구팀은 앞으로 이를 활용한 생화학 반응 연구와 더 빠른 반응 분석을 위한 성능 향상을 목표로 연구를 이어갈 계획이다”라고 밝혔다. 이번 연구 결과는 화학과 석·박통합과정 황혜랑 연구원이 제 1저자로 국제학술지 어드밴스드 펑셔널 머티리얼즈(Advanced Functional Materials) 2025년 1월 28일 자에 온라인 게재됐다. (논문명: Integrated Parylene-Based Thin-Film Microfluidic Device for Time-Resolved Cryo-Electron Microscopy, doi.org/10.1002/adfm.202418224). 한편 이번 연구는 한국연구재단과 삼성미래기술육성재단, CELINE 컨소시엄의 지원을 받아 수행됐다.
2025.03.24
조회수 805
이효철 교수 연구팀, 분자가 탄생하는 모든 순간(35펨토 초) 포착
우리 대학 화학과 이효철 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장) 연구팀은 원자가 결합하여 분자가 탄생하는 모든 과정을 실시간으로 관찰하는데 성공했고 이번 성과가 세계 최고 권위의 학술지 네이처(Nature, IF 43.070)誌 온라인 판에 6월 25일 0시(한국시간) 게재됐다고 밝혔다. 연구진은 펨토 초(1/1,000조 초)의 순간을 관측하기 위해 특수 광원인 포항 4세대 방사광가속기의 X-선자유전자레이저(펨토 초 엑스선 펄스*)를 이용하여 화학결합을 형성하는 분자 내 원자들의 실시간 위치와 운동을 관측하는데 성공했다. * 펄스는 짧은 시간동안 만 빛이 방출되는 형태로, 펨토 초 엑스선 펄스는 X선이 펄스의 형태로 생성되고 그 시간 길이가 펨토 초 정도일 때를 말함 물질을 이루는 기본 단위인 원자들이 화학결합을 통해 분자를 구성한다. 하지만 원자는 수 펨토 초에 옹스트롬(1/1억 cm) 수준만 움직이기 때문에 그 움직임을 실시간으로 포착하기는 어려웠다. 연구진은 이전에 분자결합이 끊어지는 순간(Science, 2005)과 화학결합을 통해 분자가 탄생하는 순간(Nature, 2015) 분자의 구조를 원자 수준에서 관측한 바 있으며, 이번에 세계 최초로 화학반응의 시작부터 끝까지 전 과정의 원자의 움직임을 관찰하는데 성공했다. 화학반응의 시작인 반응물과 끝인 생성물은 상대적으로 오랫동안 구조를 유지하지만, 반응과정의 전이상태(transition state)의 경우 매우 짧은 시간 동안만 형성되기 때문에 관찰이 더 까다로웠다. 연구진은 기존보다 더 빠른 움직임을 볼 수 있도록 향상시킨 실험기법과 구조 변화 모델링 분석기법으로 금 삼합체(gold trimer)* 분자의 형성과정을 관찰했다. 그 결과, 세 개의 금 원자를 선형으로 잇는 두 개의 화학결합이 동시에 형성되는 것이 아니라, 한 결합이 35펨토 초 만에 먼저 빠르게 형성되고, 360펨토 초 뒤 나머지 결합이 순차적으로 형성됨을 규명했다. * 세 개의 금 원자로 이뤄진 화합물(화학식 : [Au(CN)2-]3)로, 수용액 상에서 가까운 곳에 흩어져 있다가 빛(레이저)을 가하면 반응하여 화학결합을 시작하는 특징이 있다. 또한, 화학결합이 형성된 후 원자들이 같은 자리에 머물지 않고 원자들 간의 거리가 늘어났다가 줄어드는 진동 운동을 하고 있음도 관측했다. 연구진은 앞으로 단백질과 같은 거대분자에서 일어나는 반응뿐만 아니라 촉매분자의 반응 등 다양한 화학반응의 진행 과정을 원자 수준에서 규명해 나갈 계획이다. 제1 저자인 김종구 IBS 선임연구원(우리 대학 화학과 박사과정 졸업생)은 “장기적 관점에서 꾸준히 연구한 결과, 반응 중인 분자의 진동과 반응 경로를 직접 추적하는 ‘펨토초 엑스선 회절법’을 완성할 수 있었다”며 “앞으로 다양한 유‧무기 촉매 반응과 체내에서 일어나는 생화학적 반응들의 메커니즘을 밝혀내게 되면, 효율이 좋은 촉매와 단백질 반응과 관련된 신약 개발 등을 위한 기초정보를 제공할 수 있을 것”이라고 포부를 밝혔다.
2020.06.26
조회수 24388
김상규 교수, 화학반응 교차점에서 반응 메커니즘 규명
〈 우경철 박사과정, 김상규 교수, 강도형 박사과정 〉 우리 대학 화학과 김상규 교수 연구팀이 분자의 결합이 떨어지는 화학반응의 교차점에서 발생하는 두 가지 반응 경로를 실시간으로 관찰해 정확한 속도를 측정하는 데 성공했다. 김 교수는 지난 2010년 실험을 통해 두 반응의 위치에너지의 곡면이 만나는 화학반응의 핵심인 ‘원뿔형 교차점’의 존재와 분자구조를 규명한 바 있다. 이어서 이번 연구를 통해 화학반응의 교차점에서 발생하는 두 반응의 속도를 정확하게 측정함으로써 관련 연구의 이론적, 실험적 발전에 기여할 것으로 기대된다. 우경철, 강도형 박사과정이 1저자로 참여한 이번 연구는 ‘미국화학회지(JACS)’ 11월 7일자 온라인 판에 게재됐다. 빛을 받아 일어나는 화학반응은 전자적으로 들뜬 상태에서의 상호작용을 통해 발생한다. 일반적으로 전자상태 간의 상호작용은 한 개의 경로를 갖는 것이 보통이다. 하지만 양자상태에 따라 반응속도가 변하는 현상이 종종 발견되기도 한다. 이렇게 두 개 이상의 서로 다른 성격을 지닌 위치에너지곡면들이 교차하는 지점을 원뿔형 교차점(conical intersection)이라고 부른다. 이 구간은 화학반응에 대한 양자역학적 기술을 가능케 하는 ‘본-오펜하이머 가정(Born Oppenheimer approximation)’이 성립하지 않는 영역으로 알려져 있다. 김 교수는 2010년 분광학적 방법을 통해 이 원뿔형 교차점의 존재를 발견했고 이는 곧 에너지곡면 교차점의 양자상태 반응의 시작점임을 증명했다. 또한 여기서 출발한 반응은 매우 다른 반응속도를 가진 서로 다른 두 경로로 분리돼 진행된다는 것을 밝혔다. 그러나 일반적인 분광법을 통해서 교차점의 시작점은 알 수 있었지만 각 곡면이 갖는 속도를 측정하는 것은 불가능했다. 연구팀은 기존의 분광법이 아닌 피코초(10-12초) 시간분해능 분광법을 이용했다. 기존 기술은 나노초를(10-9초) 기반으로 한 실험을 이용한하기 때문에 에너지 부분에서는 정확하게 측정할 수 있지만 나노초로는 반응의 속도를 측정할 수 없다. 화학반응이 나노초 이내에서 이뤄지기 때문이다. 연구팀의 피코초 시간분해능 분광법은 에너지와 시간 모두 정확하게 측정할 수 있기 때문에 원하는 결과를 얻을 수 있었다. 연구팀은 본-오펜하이머 가정이 성립하는 단열 반응(adiabatic reaction)과 본-오펜하이머 가정이 성립하지 않는 비단열 반응(non-adiabatic reaction) 각각 두 개의 경로가 활성화되고 반응 속도 뿐 아니라 생성물의 에너지 분포 등이 큰 차이를 보임을 확인했다. 자유도의 수가 많은 복잡한 분자 반응에서 양자상태에 근거한 반응교차점에서의 비 단열성을 정량적으로 관찰하고 설명한 경우는 처음이다. 이를 통해 향후 있을 이론적, 실험적 연구의 촉진에 기여할 것으로 기대된다. 김 교수는 “기초과학 연구는 인류가 자연을 이해하고 지혜롭게 이용하는데 필수적이며 기초과학의 발전 없이 새로운 기술적 진보를 기대하기는 힘들다”며 “이번 연구를 통해 기초과학의 연구에 열정을 다할 수 있는 젊은 학문적 기대주들이 많이 성장할 수 있길 바란다”고 말했다. 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 반응교차점에서 시작된 반응 그래프, 단열반응경로 (빨간색)와 비단열반응경로 (파란색)로 나눠짐 그림2. 반응교차점 입체도 그림3. 반응교차점 메커니즘 개념도
2017.11.30
조회수 17382
화학과 학부생, 세계적 저널에 표지논문 게재
- 화학과 4학년 조상연, 물리학과 4년 김수민 학생, 말라리아 연구를 위한 광학영상 기술을 분석해 셀(Cell) 자매지 표지논문에 게재 -- 국내최초 소방관인 故 조용완씨 손자, 3월 의무소방요원으로 입대예정 - “교수님, 하이젠 베르크(Werner Heisenberg) 같은 역사 속 과학자들은 20대 초반에 세계적인 연구 성과를 냈는데 저는 이대로 가다간 늦어버릴 것 같습니다. 교수님 연구실에서 융합연구를 할 수 있게 도와주세요” 우리 학교 화학과 4학년에 재학 중인 조상연(22) 君이 1학년 때 이 대학에서 물리화학 분야 융합연구의 세계적인 석학인 이효철 화학과 교수를 찾아 와 당차게 부탁한 한 마디다. 조상연 학생이 말라리아 연구와 관련해 제1저자로 발표한 논문이 셀(Cell)지가 발행하는 생명공학분야 최고 권위 학술지인 ‘생명공학의 동향(Trends in Biotechnology, IF=9.644)’ 2월호 표지논문으로 선정됐다. 근래 들어 학부생의 연구 참여가 활발해진 까닭에 과학기술논문인용색인(SCI)급 국제학술지에 논문이 실리는 경우가 가끔씩은 있었지만, 셀 자매지와 같은 세계적인 학술지에, 그것도 표지논문으로 실리는 경우는 거의 없었다. 하지만 오랜만에 KAIST 학부재학생인 조상연 君이 큰일을 이뤄내 학교 안팎으로부터 많은 화제를 모으고 있다. 광주과학고를 2년 만에 조기 졸업하고 2008년 KAIST에 입학한 조 군은 평소 연구에 대한 높은 관심으로 신입생 때부터 KAIST내 다양한 학과를 넘나들며 연구거리를 찾아다녔다. 2학년 때는 화학과 이효철 교수의 지도아래 학부생 연구지원 프로그램인 URP에 참여, ‘시간분해회절에 의한 용액 상 구조 동력학 분석’에 관한 탁월한 연구 성과를 거뒀다. 이 연구로 조 君은 2학년 학생으로는 이례적으로 최우수상을 수상하는 한편 후속연구비 1000만원과 해외학회 참가라는 특전을 받으며 두각을 보이기 시작했다. 바이오 및 뇌 공학과 김동섭 교수와 ‘알카인 수화반응을 촉매하는 단백질의 컴퓨터 디자인’에 대한 연구를 진행하는 한편 EEWS대학원 정유성 교수와는 ‘전산모사를 통한 이산화탄소 흡착 촉매 디자인’ 등에 대한 연구를 수행하기도 했었다. 이후 조상연 君은 2011년 2월부터 약 1년간 바이오광학분야 융합 연구에 대한 세계적 학자인 물리학과 및 광기술연구소 박용근(32) 교수의 지도를 받아 왔다. 이번 셀 자매지에 게재한 논문은 박용근 교수의 지도를 받으며 수행한 연구과제 중 하나다. 같은 공동저자 중 한명인 김수민 학생(24, 제2저자) 역시 물리학과 학부생으로 ‘개별연구제도’를 통해 연구에 참여했다. 조상연 학생은 ‘말라리아 연구를 위한 광학 영상기술’이라는 제목의 이번 논문을 통해 “학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 또 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다”며 문제를 제기했다. 이와 함께 첨단 광학기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 말라리아 연구를 크게 3가지로 나눠 체계적으로 광학기술을 이용하는 전략을 제시했다. 조 君의 이번 연구는 바이오 이미징 기술을 말라리아 감염질환 연구에 통합 적용하고, 말라리아 연구에 적용 가능한 광학영상 방법들을 소개함으로써, 다 학제 간 융합 연구시대에 경쟁력을 갖는 광학-의학연구 전략을 체계적으로 제시한 것으로 높이 평가받고 있다. 조상연 학생은 “고등학교 시절 SEE-KAIST 과제에 출품해 수상하면서 연구에 대한 재미를 느꼈고, 2학년 1학기까지 특정한 학과가 없는 무학과 제도를 운영해 다양한 분야의 융합연구를 할 수 있는 조건을 갖춘 국내 최고의 연구중심대학 KAIST로 진학을 결심했다”며 “특히, 학부생에게 관련분야 최고 교수와 연구기회를 주는 URP 및 개별연구제도로 인해 뛰어난 교수들의 지도와 학교의 충분한 재정적 지원 덕분에 큰 어려움 없이 마음껏 연구를 펼칠 수 있었다”고 말했다. 조 君은 이와 함께 “앞으로 목표는 세상에서 제일 재미있는 융합연구를 하는 과학자가 되는 것”이라며 “제가 하는 연구를 통해 전 세계 어려운 상황에 놓인 많은 사람들을 도우는 데 노력할 것”이라고 말했다. 조 君은 바쁜 학업생활 속에서도 지역사회를 위해 저소득층 중학생들을 위한 봉사단체인 ‘배움을 나누는 사람들’에서 2년간 꾸준히 봉사를 해왔으며, KAIST 자연과학 학술동아리인 ‘KINS’를 설립했고, 자연과학대학 소식지인 ‘KAIST Science’ 기자로도 활동해 왔다. 조 君은 현재 해외 대학원 입학을 계획하고 있으며 올 3월 입대해 의무소방요원으로 군복무를 할 예정이다. 조 君의 할아버지는 우리나라 최초의 소방관인 故 조용완 씨로 소방관에 대한 남다른 인연으로 군 생활을 시작할 예정이다. 한편, 이번 연구는 KAIST ‘신임교원정착연구사업‘과 ’광기술연구소연구사업‘의 일환으로 이뤄졌으며 화학과 학사과정 조상연(22, 제1저자) 君을 포함해 물리학과 학사과정 김수민(24, 제2저자) 학생과 물리학과 김영찬 박사(30, 공저자)가 함께 수행했다.(끝) 붙임 : 논문요약, 보충자료, 사진설명 <논문요약> 논문주제 : 말라리아 연구를 위한 광학 영상기술 학질모기에 의해 전염되는 말라리아에 전 세계적으로 매년 약 3억 명이 감염되고 수백만 명이 사망하고 있지만, 아직도 말라리아 질병의 많은 부분이 알려져 있지 않다. 세계 각국은 말라리아 감염을 연구하고, 말라리아를 진단하고 치료하는 장비 개발에 박차를 가하고 있다. 빌게이츠 Microsoft사 전 회장 부부가 설립한 Bill & Melinda Gates 재단에서 말라리아 연구에 막대한 연구비를 지원하기 시작했으며, Apple, Google, Intel사 등이 연합 설립한 Intellectual ventures사에서도 빛을 이용한 말라리아 진단 연구를 진행하고 있는 것이 그 사례들이다. 최근에는 첨단 광학 기술을 말라리아 연구에 적용하려는 노력이 최근 많은 주목을 받고 있는데, 박 교수 연구팀은 말라리아 연구를 크게 3가지로 나누어 체계적으로 광학기술을 이용하는 전략을 제시했다. ▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하여 체외에서 광학 영상을 측정하는 방법과 ▲말라리아에 감염된 적혈구를 외부 염색 물질을 사용하지 않고, 적혈구 자체의 광학적 신호를 이용하여 체외에서 영상을 획득하는 방법 그리고 ▲체내에서 말라리아 기생충이 숙주 세포를 감염시키는 과정의 광학 영상을 획득하는 방법이다. 이 논문에서는 물리학(광학)과 의학(감염질환)의 효과적인 융합 연구를 위한 체계화된 전략을 소개했기 때문에 실제 말라리아를 연구하는 연구자들에게 실질적인 도움이 될 수 있을 것이라고 평가받고 있다. 제1저자로 참여한 조상연 학생은 “이번 논문은 연구팀에서 수행하고 있는 굴절률 차이를 이용한 광학영상기술 및 최신 광학영상 기술들이 말라리아에 어떻게 이용될 수 있는가를 소개함으로써, 말라리아 진단 및 치료 연구에 힘을 실어줄 수 있을 것으로 기대한다”고 말했다. <보충자료: 용어설명> ○ SEE-KAIST1992년 첫 행사를 시작으로 `Open-KAIST`와 번갈아 격년제로 실시해오는 행사로 KAIST 연구 성과, 과학고 탐구 성과, 산업체 연구개발 제품 등을 직접 보고 체험할 수 있는 KAIST의 대표적인 과학문화 대중화 행사다. ○ 무학과제도학사과정의 우수한 학생들에게 학과선택의 자율성을 보장하기 위해 학과 구 분 없이 입학해 개인의 적성 등을 고려해 2학년 1학기를 마친 후 학과를 선택하는 제도. ○ URP 학사과정 학생들이 지도교수와 지도조교의 지도하에 실질적인 실험 및 연구를 할 수 있도록, 연구비 지원 및 학점 연계를 통해 학부생의 연구를 현실적으로 지원하는 프로그램 ① Long-Term URP 프로그램 (연 1회 실시) 가. 연구기간 : 12개월 (2011년 12월 26일~2012년 12월 21일) 나. 지원내역 * 단독 : 장학금 1,500천원+연구비 3,000천원 * 팀 : 1인당 장학금 1,200천원+연구비 4,000천원 ② 겨울/봄학기, 여름/가을학기 URP 프로그램 가. 연구기간 : 5개월~6개월 나. 지원내역 * 단독 : 장학금 1,000천원+연구비 1,500천원 * 팀 : 1인당 장학금 800천원+연구비 2,000천원 ○ 하이젠베르크 하이젠베르크는 1901년 독일에서 출생했다. 그의 아버지는 의학교수였고 그는 뮌헨대학에서 아놀드 좀머펠트(Arnold Sommerfeld) 밑에서 이론물리를 공부했고, 1923년에 박사학위를 받았다. 같은 해에 그는 괴팅겐대학에서 보른(Max Born)의 조수가 되었으며, 다음해에는 강사가 된다. 다음 3년간 코펜하겐에서 닐스 보어와 함께 일하고, 1927년부터 1941년 까지 라이프치히대학의 이론물리학 교수가 된다.거기서 볼프강 파울리 등과 연구하며 양자 전기 역학과 양자장 이론을 발전 시켰고, 핵 물리학과 고 에너지 물리학의 발전에 넓고도 깊은 영향을 미쳤다. 불확정성 원리로 유명한 하이젠베르크는 양자역학의 탄생에 기여한 공로로 1932년 노벨물리학상을 받았다. <사진설명> 조상연 학생의 지도교수인 물리학과 박용근 교수 연구자 사진 : 왼쪽부터 김수민 학생, 김영찬 박사, 조상연 학생 Trends in Biotechnology 2012년 2월 호 논문표지
2012.02.01
조회수 27526
이효철 교수팀, 물에 녹은단백질 모양 변화 실시간 관찰 성공
- 관련 논문, 9월 22일(일)자 네이처 메서드(Nature Methods)誌 게재- 단백질의 작동메커니즘 규명에 중요한 도구 역할 및 신약개발에도 큰 도움 줄 것으로 기대 KAIST(총장 서남표) 화학과 이효철(李效澈, 36) 교수팀이 ‘물에서 변하는 단백질 분자구조를 실시간으로 규명’ 하는데 성공했다. 관련 논문은 네이처 자매지인 네이처 메서드(Nature Methods)誌 9월 22일자 온라인 판에 게재됐고 10월호에 출판될 예정이다. 논문의 제목은 “시간분해 엑스선 산란을 이용한 용액상의 단백질의 구조동역학 추적(Tracking the structural dynamics of proteins in solution using time-resolved wide-angle X-ray scattering)”으로 온라인에 게재되는 논문들 중에서도 특히 주목받는 하이라이트 논문으로 소개될 예정이다. 李 교수는 이 논문의 교신저자다. 이번 연구결과는 李 교수팀의 집념의 산물이라 할 수 있다. 李 교수팀은 지난 2005년 5월, 소금처럼 딱딱하게 고체상으로 굳어 있는 상태에서의 단백질의 안정적인 구조만을 볼 수 있는 기존의 방법을 시간분해 엑스선 결정법으로 발전시켜, 정지되어 있는 단백질의 구조뿐 만 아니라 움직이는 단백질의 동영상을 촬영하는데 성공했다. 관련 논문은 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science)에 발표되었으며, 학계의 큰 주목을 받았다. 그러나 이 방법으로도 해결할 수 없는 치명적인 문제는 우리 몸에서 작용하는 일반적인 단백질은 고체상으로 있지 않고 물에 녹아있는 용액상태라는 점이다. 마치 고체 소금이 물에 녹아 소금물이 되는 것과 같은 원리다. 물은 인간의 몸의 약 70% 이상을 차지하고 있고 생명 유지에 필수적인 단백질들은 물에 녹아 있는 상태로 존재한다고 볼 수 있다. 따라서 단백질이 어떻게 기능을 발휘하는 지를 실시간으로 관측하기 위해서는 물에 녹아 있는 단백질 분자의 모양 변화를 실시간으로 추적할 수 있는 기술이 필요하다. 이러한 목표를 향한 첫 열매로 물에 녹아 있는 간단한 유기분자의 구조변화를 실시간 측정하는 데 성공하였으며, 관련 연구논문이 2005년 7월 사이언스(Science)誌에 발표된 바 있다. 당시 이 연구결과는 용액상에서 분자의 움직임을 실시간 추적할 수 있다는 점 때문에 많은 관심을 불러 일으켰는데, 李 교수는 그 기술을 더욱 발전시키면 단백질에도 응용 가능할 것으로 전망했다. 그러나 일반적으로 단백질은 그 당시 성공한 유기분자보다 적어도 1,000배 정도 크고 구조가 훨씬 더 복잡할 뿐 아니라 훨씬 적은 양으로 존재하기 때문에 물에 녹아 있는 단백질에서도 성공할 수 있다는 것에는 많은 과학자들이 회의적으로 생각했다. 이번 네이처 메서드誌에 발표한 연구결과는 그러한 부정적인 생각을 깨고 기존에 성공한 유기분자보다 ‘1,000배 더 큰 단백질 분자가 물에 녹아 있을 때에 이들의 3차원 구조변화를 실시간으로 관측하는데 성공’한 획기적인 연구성과다. 논문에서는 3가지 종류의 단백질에 대한 연구결과를 발표했는데, 우리 몸에서 산소를 이동하는데 중요한 헤모글로빈 단백질과, 근육에서의 산소공급에 관여하는 미오글로빈 단백질 등이다. 이 외에도 단백질은 주로 접혀있어 특정한 구조를 형성하는데 환경이 바뀌면 이 구조가 풀리게 된다. 풀려 있는 단백질은 일반적으로 제 역할을 할 수 없어 이러한 단백질의 접힘-풀림 현상을 이해하는 것은 매우 중요한데 씨토크롬씨라는 단백질이 풀린 상태에서 접히는 과정도 실시간으로 추적하는데 성공하였다. 이 새로운 기술을 사용하면 물에서 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동메커니즘을 밝히는 데에 중요한 도구가 될 것이며, 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 기대된다. 또한 이 기술은 단백질은 물론이고 나노물질에도 응용이 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 전망된다. 이 연구는 교육과학기술부의 창의적연구진흥사업의 연구비 지원으로 진행되었다. 연구결과는 유럽연합방사광가속기센터에서 측정되었으며, 李 교수의 주도하에 이뤄진 국제적인 공동연구의 성과다. 李 교수는 “현재 포항에 있는 제3세대 가속기에 이어 한국에서도 차세대 광원으로 건설이 논의되고 있는 제4세대 방사광가속기(XFEL)가 성공적으로 가동되면, 현재 발표된 데이터보다 적어도 1,000배정도 더 좋은 데이터를 얻을 수 있을 것으로 예상된다.”고 밝혔다. <이효철 교수 프로필> ■ 학 력 1990 경남과학고 2년 수료, KAIST 화학과 학사과정 입학 1994 KAIST 화학과 학사과정 졸업 1994 Caltech(California Institute of Technology) 박사과정 입학 2001 Caltech 졸업(박사) 2001 시카고 대학 박사 후 연구원(Post Doc.) 2003.8.1-2007.2.28 KAIST 화학과 조교수 2007.3.1-현재 KAIST 화학과 부교수 ■ 수상경력 2006 젊은 과학자상(과학기술부/한국과학기술한림원) 2006 과학기술우수논문상(한국과학기술단체총연합회) 2006 KAIST 학술상 2001-2003 美國 대먼 러년 암재단(Damon Runyon Cancer Research Foundation)펠로우쉽 (설명) 시간분해 엑스선 산란의 개념을 예술적으로 표현한 그림
2008.09.22
조회수 26873
움직이는 단백질 구조 실시간 규명
단백질 동영상 촬영, 신약 개발에 큰 도움이효철 교수, 미국 국립과학원 회보(PNAS) 2일자 발표 KAIST 화학과 이효철(李效澈, 33) 교수가 움직이는 단백질의 구조를 실시간으로 규명하는데 성공했고 관련 논문이 세계적인 저널인 미국 국립과학원회보(PNAS, Proceedings of National Academy of Science) 5월 2일자로 게재되고, 그 우수성을 입증받아 ‘이 주의 논문’으로도 채택됐다. 일반적으로 단백질의 삼차원 구조는 엑스선 결정법 (X-ray Crystallography)을 사용해서 밝혀내게 되는데 이 방법으로는 정지되어 있는 단백질의 안정적인 구조만을 볼 수 있다. 李 교수팀은 엑스선 결정법을 더욱 발전시킨 방식인 시간분해 엑스선 회절법이란 방식을 이용했다. 이는 정지되어 있는 단백질의 구조뿐 만 아니라 작동하고 있는 단백질의 동적인 구조까지도 밝혀낼 수 있는 획기적인 방식이다. 이 새로운 기술을 사용하면 움직이는 단백질의 동영상을 촬영할 수도 있어 단백질의 작동기작을 밝히는 데에 중요한 도구가 될 것이며 앞으로 신약개발을 하는 데에도 큰 도움을 줄 것으로 보인다. 또한 이 기술은 단백질뿐 아니라 나노물질에도 응용 가능하므로 BT뿐만 아니라 NT분야에도 기여할 수 있을 것으로 보인다. 이 연구결과는 미국의 아르곤 국립연구소의 APS 가속기와 유럽연합방사광가속기 (ESRF) 센터에서 측정되었으며 李 교수의 주도하에 이루어진 국제적인 공동연구의 결과라 할 수 있다.
2005.05.04
조회수 21737
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1