-
금이 간 뼈에 ‘뼈 반창고’ 신소재 개발
뼈 재생은 복잡하며 기존의 골 이식 및 성장 인자 전달 등과 같은 재생을 할 경우 높은 단가 발생 등의 한계가 있었는데 뼈조직의 성장을 촉진하기 위한 압전 물질이 개발되었다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 전남대학교 융합바이오시스템기계공학과 김장호 교수 연구팀과 협업을 통해 하이드록시아파타이트(HAp)의 고유한 골 형성 능력을 활용하여 압력을 가했을 때 전기적 신호가 발생하는 생체 모방 지지체를 개발했다고 25일 밝혔다.
하이드록시아파타이트(HAp)란 뼈나 치아에서 발견되는 염기성 인산칼슘으로 생체 친화적인 특징이 있으며, 충치를 예방하는 특성이 있어 치약에도 쓰이는 미네랄 물질이다.
이전의 압전 지지체 관련 연구들은 압전성이 뼈 재생을 촉진하고 골 융합을 향상하는 효과를 다양한 고분자 기반 소재에서 확인했지만, 최적의 골조직 재생에 필요한 복잡한 세포 환경을 모사하는 데 한계가 있었다. 그러나 이번 연구는 하이드록시아파타이트(HAp) 고유의 골 형성 능력을 활용해 생체의 골조직 환경을 모방하는 소재를 개발한 것으로, 연구팀은 새로운 방법을 제시했다.
연구팀은 하이드록시아파타이트(HAp)를 고분자 필름과 융합하는 제조 공정을 개발했다. 이 공정으로 제작된 유연하고 독립적인 지지체는 실험 쥐를 대상으로 한 체외 및 체내 실험에서 뼈 재생을 가속하는 놀라운 잠재력을 입증했다.
또한, 연구팀은 동 지지체의 골 재생 효과의 원인을 다각도로 밝혀냈다. 원자간력 현미경(AFM) 분석을 통해 지지체의 전기적 특성을 조사했으며, 세포 모양과 세포 골격 단백질 형성에 대한 상세한 표면 특성 평가를 진행했다. 또한, 압전 및 표면적 요소가 성장 인자 발현에 어떤 영향을 미치는지 조사했다.
신소재공학과 홍승범 교수는 "뼈의 재생 속도를 가속화시키는 효과를 통해 `뼈 반창고' 같은 역할을 하는 하이드록시아파타이트(HAp) 융합 압전성 복합소재를 개발했다ˮ며, "이번 연구는 생체 재료 설계에 새로운 방향성을 제시하는 데에 그치지 않고, 압전성과 표면적 특성이 뼈 재생에 미치는 영향을 탐구한 데에 의의가 있다ˮ 라고 강조했다.
홍승범 교수 연구팀 소속 주소연 박사과정 학생, 김소연 석사가 공동 제1 저자로 참여한 이번 연구는 2024년 1월 4일 국제학술지 `ACS Applied Materials & Interfaces'에 게재됐다. 또한, 김장호 교수팀의 권용현 박사과정 학생이 공동 제1 저자로, 김장호 교수가 공동교신저자로 기여했다. (논문 제목: Piezoelectrically and Topographically Engineered Scaffolds for Accelerating Bone Regeneration).
해당 연구는 KAIST 연구진흥팀, KUSTAR-KAIST 공동연구센터, KAIST의 글로벌 특이점 사업과 정부의 재원으로 한국연구재단 기초연구사업(NRF2022M3A9E4017151, NRF-2022K1A4A7A04095892, RS2023-00247245, NRF-2021R1A4A3025206)의 지원을 받아 수행됐다.
2024.01.25
조회수 4868
-
웨어러블 압전 센서로 정확한 혈압 모니터링 가능
혈압은 전반적 건강과 뇌졸중, 심장마비의 잠재적 위험을 평가하는 주요 지표다. 혈압을 간편하고, 연속적으로 모니터링할 수 있는 웨어러블 의료제품들이 큰 주목을 받고 있으며, 최근 LED을 활용한 웨어러블 혈압 측정 제품들이 출시되고 있지만, 광센서 정확도의 한계로 인해 의료기기 인증 기준을 만족하는 데 어려움이 있다.
우리 대학 신소재공학과 이건재 교수 연구팀과 한국표준과학연구원, 가톨릭의대 협력 연구팀이 혈압 측정을 위한 고민감 웨어러블 유연 압전 센서를 개발했다고 17일 밝혔다.
이 교수팀은 수 마이크로미터 두께(머리카락 굵기의 백 분의 일)의 초고감도 무기물 압전 박막을 딱딱한 기판에서 고온 열처리 후 유연 기판에 전사하여 혈압 센서를 제작했으며, 피부에 밀착해 혈관의 미세한 맥박 파형에서 정확한 혈압을 측정하는 데 성공했다.
이번 연구에서 개발한 혈압 센서는 가톨릭 병원에서 진행한 임상시험에서 수축기 혈압, 이완기 혈압에서 모두 자동전자혈압계 국제 인증 기준인 오차 ±5 mmHg 이하, 표준편차 8mmHg 이하의 높은 기준을 만족했다. 또한, 웨어러블 워치에 혈압 센서를 탑재해 연속적인 혈압 모니터링이 가능하게 됐다.
이건재 교수는 “이번에 개발된 웨어러블 워치 형태의 혈압 센서는 신뢰성과 내구성이 우수할 뿐만 아니라, 정확하고 연속적인 혈압을 측정할 수 있어 고혈압 환자들을 위한 헬스케어 시장에서 핵심적인 역할을 할 것으로 기대된다”며, “현재 패치 형태의 수면용 혈압 센서를 추가 개발한 후 창업을 통한 기술 사업화에 박차를 가하고자 한다”라고 말했다.
이번 연구는 웨어러블플랫폼 소재기술센터, 휴먼플러스 융합연구개발사업 및 바이오/의료 융합 측정 표준기술 개발 재원으로 지원을 받아 수행됐으며, 국제 학술지 `어드밴스드 머터리얼즈(Advanced Materials)' 온라인 호에 3월 24일자 출판됐으며, 표지논문으로도 선정됐다.
2023.04.17
조회수 5414
-
인간 귀 모사한 음성 센서 세계 최초 상용화 길 터
우리 대학 신소재공학과 이건재 교수와 왕희승 박사팀이 *공진형 유연 압전 음성 센서를 개발해 정확도가 높은 초고감도의 인공지능 기반 화자(話者) 식별 및 음성 보안기술을 구현했으며, 이를 스마트폰과 인공지능 스피커에 탑재해 제품화하는 데도 성공했다고 15일 밝혔다.
☞ 공진형 압전 음성 센서: 공진이란 특정 주파수 영역에서 센서가 큰 진폭으로 진동하는 현상을 말하며, 압전이란 압력을 가했을 때, 전기적인 신호가 자발적으로 생성되는 현상을 말한다. 음성에 의해 센서의 막이 진동하게 될 때, 공진 현상이 일어나 민감도 높은 전압 신호를 얻을 수 있다.
인간이 먼 거리의 소리를 인식하는 방법은 달팽이관에 있는 사다리꼴 막이 가청주파수 대역에서 수많은 공진 현상을 발생시키며 소리를 증폭하는 원리에 있다. 연구진은 이러한 원리의 효과를 극대화하기 위해 매우 얇은 유연 압전 막을 사용해 인간의 귀를 모사했고, 여러 공진 채널을 구현해 소리를 초고감도로 식별할 수 있는 공진형 음성 센서를 제작했다.
이건재 교수팀은 2018년도에 세계 최초로 공진형 유연 압전 음성 센서 개념을 제시한 데 이어, 이번 연구에서는 센서 구조에 따른 공진, 주파수, 압전 막의 역할 등을 이론적으로 밝히고 크기를 매우 소형화함과 동시에 성능이 향상된 음성 센서를 개발했다.
유연 압전 음성 센서는 원거리에서 스마트 기기들을 정확하게 제어하는 미래 사물인터넷 기술과 음성을 암호화하는 보안기술을 연결함으로써 소비자 맞춤형 서비스 제공에 크게 이바지할 것으로 전망된다.
생체 모사된 공진형 음성 센서는 신호 대 잡음비(Signal to noise ratio, SNR)가 우수해 음성인식 기능이 뛰어나고 다수 채널을 보유하기 때문에, 인공지능 음성 서비스에 적은 데이터양으로도 화자 식별 정확도를 높이는 강점이 있다.
연구팀의 음성 센서는 같은 조건에서 정전용량형 상용 마이크로폰과 성능 비교를 진행한 결과, 음성 분석 및 화자 식별에 있어 인식률을 크게 높였고 조건에 따라 오류율을 60%에서 95%까지 줄일 수 있었다.
연구팀이 개발한 시제품은 이 교수가 교원 창업한 기업인 ㈜프로닉스 社를 통해 2020년 세계 가전박람회(CES)에서 공개된 바 있으며, 현재 해당 기술은 완성도 높은 인공지능 음성 기술을 시연하며 ㈜프로닉스 미국 지사를 통해 실리콘밸리의 유수 IT 기업들과 협업도 추진하고 있다.
이건재 교수는 "이번에 제품화된 모바일 음성 센서는 높은 민감도를 보유하면서도 크기를 획기적으로 줄였기 때문에 미래 인공지능기술을 구동하는 핵심 센서로 적용할 수 있다ˮ며 "현재 대량생산 상용화 공정도 완성 단계에 있어 실생활에 곧 적용될 수 있을 것이다”라고 말했다.
이번 연구는 한국연구재단의 휴먼플러스 인공지능 센서 센터의 지원을 받아 수행됐으며, 국제 학술지 `사이언스 어드밴시스(Science Advances)'에 2월 12일 字 게재됐다.
2021.02.16
조회수 77207
-
촉각 증강을 위한 고탄성 압전 세라믹 신소재 개발
언택트(비대면) 시대를 맞아 가상현실(VR)과 증강현실(AR) 기술을 통한 소통의 필요성이 증가함에 따라 인간의 오감(五感, five senses)을 전자기기를 통해 구현 및 측정하는 기술의 연구 역시 가속화되고 있다.
우리 대학 신소재공학과 홍승범 교수 연구팀이 촉감이나 촉각 증강기술에 활용이 가능하도록 3D 나노 구조체를 활용해 탄성 변형률이 3배로 향상된 압전 세라믹 소재를 개발했다고 2일 밝혔다.
전자기기와 상호작용하는 기술에 관한 사람들의 관심이 꾸준히 높아지는 추세를 감안한다면 특히 인간의 일반적인 자극인지 방식을 고려할 때, 사용자에게 2개 이상의 복합 감각이 제공되면 전자기기와 더욱 자연스럽게 상호작용을 할 수 있다. 따라서 최근 들어 시각 및 청각보다 상대적으로 발전이 더딘 촉감 구현 및 증강 기술이 주목을 받고 있다.
촉각 증강 기술은 의료용 로봇을 주축으로 한 로봇 기술뿐만 아니라 촉각을 통해 정보를 전달하는 햅틱 디스플레이, 햅틱 장갑 등 정보 전달 기술에 활용할 수 있다. 이러한 촉각 증강 분야에서는 전기적-기계적 결합이 있는 압전 재료의 활용이 필수적이다.
압전 재료는 전기적 에너지를 기계적 에너지로 변환하거나 기계적 에너지를 전기적 에너지로 변환할 수 있는 소재로서 촉각 증강 분야에서 사용자에게 촉각을 전달하거나 사용자의 움직임을 전기적 신호로 변형시키는데 적합한 소재다.
촉각 증강 소재로 활용하기 위한 압전 재료의 중요한 특징은 압전 계수와 탄성 변형률이다. 압전 계수는 기계적 힘과 전기적 전하량 간의 변환 효율을 나타내는 수치로써 촉각 증강 장치의 감도에 영향을 준다. 또 탄성 변형률은 소재가 가질 수 있는 기계적 변형 한계를 나타내는 수치인데 소재 및 장치가 가지는 유연성에 영향을 준다. 따라서 촉각 증강 기술로 활용하기 위해서는 압전 계수와 탄성 변형률 모두가 높은 압전 소재를 개발하는 것이 필수적이다.
하지만 압전 세라믹 소재의 경우 압전 계수는 높으나 탄성 변형률이 낮고, 고분자 소재는 탄성 변형률은 높으나 압전 계수가 낮아 하나의 소재에서 높은 압전 계수와 탄성 변형률을 모두 얻기는 힘들다. 특히 세라믹 소재는 상대적으로 높은 압전 계수에도 불구하고 소재 내부의 결함으로 인해 탄성 변형률을 높이기가 어려워 아직 실용화 단계까지는 이르지 못하고 있다.
홍 교수 연구팀은 문제해결을 위해 근접장 나노 패터닝(Proximity field nanopatterning, PnP) 기술 및 원자층 증착(Atomic layer deposition, ALD) 기술을 이용해 3차원 나노 트러스(truss) 구조를 갖는 산화물 아연 (ZnO) 세라믹을 제작했다. 또 나노 인덴테이션 (Nano-indentation) 기술과 압전 감응 힘 현미경(Piezoelectric force microscopy, PFM) 기술을 이용, 제작된 구조체의 높은 기계적 특성과 압전 특성을 입증하는데 성공했다.
홍 교수팀이 개발한 압전 아연 산화물 구조체는 100 나노미터(nm) 이하의 두께를 가지면서 내부가 비어있는 트러스 구조체다. 기존 세라믹이 보유하고 있는 내부 결함의 크기를 나노미터 단위로 제한해 재료의 기계적 강도를 증가시켰다. 이 아연 산화물 트러스 구조체의 탄성 변형률은 10% 수준으로 기존 아연 산화물 대비 3배나 더 큰 것으로 나타났으며 압전 계수 역시 9.2 pm/V로 박막 형태의 아연 산화물보다 2배 이상 더 큰 값을 나타냈다.
특히 홍 교수팀이 개발한 이 구조체의 탄성 변형률 증가는 아연 산화물 외에도 다양한 압전 세라믹 소재에 적용할 수 있기에 향후 촉각 증강 기술에서 매우 중요한 유연한 센서와 액추에이터에 압전 세라믹을 활용할 수 있는 새로운 방법으로 사용할 수 있을 것으로 기대된다.
홍승범 교수는 "언택트 시대의 도래로 감성 소통의 중요성이 증가하고 있는데 시각, 청각에 이어 촉각 구현 기술의 발전을 통해 인류는 장소와 관계없이 누구와도 소통할 수 있는 새로운 세상을 맞이할 것ˮ이라고 전망했다. 홍 교수는 이어 "이번 연구 결과를 촉각 증강 소자에 바로 적용하기에는 공정적인 측면에서 다소 보강작업이 필요하지만, 소재 활용에 큰 문제가 됐던 기계적 한계를 극복해 압전 세라믹 소자로의 응용 가능성을 연 것ˮ이라고 이번 연구에 대한 의미를 부여했다.
우리 대학 신소재공학과 김훈 박사과정, 윤석중 박사과정, 김기선 박사가 공동 제1 저자로 참여한 이번 연구는 신소재공학과 전석우 교수와 한승민 교수 연구팀과 함께 진행됐으며 연구 결과는 국제 학술지 `나노 에너지(Nano Energy)'에 게재됐다. (논문명: Breaking the Elastic Limit of Piezoelectric Ceramics using Nanostructures: A Case Study using ZnO)
한편 이번 연구는 과학기술정보통신부·한국연구재단 지원 웨어러블 플랫폼 소재 기술센터 지원과 미래소재 디스커버리 지원, 그리고 기초연구 지원 및 KAIST 글로벌특이점 연구 지원으로 수행됐다.
2020.12.02
조회수 39460
-
고접착 패브릭 기반 웨어러블 에너지 하베스팅 기술 개발
우리 대학 신소재공학과 홍승범 교수 연구팀이 *핫프레싱 기술을 이용해 가격 경쟁력과 내구성이 높은 패브릭(천) 기반 웨어러블 압전 *에너지 하베스터 제조 방법을 개발하는 데 성공했다고 9일 밝혔다.
☞ 핫프레싱(hot pressing): 온도와 압력을 가해 두 물체를 단단히 점착시키는 공법
☞ 에너지 하베스팅(energy harvesting): 버려지는 에너지를 수집(수확)해 전기로 바꿔 쓰는 기술. 압전 에너지 하베스팅이란 압전체라는 물질을 이용, 생활 주변에서 버려지는 압력과 진동 같은 에너지를 사용 가능한 전기에너지로 변환해주는 것을 말한다.
홍 교수 연구팀 소속 김재규 박사과정 학생이 제1저자로 참여한 이번 연구는 지난 2019년 12월 23일 국내 특허 등록이 됐고, 국제 학술지 '나노 에너지(Nano Energy)' 이번 9월호에 게재됐다(5월 22일 온라인판에 게재). 이번 연구는 DGIST 에너지공학전공 이용민 교수팀과 우리 대학 신소재공학과 노광수·기계공학과 유승화 교수팀과의 협업을 통해 수행됐다. (논문명: Cost-effective and strongly integrated fabric-based wearable piezoelectric energy harvester)
오늘날 웨어러블 소자는 센서, 원동기, 디스플레이에서 에너지 하베스팅에 이르기까지 다양한 응용 분야에서 사용되고 있으며, 4차 산업혁명 도래 이후 소형에서 내장형으로 더욱 급속히 발전하고 있다. 이러한 흐름과 맞물려 기존 옷에 내장형으로 사용될 수 있고, 편안하고 내구성 좋은 패브릭(천)에 기반한 웨어러블 소자가 주목받고 있다.
이러한 장점에도 불구하고, 기존 패브릭 기반 웨어러블 소자는 복잡한 제조 방법과 설비 시설에 따른 공정 및 가격 측면에서 한계를 가져 아직 실용화 단계에 이르지 못하고 있다. 또한, 소자 내의 패브릭과 실제 구동 파트 사이의 결합력 및 효율 테스트의 부재는 소자의 내구성에도 의문을 갖게 한다. 이러한 문제를 보완하기 위해 간단하고 값싼 공정과 재료, 새로운 기계적 특성 분석 기술 등에 관한 연구가 활발히 진행되고 있다.
이번 연구에서는 복잡한 공정 및 설비 시설 대신 비교적 간단한 방법인 핫프레싱을 이용해 전도성 폴리에스터 패브릭과 압전 고분자 필름(Poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE))이 결합된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 방법을 개발했다. 또한, 기존의 내구성 테스트 방법인 굽힘(bending) 테스트와 더불어 새롭게 도입한 `표면 및 계면 절단 분석시스템(SAICAS, Surface and Interfacial Cutting Analysis System)'을 이용해 패브릭과 고분자 필름 사이 계면 결착력을 측정함으로써 웨어러블 소자의 높은 기계적 내구성을 증명했다.
연구진이 개발한 제조 방법에서 제시하는 핫프레싱은 배터리나 연료전지 셀 제작에 주로 쓰이는 방법으로 2~3분 안에 완료될 정도로 빠르고 간단하며 동시에 높은 접착력을 얻을 수 있는 공정이다. 결정화 온도 근처 이하에서 고분자 필름을 패브릭에 접착시키면, 고분자 필름 표면이 *비정질화되면서 접촉면이 넓은 울퉁불퉁한 패브릭 표면에 빽빽이 접착되고, 날실과 씨실 사이로 새어 나와 못과 같은 형태로 되어 높은 계면 결합력을 가질 수 있게 된다. 이러한 핫프레싱을 이용해 개발된 웨어러블 소자는 기존 의류에 접착할 수 있는 응용 가능성을 가지고 있어 공정 단가를 낮출 수 있을 것으로 기대된다.
☞ 비정질(amorphous): 고체 물질로, 균일한 조성은 가지고 있으나, 원자 배열이 액체와 같이 흐트러져 있는 물질. 유리, 고무, 수지 따위가 있으며 반도체, 자성체, 고강도 재료 따위로 쓴다.
한편, SAICAS를 이용한 계면 결착력 분석은 마이크로 스케일에서 칼날을 이용해 정량적 및 정성적으로 힘을 측정하는 방법으로, 기존 계면 결착력 측정 방법(박리 테스트, 테이프 테스트, 마이크로신축성 테스트)보다 훨씬 정확한 분석 기법으로, 본 연구에서 처음으로 웨어러블 소자에 도입됐다. SAICAS를 이용한 계면 결착력 분석은 향후 고분자를 이용한 웨어러블 소자 내구성 테스트의 새로운 방법으로 쓰일 수 있을 것으로 기대된다.
홍승범 교수는 "본 연구에서 개발된 패브릭 기반 웨어러블 압전 에너지 하베스터 제조 기술은 패브릭 기반 소자의 실용화 가능성을 한 단계 높였고, 계면 결착력 분석을 통해 고내구성 웨어러블 소자의 디자인 방향을 제시했다ˮ며 "이 기술은 패브릭과 고분자를 이용한 다른 소자의 제조 공정 및 분석에도 새로운 기틀을 마련할 수 있을 것으로 전망한다ˮ라고 말했다.
이번 연구는 KAIST HRHRP 사업, 과학기술정보통신부 재원 한국연구재단 지원 기초연구사업과 중견연구사업, 웨어러블 플랫폼소재 기술센터 지원 및 KAIST 글로벌 특이점 연구사업 지원으로 수행됐다.
2020.09.09
조회수 27398
-
100배 이상 해상도 높인 차세대 퀀텀닷 프린팅 기술 개발
우리 대학 신소재공학과 정연식 교수 · 전덕영 명예교수 공동 연구팀이 차세대 퀀텀닷 LED(QLED) 기반 디스플레이 실현에 핵심적인 기술인 풀 컬러(적·녹·청) 퀀텀닷 패터닝 프린팅 기술 개발에 성공했다고 6일 밝혔다.
퀀텀닷이란 별도의 장치가 없어도 크기와 전압에 따라 스스로 다양한 빛을 내는 수 나노미터(1 나노미터는 100만분의 1 밀리미터) 크기의 반도체 입자다.
연구팀은 풀 컬러 퀀텀닷 배열의 해상도를 최대 14,000ppi(인치당 픽셀 수) 까지 구현하는데 성공했다. 이 해상도는 현재 8K 디스플레이의 해상도인 117ppi 보다 약 100배 이상에 달한다. 연구팀은 또 기존 퀀텀닷 나노 패턴 구현 방법과는 원리가 다른 초 저압 전사 프린팅 방법을 세계 최초로 개발해, 패턴의 해상도와 프린팅 수율 및 퀀텀닷 발광소자 성능을 극대화하는 데도 성공했다.
우리 대학 신소재공학과 남태원 박사과정이 제1 저자로, 김무현 박사과정이 제2 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스 (Nature Communications)' 6월 16일 字 온라인판에 게재됐다. (논문명: Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution)
작년 10월 삼성디스플레이가 퀀텀닷 중심의 차세대 디스플레이 양산라인 구축 및 기술개발에 2025년까지 약 13조 원 규모의 투자계획을 발표하는 등 이제 퀀텀닷 소재는 디스플레이용 핵심 소재로 부상하고 있다. 하지만 퀀텀닷 소재는 OLED 발광 소재와는 달리 용매에 녹아 분산돼 있는 형태로 존재하기 때문에 기존 디스플레이 패터닝 기술을 적용하기 어려웠다. 이를 해결하기 위해 잉크젯 프린팅이나 리소그래피와 같은 공정을 적용하고 있지만, 양산성 및 해상도 측면에서 제한적이거나 공정 과정 중에 퀀텀닷의 효율이 크게 떨어지는 문제가 발생한다.
연구팀은 이런 문제해결을 위해 퀀텀닷의 용매 성분을 미세하게 조절해 수 나노미터에서 수천 나노미터급 주형에 선택적으로 스스로 조립하는 원리에 착안해 적용했다. 또한 조립된 퀀텀닷 미세 패턴을 분리한 후, 초 저압 방식으로 프린팅하는 기술을 개발해 풀 컬러 나노미터급 패턴을 100%에 달하는 수율로 구현했다. 특히 QLED용 퀀텀닷 패턴은 극도로 얇아서 외부 압력에 매우 민감하기 때문에 초 저압 전사 프린팅 기술을 활용해 패턴의 손상을 방지했는데 그 결과 QLED 소자의 성능이 기존 전사 프린팅 방식 대비 약 7배나 증가하는 결과를 확인했다.
연구팀 관계자는 "이번 연구 결과를 활용할 경우 적·녹·청 퀀텀닷 픽셀이 개별적으로 발광할 수 있는 초고해상도를 지닌 차세대 능동형 퀀텀닷 LED (Active Matrix QLED) 디스플레이 구현도 가능할 것ˮ이라고 내다봤다. 정연식 교수는 특히 "단일 퀀텀닷 크기를 갖는 극한 해상도 수준의 패턴도 구현이 가능해서 차세대 디스플레이 분야만 아니라 높은 민감도를 갖는 센서나 광학 소자로의 응용까지 기대된다ˮ라고 말했다.
한편, 이번 연구는 과학기술정보통신부 한국연구재단이 추진하는 미래 소재 디스커버리 사업(단장 최성율)의 지원을 받아 수행됐다.
2020.07.06
조회수 19936
-
홍승범, 스티브박 교수, 에너지 수확과 인정 변형률 감지 가능한 섬유 개발
〈 스티브박 교수, 류정재 박사과정, 홍승범 교수 〉
우리 대학 신소재공학과 홍승범 교수, 스티브 박 교수 연구팀이 공동으로 에너지 수확은 물론 인장 변형률도 감지할 수 있는 섬유를 개발했다.
류정재 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘나노 에너지(Nano Energy)에 게재됐다.
웨어러블 기기에 대한 관심이 커짐에 따라 인간의 움직임과 신체 신호를 포착할 수 있는 센서 및 인간의 기계적 움직임으로부터 에너지를 수확할 수 있는 기기에 대한 수요가 많아지고 있다.
웨어러블 기기는 기계적 피로에 대한 우수성, 높은 유연성 그리고 피부 호흡을 방해하지 않아야 하며 섬유는 이러한 특성을 구현하기에 유리한 구조를 지니고 있다.
이번에 개발된 섬유는 탄소나노튜브와 전도성 고분자층의 크랙 형성을 통해 기존의 섬유 형태의 인장 센서보다 높은 민감도를 구현함은 물론 뛰어난 안정성으로 반복된 인장에도 강한 특성을 나타냈다.
유기압전소재 입자를 폴리디메틸실록산에 분산시킨 방법을 활용해 개발된 이 섬유는 인간 신체에서 발생하는 다양한 기계적 에너지도 압전효과를 이용해 수확할 수 있으며, 섬유 내부에서의 압력 변화에 대해서도 에너지를 수확할 수 있다.
홍승범 교수는 “개발된 신축성이 있는 섬유는 다양한 기능을 갖춰 기기의 집적화 측면에서 유리하다”며 “인간의 신체 신호나 움직임을 감지하면서도 에너지를 수확할 수 있는 웨어러블 기기의 초석을 다진 원천기술이다”라고 말했다.
이번 연구는 과학기술정보통신부 한국연구재단 기초연구사업의 지원을 통해 수행됐다.
□ 그림 설명
그림1. 신축성 있는 섬유의 모식도 및 에너지 하베스터와 스트레인 센서로서의 성능
그림2. 다양한 기계적 변형에 대한 섬유의 모습
2019.01.24
조회수 10213
-
이건재 교수, 유창동 교수, 유연 압전 화자인식 음성센서 개발
〈 이 건 재 교수 〉
우리 대학 신소재공학과 이건재 교수와 전기및전자공학부 유창동 교수 공동 연구팀이 인공지능 기반의 화자(話者) 인식용 유연 압전 음성센서를 개발했다.
이번 연구를 통해 개인별 음성 서비스를 스마트 홈 가전이나 인공지능 비서, 생체 인증 분야 등 차세대 기술에 활용 가능할 것으로 기대된다.
이번 연구 결과는 국제 학술지 ‘나노 에너지(Nano Energy)’ 9월호에 ‘민감도’와 ‘화자인식’ 논문 두 편으로 동시 게재됐고 현재 관련 기술은 실용화 단계에 있다. (민감도 논문 : Basilar Membrane-Inspired Self-Powered Acoustic Sensor Enabled by Highly Sensitive Multi Tunable Frequency Band, 화자인식 논문 : Machine Learning-based Self-powered Acoustic Sensor for Speaker Recognition)
음성 센서는 인간과 기계 사이의 자유로운 소통을 가능하게 만드는 가장 직관적인 수단으로 4차 산업혁명의 핵심 기술로 주목받고 있다. 음성센서 시장은 2021년 대략 160억 달러 규모로 커질 것으로 예상된다.
그러나 현재 산업계에서는 음성 신호 수신 시 정전용량을 측정하는 콘덴서 형식을 사용하기 때문에 민감도가 낮고 인식 거리가 짧아 화자 인식률에 한계가 있다.
이번 연구에서 이 교수 연구팀은 인간의 달팽이관을 모사해 주파수에 따라 다른 영역이 진동하는 사다리꼴의 얇은 막을 제작했다. 음성신호에 따른 공진형 진동을 유연 압전 물질을 통해 감지하는 자가발전 고민감 음성 센서를 개발했다.
연구팀의 음성 센서는 기존 기술 대비 2배 이상 높은 민감도를 가져 미세한 음성 신호를 원거리에서도 감지할 수 있다. 또한 다채널로 신호를 받아들여 하나의 언어에 대해 복수 개의 데이터를 얻을 수 있다.
이 기술을 기반으로 누가 이야기하는지 찾아내는 화자인식 시스템에 적용해 97.5%의 화자인식 성공률을 무향실에서 달성했고 기존 기술 대비 오류를 75% 이상 줄였다.
화자인식 서비스는 음성 분야에 세상을 바꿀 next big thing으로 기대를 받고 있다. 기존 기술은 소프트웨어 업그레이드를 통한 접근으로 인식률에 한계가 있었지만 연구팀의 기술은 하드웨어 센서를 개발함으로써 능력을 크게 향상시켰다. 추후 첨단 소프트웨어를 접목한다면 다양한 환경에서도 화자 및 음성 인식률을 높일 수 있을 것으로 예상된다.
이건재 교수는 “이번에 개발한 머신 러닝 기반 고민감 유연 압전 음성센서는 화자를 정확하게 구별할 수 있기 때문에 개인별 음성 서비스를 스마트 가전이나 인공지능 비서에 접목할 수 있을 것이며 생체 인증 및 핀테크와 같은 보안 분야에서도 큰 역할을 할 수 있을 것이다”고 말했다.
이번 연구는 스마트 IT 융합시스템 연구단의 지원을 받아 수행됐다.
<관련 영상>
https://www.youtube.com/watch?v=QGEVJxCFVpc&feature=youtu.be
□ 그림 설명
그림1. 인간의 달팽이관을 모사한 유연 압전 음성 센서 구조
그림2. 인공지능을 통한 화자 인식 개략도
2018.10.04
조회수 11862
-
고효율 나노발전기 상용화길 열어
아주 작은 움직임으로도 전기를 생산하는 나노발전기가 개발됐다. 몸에 붙이고 다니면 충전되는 웨어러블 전자기기 전력원 등 다양한 활용이 기대된다.
우리 학교 신소재공학과 이건재 교수팀은 레이저 박리 전사기술과 유연한 압전박막 소재를 활용해 기존보다 약 40배 높은 효율을 갖는 나노발전기 개발에 성공했다.
연구결과는 세계적 학술지 ‘어드밴스드 머티리얼스(Advanced Materials)’ 4월 23일자 표지논문으로 게재됐다.
나노발전기는 유연한 나노소재에 미세한 압력이나 구부러짐이 가해질 때 전기 에너지가 생성되는 기술이다. 전선과 배터리 없이도 에너지공급이 가능하기 때문에 휘어지는 전자제품은 물론 심장 박동기와 같이 몸속에 집어넣는 기기나 로봇의 에너지원으로도 활용 가능하다. 그러나 지금까지는 에너지 효율이 낮고 제작공정이 복잡해 상용화가 어려웠다.
이 교수 연구팀은 고온에서 결정화된 고효율 압전박막물질을 현재 상용화된 레이저 박리기술을 이용해 딱딱한 기판에서 플라스틱 기판으로 전사, 효율을 크게 향상시키면서도 대면적으로 양산 가능성을 높였다.
이번에 개발된 유연한 기판(2cm × 2cm)에 만들어진 나노발전기는 미세한 구부림에 의해 생성된 에너지(250V, 8㎂)로 105개의 LED를 작동시키는데 성공했다.
이 교수는 “이번에 개발된 고효율의 나노발전기술은 자연에서 발생하는 바람, 진동, 소리와 같은 미세한 에너지는 물론 심장박동, 혈액흐름, 근육수축·이완 등 사람 몸에서 발생되는 생체역학적 힘을 이용해 전기를 생산할 수 있는 무한 에너지원으로 사용될 수 있다”고 응용가능성에 대해 설명했다.
이와 함께 “발전효율이 세계최고기록보다 40여배 높고 대량 양산이 가능한 레이저 박리기술을 활용해 그동안 상용화를 가로막았던 저효율과 복잡한 제조공정의 문제점을 해결했다는데 큰 의의가 있다”고 말했다.
이 교수팀은 향후 압전박막물질을 삼차원으로 적층해 생성전력을 더욱 높이고 이를 동물에 이식하는 생체실험을 수행할 계획이다.
이번 연구결과는 미래창조과학부 도약연구사업과 ‘코오롱-카이스트 라이프스타일 이노베이션센터(KOLON-KAIST LifeStyle Innovation Center)’의 지원으로 수행됐다.
그림1. 레이저 박리 기술로 제작된 대면적 형태의 나노발전기 이미지(논문표지)
그림2. 플라스틱에 제작된 나노발전기에서 생성된 전력을 이용해 105개의 LED를 작동하는 모습
2014.05.15
조회수 17625
-
바이러스를 이용한 친환경 나노발전기 개발
- 자연계의 생체 합성 능력을 모방해 만든 신물질로 나노발전기 개발 -
우리 학교 신소재공학과 이건재(38)·남윤성(40) 교수 공동연구팀은 유전자 조작 바이러스를 이용해 유연한 압전 나노발전기를 만드는데 성공했다.
연구결과는 나노 및 에너지 분야의 세계적 학술지 ‘ACS Nano’ 온라인판(11월 14일자)에 게재됐으며, 대면적 저비용 제작에도 성공해 ‘어드밴스드 에너지 머티리얼스(Advanced Energy Materials)’ 12월호 표지논문으로 선정되기도 했다.
조개껍질, 해면, 뼈 등에서 볼 수 있듯이 자연계는 인간이 만들기 어려운 여러 가지 물질이나 구조를 스스로 합성하고 조립하는 능력을 가지고 있다. 예를 들어, 자연계의 조개껍질은 매우 단단한 반면 같은 물질이지만 인공 합성물인 분필은 쉽게 부서진다.
게다가 기존의 여러 인공 합성법들은 독성이 많고 극한적인 환경에서 이뤄진다는 것에 비해 이러한 자연적인 합성은 매우 신비하고 주목할 만한 현상이다. 이처럼 생물들이 가지고 있는 자연적 물질 합성을 모방하면 과학기술 분야에서 효율적으로 환경문제를 해결하거나 신물질을 개발할 수 있다.
연구팀은 자연계에 대량으로 존재하면서 인체에는 무해한 M13이라는 바이러스 유전자를 조작하고, 이 바이러스의 특징을 이용해 압전 효과가 우수한 티탄산바륨(BaTiO3)을 합성함으로써 유연한 압전 나노발전기를 만드는데 성공했다.
나노발전기란 기계적인 힘을 가하면 전기가 생성되는 압전(piezoelectricity) 현상을 응용해 만든 에너지를 얻는 소자다. 연구팀은 이번에 손가락의 움직임으로도 전기에너지를 생산해 LED를 구동하는데 성공했다.
남윤성 교수는 “이번에 개발된 나노발전기는 DNA 조작이 생명체의 변형을 뛰어넘어 전자소자까지 제어할 수 있다는 새로운 발상의 전환을 보여주는 것”이라며 “뛰어난 압전특성과 친환경적인 제조공정은 이러한 접근법이 얼마나 매력적인지를 잘 보여준다”고 연구의 의의를 설명했다.
ㅁ 그림설명
바이러스 구조를 이용한 티탄산바륨 합성 및 나노발전기 모식도(첫째 줄), 바이러스와 이를 이용한 티탄산바륨 나노물질의 전자현미경 사진 및 구현된 유연한 나노발전기와 소자 (LED) 구동 모습(둘째 줄)
2013.12.10
조회수 20385
-
신개념 나노발전기 원천기술 개발
- 나노복합체 이용해 복잡한 공정과 고비용 문제 해결 -- 어드밴스드 머터리얼스 6월호 표지논문 게재 -
우리 학교 연구진이 나노복합체를 이용해 나노발전기를 적은 비용으로도 대면적으로 만들 수 있는 원천기술 개발에 성공했다.
우리 대학 신소재공학과 이건재 교수 연구팀이 나노복합체를 이용한 신개념 나노발전기 원천기술을 개발해 재료분야 세계적 학술지인 ‘어드밴스드 머터리얼스(Advanced Materials)’ 6월호 표지논문에 게재됐다.
이번에 개발된 기술은 간단한 코팅 공정을 통해 만들어 비용을 획기적으로 줄일 수 있을 뿐만 아니라, 넓은 면적도 쉽게 제작 가능해 공정이 복잡했던 기존의 한계를 극복해냈다는 평가를 받고 있다.
나노발전기는 나노 크기(10억분의 1m)의 물질을 사용해 전기를 생산하는 발전기로, 압전 물질에 압력이나 구부러짐 등과 같은 물리적 힘이 가해질 때 전기가 발생하는 특성인 ‘압전 효과’를 이용한다.
압전 효과를 이용하는 발전기술은 2009년 MIT가 선정한 10대 유망기술에 선정됐으며, 2010년 미국의 유명한 과학월간지 파퓰러사이언스(Popular Science)가 선정한 세계를 뒤흔들 45가지 혁신기술에 포함되기도 했다.
나노발전기 개발을 위한 압전 물질은 2005년 미국 조지아공대 왕중린 교수팀이 세계 처음으로 나노발전기 개념을 제시하면서 적용한 ‘산화아연(ZnO)’이 유일했다.
2010년 KAIST 신소재공학과 이건재 교수 연구팀은 산화아연보다 15~20배 높은 압전 특성을 갖고 있는 세라믹 박막물질인 ‘티탄산화바륨(BaTiO3)’을 이용해 나노발전기 효율을 한층 업그레이드 시킨데 이어, 이번에는 나노복합체를 이용해 간단한 공정으로 제작하는 데 성공해 적은 비용으로도 넓은 면적의 나노발전기를 구현해낼 수 있게 됐다.
연구팀은 수백 나노 크기의 고효율 압전 나노입자인 ‘티탄산화바륨’과 비표면적이 크고 전기 전도성이 높은 ‘탄소나노튜브’ 또는 ‘산화 그래핀(RGO)’을 폴리머(polydimethylsiloxane, PDMS)와 섞은 후 간단한 코팅공정을 통해 넓은 면적의 나노발전기 제작에 성공했다.
이건재 교수는 “압전효과를 바탕으로 한 ‘나노자가발전 기술’은 적은 기계적 힘만으로도 전기를 생산할 수 있어 차세대 에너지 기술로 각광을 받고 있지만, 기존 기술은 제작공정이 복잡하고 고가의 비용문제 및 소자크기의 한계성을 극복하지 못했다”고 말했다.
아울러 “이번에 개발된 기술에 패키징 및 충·방전 기술을 융합하면, 반영구적으로 자가발전 및 저장이 가능한 새로운 형태의 에너지 시스템 개발에 응용될 수 있다“고 덧붙였다.
한편, 이번 기술은 해외 1건, 국내 2건의 특허가 출원 및 등록됐다.
<동영상>http://www.youtube.com/watch?v=90rk7G3t30k&feature=player_embedded
압전 나노복합체 제작공정과 소자를 다양한 방법으로 구부릴 때마다 전기가 발생하는 것을 보여주는 동영상
※응용사례
- 에너지블럭(부산 서면역 적용)
지하철 선로에 압전소자를 적용해 전동차 운행으로 얻어지는 진동을 통해 발전하는 장치로 국내 최초의 압전에너지 상용화 제품http://blog.naver.com/ioyou64?Redirect=Log&logNo=130093513496
- 이스라엘은 고속도로에 압전발전기를 적용해 발생되는 전기로 가로등을 밝히고 있음
- 필립스는 사람이 리모컨 버튼을 누르는 힘만으로 전기를 생산해 배터리가 없어도 작동되는 리모컨 개발
- 수 많은 나노 발전기를 겹쳐 옷감 형태로 만든 재킷을 입으면 단순히 걷는 것과 같은 일상생활만으로도 휴대전화나 MP3 등을 충전할 수 있을 것으로 예상됨
- 아주 작은 전원만으로도 몸속에서 독자적인 임무를 수행하는 나노센서 개발가능
※그림설명
그림1. 압전 나노입자를 포함하는 복합물질에서 구부림에 의해 전기가 생성되는 것을 보여주는 그림.
그림2. 구부러질 때마다 전기를 만드는 나노복합체 기반의 자가발전기(논문표지)
2012.06.12
조회수 18220
-
유연한 나노신소재 발전기술 개발
휴대폰이나 심장에 이식한 미세 로봇이 배터리 충전 없이 영구적으로 작동할 수는 없을까?
공상과학 영화에서나 나올 법한 이런 일들이 머지않아 가능할 것으로 보인다.
우리학교 신소재공학과 이건재 교수팀은 압전특성이 우수한 세라믹 박막물질을 이용하여 심장 박동, 혈액 흐름과 같은 미세한 움직임으로도 전기를 만들 수 있는 새로운 형태의 유연한 나노발전기술을 개발했다.
압전특성이란, 가스레인지의 점화스위치 작동원리와 같이, 압력이나 구부러짐의 힘이 가해질 때 전기가 발생되는 특성을 말하는 데, ‘페로브스카이트(perovskite)’ 구조를 가지는 세라믹 물질들이 높은 효율을 나타내지만 깨지기 쉬운 성질을 가지고 있어 유연한 전자 장치로의 활용이 불가능했다.
이 교수팀은 높은 압전특성을 가지면서 깨지지 않고 자유롭게 구부릴 수 있는 세라믹 나노박막물질을 만들어 바이오-환경 친화적인 고효율 나노발전기술 개발에 세계 최초로 성공한 것이다.
나노기술과 압전체가 만나 만들어지는 나노발전기술은 전선과 배터리 없이도 발전이 가능해, 휴대용 전자제품 뿐만 아니라 몸속에 집어넣는 센서나 로봇의 에너지원으로도 사용이 가능하기 때문에, 그 활용영역은 응용기술 여하에 따라 얼마든지 넓어질 수 있을 것으로 보고 있다.
미세한 바람, 진동, 소리와 같이 자연에서 발생되는 에너지원과 심장 박동, 혈액 흐름, 근육 수축·이완과 같이 사람 몸에서 발생되는 생체역학적인 힘을 통해 전기를 생산할 수 있게 됨으로써 꿈의 무공해·무한 에너지원이 될 수 있는 것이다.
이번에 개발한 나노발전기술은 이 교수가 2004년 세계 최초로 공동발명한 ‘고성능 단결정 휘어지는 전자소자’를 토대로, 세라믹 나노박막물질을 유연한 플라스틱 기판 위에 옮겨, 외적인 힘이 주어질 때마다 신소재 압전물질로부터 전기를 얻는 데 성공한 것이 핵심이다. 또한 이 나노발전기술의 회로구조를 변형하면 LED발광도 이루어 질 수 있다고 이 교수는 말했다.
이 연구 결과는 나노과학기술(NT) 분야의 세계적 권위지인 "나노 레터스(Nano Letters)" 11월호 온라인 판에 게재됐고, 국내·외에 특허 출원되었으며, 논문의 공동저자로 참여한 미국 조지아 공대 왕종린(Wang, Zhong Lin) 교수팀과 동물 이식형 나노발전기 생체실험을 후속 연구로 진행하고 있다.
<관련동영상>
외부적인 힘에 의해 나노발전기에서 전기가 발생되는 동영상
http://www.youtube.com/watch?v=sWdopmi0B7U
<그림설명>
구부러지는 유연한 나노박막물질에서 전기가 발생되고 있다.
2010.11.08
조회수 18575