본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%96%91%EC%9E%90%EC%BB%B4%ED%93%A8%ED%84%B0
최신순
조회순
양자 컴퓨터로 새로운 물성 연구 성공
양자 물질을 연구하거나 설계할 때 기존의 폰노이만식 전자컴퓨터를 이용한 계산은 근본적인 한계를 가진다. 양자계의 경우 양자 얽힘 등의 효과로 인해 계산량이 기하급수적으로 증가하기 때문이다. 따라서 양자물질 설계를 위해 물질의 특성을 알아내고자 할 때, 양자컴퓨터를 이용하는 양자 시뮬레이션이 필요하다. 우리 대학 물리학과 안재욱 교수 연구팀이 코펜하겐 대학 클라우스 뭴머(Klaus MØlmer) 교수 연구팀과 함께 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 리드버그 원자 양자 컴퓨터를 이용해 양자 자성체의 극단적 특성을 구현하는데 성공했다고 11일 밝혔다. 자성체 물질은 하드 디스크와 같은 전자제품을 비롯해 전력 발전 등에도 사용되는 등 현대 기술의 핵심 요소다. 최근에는 상온 자성체를 넘어서 양자적 특성이 두드러지는 초저온에서 양자 자성체 특성에 관한 연구가 활발히 이뤄지고 있다. 초저온에서 수행되는 물성 분석 및 계측 연구는 MRI 등의 의학 기기 등에 응용될 뿐만 아니라, 차세대 초정밀 제어계측공학을 촉발할 것으로 기대된다. 유명 물리학자 리처드 파인만은 1983년 양자계의 특성을 인공적인 양자계로 모방해 연구하는 양자 시뮬레이션을 제안하였다. 인공적으로 모방한 양자계의 특성을 연구하면 기존 양자계의 특성을 알아낼 수 있다. 양자 시뮬레이션을 이용한 양자 자성체의 연구는 지난 10년간 세계 유수의 대학과 연구소에서 이뤄지고 있으며 이전까지 알려지지 않은 양자 물질의 특성들을 실험적으로 확인하는 성과를 보였다. 현재 양자 물질을 시뮬레이션하는 데 있어 중요한 이슈 중 하나는 극단적인 상황 속 양자 물질의 현상을 관찰하는 것이다. 한편 이와 같은 양자 시뮬레이션을 수행하는 양자 컴퓨터 플랫폼으로 최근 가장 주목을 받는 것은 리드버그 원자다. 리드버그 원자는 최외각 전자가 이온화되어 떨어지기 직전의 매우 높은 에너지를 머금고 있는 원자로, 일반 원자의 만 배 정도의 지름을 가지며 (10의 24제곱)배 정도 더 큰 상호작용을 한다. 우리 대학 물리학과 안재욱 교수 연구팀은 최근 리드버그 원자를 이용해 최대 156큐비트급의 양자 컴퓨터 계산을 선보인 바 있다. 이번 연구에서 글로벌 공동연구팀은 리드버그 원자를 이용한 양자 컴퓨터를 이용해 양자 자성체를 설명하는 모형 중 하나인 하이젠베르크 모형*을 양자 컴퓨터로 모방해 구현했다. 특히 이전의 하이젠베르크 모형의 구현과 다르게, 이번 연구에서는 리드버그 원자의 강한 상호작용을 이용한 극단적 이방성 (3차원 중 특정 방향이 다른 방향 대비 1000배 이상 강하게 상호작용하는 특성으로 새로운 연구영역이 확보됨)을 구현하는 데 성공했다. *하이젠베르크 모형: 하이젠베르크 자성체 모형은 자성체 스핀 간의 모든 방향 (x, y, z 방향) 상호작용을 가정한 모형으로 양자 자성체의 대표적 모델 중 하나임. 연구를 주도한 안 교수는 “이번 연구는 리드버그 양자컴퓨터를 이용해 새로운 양자 물성을 연구할 수 있음을 보였다”라고 밝히고 “양자컴퓨터를 이용하는 물성 연구가 활발해질 것”이라고 기대했다. 우리 대학 물리학과 김강흔 대학원생 연구원과 덴마크 오르후스 대학의 팬 양(Fan Yang) 박사후 연구원이 참여한 이번 연구는 국제 학술지 `피지컬 리뷰 X (Physical Review X)' 2월 14권에 출판됐다. (논문명 : Realization of an Extremely Anisotropic Heisenberg Magnet in Rydberg Atom Arrays). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.03.11
조회수 3789
100큐비트급 양자컴퓨터 계산데이터 전격 공개
양자컴퓨터는 양자역학의 원리를 활용해 기존의 컴퓨터로는 풀기 어려운 계산을 할 수 있는 컴퓨터다. 양자컴퓨터는 암호 해독, 배터리 소재 개발, 신약 개발 등 다양한 분야에서 그동안 풀지 못한 난제들을 해결할 미래 기술로 주목받고 있다. 우리 대학 물리학과 안재욱 교수 연구팀이 100큐비트급 양자컴퓨터로 조합 최적화 문제를 계산해 계산 결과 데이터베이스와 계산 프로그램을 공개했다고 13일 밝혔다. 조합 최적화 문제 중 하나인 최대 독립집합 문제(Maximum independent set problem)는 SNS상에서 가장 영향력 있는 인물을 찾는 문제, 전력망을 가장 효율적으로 분배하는 법을 찾는 문제 등 다양한 응용이 가능한 문제다. 지난 2023년 KAIST 연구진은 20큐비트급 리드버그 양자컴퓨터를 이용해 최대 독립집합 문제의 풀이를 시연한 바 있다. 일반적으로 100큐비트급 양자컴퓨터의 데이터를 얻기 위해서는 직접 양자컴퓨터를 제작하거나 클라우드 서비스 업체를 이용할 수밖에 없다. 이번에 KAIST 연구진이 공개한 데이터는 관련 분야 연구자뿐 아니라 양자 컴퓨터에 관심 있는 모든 사람이 무료로 데이터에 접근할 수 있게 되었다는 점에서 중요하다고 할 수 있다. 최대 141큐비트를 활용해 70만 종류 이상의 그래프 최적화를 계산했고, 양자컴퓨터의 계산 결과와 데이터분석 프로그램 일체를 공개했다. 연구를 주도한 안재욱 교수는 “이번 연구를 통해 100큐비트급 양자컴퓨터를 활용한 난제 계산 결과 및 계산 프로그램을 모두 공개하여 그동안 양자컴퓨터에 접근이 어려웠던 연구자를 비롯한 많은 사람이 양자 컴퓨팅 연구에 참여할 수 있을 것으로 기대된다. 아울러, 고성능 양자컴퓨터 개발에 필요한 잡음 분석에도 연구팀이 계산한 데이터베이스가 활용될 수 있을 것이라 생각한다”고 말했다. 우리 대학 물리학과 김강흔, 박주영, 변우정 석박사통합과정, 김민혁 박사(現 고려대 물리학과 교수)가 참여한 해당 연구 결과는 국제 학술지 네이처(Nature) 자매지인 ‘사이언티픽 데이터(Scientific data)’1월 11권에 게재됐다. (논문명: Quantum computing dataset of maximum independent set problem on king lattice of over hundred Rydberg atoms). 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2024.02.13
조회수 3612
“반도체로 양자컴퓨터를 모방하다” 신개념 확률론적 컴퓨팅 핵심소자 개발
우리 대학 신소재공학과 김경민 교수 연구팀이 산화나이오븀(NbO2) 의 확률적 금속-절연체 전이 현상을 이용한 차세대 확률론적 컴퓨팅의 핵심 반도체 소자를 개발했다고 23일 밝혔다. 최근 IoT (Internet of Things), 자율주행, 빅데이터, 인공지능으로 대표되는 초연결시대가 진행됨에 따라 다양한 제한 조건과 구성 요소들이 상호작용하는 상황에서 최적의 해결책을 신속하게 찾아내는 '조합최적화 문제’의 해결이 중요한 과제로 부상하고 있다. 예를 들면, 네비게이션에 활용되는 최적 경로 탐색과 같은 문제가 조합최적화 문제에 해당한다. 조합최적화 문제는 복잡도가 증가함에 따라 해답을 찾기가 급격히 어려워지는 특성을 갖기에, 이를 효과적으로 해결할 수 있는 신개념 컴퓨팅 기술이 요구된다. 양자컴퓨팅은 그 대표적인 예시이지만 간섭, 오류 수정, 안정성 등의 이유로 양자 컴퓨팅의 상용화에는 여전히 많은 어려움이 남아 있다. 확률론적 컴퓨터의 기본 소자는 피비트* (pbit)라고 불리는데, 확률론적 컴퓨터는 피비트의 확률적 특성을 이용한다는 점에서 양자컴퓨터와 유사하지만, 기존 반도체 기술로 제작이 가능하여 상용화 측면에서 보다 현실적인 기술이다. *피비트: Probabilistic bit의 줄임 말로 기존 디지털 시스템에서 사용하는 0, 1의 비트 정보를 출력하지만 각 상태 출력이 고정적이지 않고 확률적인 기본 소자 김경민 교수 연구팀은 산화나이오븀 (NbO2) 재료가 갖는 금속-절연체 전이 현상이 특정 조건에서 확률적으로 발생할 수 있음을 최초로 발견하였으며, 이를 활용해 확률론적 컴퓨팅을 위한 피비트의 제작에 성공하였다. 연구팀에서 개발한 피비트는 비트 당 평균 128pJ의 에너지, 260ns의 속도로 비트를 발생시키며, 이는 기존 저항변화메모리 기반 피비트 기술에 비해 약 20% 에너지 소모가 적으며, 약 4천 배 빠르다. 이에 더하여, 해당 반도체 피비트를 기반으로 하는 확률론적 컴퓨팅 시스템을 설계하였으며, 실제로 조합최적화 문제를 해결하는 사례를 통해 개발한 소자의 실질적인 활용에 대한 가능성을 입증했다. 김경민 교수는 “확률적 신호를 기존 CMOS 기반 회로를 통해 발생시키기 위해서는 매우 복잡한 구조가 요구되는데, 이번 연구는 모트 전이라고 하는 금속-절연체 전이 현상을 통해 확률적 신호를 직접 출력하는 단일 반도체 소자를 구현했다는 점에 큰 의의가 있다”며 “이 기술은 기존 반도체 기술과 융합될 수 있어 양자컴퓨팅의 기능을 수행할 수 있는 현실적인 대안이 될 것”이라고 말했다. 이번 연구는 신소재공학과 이학승 박사과정 학생이 제1 저자로 참여했으며, 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications, IF: 16.6)’에 11월 8일 字 게재됐으며 한국연구재단 PIM인공지능반도체 사업, 나노종합기술원, 그리고 KAIST의 지원을 받아 수행됐다. 논문명: Probabilistic computing with NbOx metal-insulator transition-based self-oscillatory pbit, 논문링크: https://doi.org/10.1038/s41467-023-43085-6
2023.11.23
조회수 5553
양자컴퓨팅 원자를 던지고 받는 기술 개발
양자컴퓨터의 기본 구성요소인 원자를 이동하여 배치하는 기술은 리드버그 양자컴퓨팅 연구에 매우 중요하다. 하지만 원자를 원하는 위치에 배치하려면, 일반적으로 광 집게라고 불리는 매우 집속된 레이저 빔을 사용해, 원자를 하나씩 잡아서 운반해야 하는데 이렇게 운반하는 동안 원자의 양자 정보가 변화할 가능성이 크다. 우리 대학 물리학과 안재욱 교수 연구팀이 레이저 빔을 이용하여 루비듐 원자를 하나씩 던지고 받는 기술을 개발했다고 27일 밝혔다. 연구팀은 광 집게가 원자와 접촉하는 시간을 최소화하여 양자 정보가 변하지 않도록 원자를 던지고 받는 방법을 개발했다. 연구팀은 원자의 온도가 매우 낮아 절대 영도 이하 4천만분의 일의 온도의 차가운 루비듐 원자가 광 집게의 초점을 따라서 빛이 가하는 전자기력에 매우 민감하게 움직인다는 특성을 이용했다. 연구팀은 광 집게의 레이저를 가속해서 원자에 광학적 킥을 줘서 원자를 목표지점으로 보낸 다음, 다른 광 집게로 날아오는 원자를 잡아서 멈추게 했다. 원자의 비행 속도는 65cm/s이고, 이동 거리는 최대 4.2 마이크로미터다. 기존의 광 집게로 원자를 잡아서 이동하는 기술과 대비해 원자를 던지고 받는 기술은 원자 이동을 위한 광 집게 이동 경로 계산이 필요 없어지고, 원자 배열에 생기는 결함을 쉽게 고칠 수 있다. 결과적으로 많은 개수의 원자 배열을 생성하고 유지하는 데 효과적이며, 양자 정보를 지닌 원자(flying atom qubit)를 추가로 던지고 받는 때에 양자 배열의 구조변화를 전제하는 새롭고 더욱 강력한 양자컴퓨팅 방법을 연구할 수 있다. 안재욱 교수는 “이 기술이 더 크고 강력한 리드버그 양자 컴퓨터를 개발하는 데 사용될 것”이라 말한다. “리드버그 양자 컴퓨터에서 원자는 양자 정보를 저장하고, 전자기력을 통해 인접한 원자들과 상호작용해 양자컴퓨팅을 수행할 수 있도록 배치된다. 만약 오류가 발생해 원자를 교체하거나 이동해야 할 경우, 원자를 던져서 빠르게 재구성하는 방법이 효과적일 수 있다”고 말한다. 우리 대학 물리학과 황한섭, 변우정 박사과정 연구원과 일본 국가자연과학연구소의 실바앙 드 레젤러크 연구원이 참여한 이번 연구는 국제 학술지 `옵티카(Optica)' 3월 10권 3호에 출판됐다. (논문명 : Optical tweezers throw and catch single atoms). 이번 연구는 삼성미래기술재단의 지원으로 수행됐다.
2023.03.27
조회수 6343
양자컴퓨팅 한계를 극복하는 3차원 반도체 제어/해독 소자 집적 기술 개발
우리 대학 전기및전자공학부 김상현 교수 연구팀이 *모놀리식 3차원 집적의 장점을 활용해 기존 양자 컴퓨팅 시스템의 대규모 큐비트 구현의 한계를 극복하는 3차원 집적된 화합물 반도체 해독 소자 집적 기술을 개발했다고 24일 밝혔다. ‘모놀리식 3차원 집적 초고속 소자’ 연구 (2021년 VLSI 발표, 2021년 IEDM 발표, 2022년 ACS Nano 게재)를 활발하게 진행해 온 연구팀은 양자컴퓨터 판독/해독 소자를 3차원으로 집적할 수 있음을 처음으로 보였다. ☞ 모놀리식 3차원 집적: 반도체 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 반도체 집적 기술로 불린다. 우리 대학 전기및전자공학부 김상현 교수 연구팀의 정재용 박사과정이 제1 저자로 주도하고 한국나노기술원 김종민 박사, 한국기초과학지원연구원 박승영 박사 연구팀과의 협업으로 진행한 이번 연구는 반도체 올림픽이라 불리는 ‘VLSI 기술 심포지엄(Symposium on VLSI Technology)’에서 발표됐다. (논문명 : 3D stackable cryogenic InGaAs HEMTs for heterogeneous and monolithic 3D integrated highly scalable quantum computing system). VLSI 기술 심포지엄은 국제전자소자학회(International Electron Device Meetings, IEDM)와 더불어 대학 논문의 채택 비율이 25%가 되지 않는 저명한 반도체 소자 분야 최고 권위 학회다. 양자컴퓨터는 큐비트 하나에 0과 1을 동시에 담아 여러 연산을 한 번에 처리할 수 있는 차세대 컴퓨터로, 최근에 IBM과 구글 등의 글로벌 기업이 양자 컴퓨터 제작에 성공하면서 양자 컴퓨터가 차세대 컴퓨터로 주목받고 있다. 기존 컴퓨터의 정보 단위인 `비트'의 경우 1 비트당 1개의 값만 가지는 것에 반해, 양자 컴퓨터의 정보 단위인 `큐비트'는 1 큐비트가 0과 1의 상태를 동시에 가진다. 따라서 비트에 비해 큐비트는 2배 빠른 계산이 가능하고, 2큐비트, 4큐비트, 8큐비트로 큐비트 수가 선형적으로 커질수록 처리 계산 속도는 4배, 8배, 16배로 지수적으로 증가한다. 따라서 많은 수의 큐비트를 활용한 대규모 양자컴퓨터 개발이 매우 중요하다. IBM에서는 큐비트 수를 127개로 늘린 `이글'을 작년에 발표했고, IBM 로드맵에 따르면 오는 2025년까지 4,000큐비트, 10년 이내에 10,000큐비트 이상을 탑재한 대규모 양자컴퓨터 개발을 목표로 하고 있다. 특히 큐비트의 수가 많은 대규모 양자컴퓨터 개발을 위해서는 큐비트를 제어/해독하는 소자에 대한 개발이 필수적이다. 기존 컴퓨터와 다르게 양자컴퓨터는 통상 –273 oC 내외의 극저온에서 동작하는 큐비트 하나당 최소 하나의 제어와 해독 연결이 필요하다. 현재는 큐비트 수가 많지 않아 극저온에서 동작하는 큐비트와 상온의 측정 장비를 긴 동축케이블로 연결해 제어/해독하는 방식을 사용하고 있다. 하지만 수천 혹은 수만 개 이상의 큐비트를 활용하는 대규모 양자 컴퓨팅에서 이러한 방식을 활용하면 양자 컴퓨터 크기가 매우 커지고 긴 연결 거리로 인해 신호 손실도 커 대규모 양자컴퓨터 구현이 매우 어려워진다. 따라서 큐비트를 제어/해독에 활용할 수 있는 저전력, 저잡음, 초고속 특성의 극저온 소자를 큐비트와 일대일로 연결할 수 있는 시스템 구성이 매우 중요하다. 연구팀은 이러한 문제 해결을 위해 큐비트 회로 위에 저전력, 저잡음 초고속 특성이 매우 뛰어난 *III-V 화합물 반도체 *고전자 이동 트랜지스터(HEMT)를 3차원으로 집적해 수천 혹은 수만 개의 큐비트에 아주 짧은 거리에서 일대일로 연결 가능한 구조를 제시했다. ☞ III-V 화합물 반도체: 주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체로 전하 수송 특성 및 광 특성이 매우 우수한 소재. ☞ HEMT: High-Electron Mobility Transistor 연구팀은 250oC 이하에서 상부 제어/해독 소자를 집적하는 웨이퍼 본딩 등의 초저온 공정을 활용해 이후 하부 큐비트 회로의 성능 저하 없이 3차원 집적을 할 수 있도록 했다. 연구진은 이러한 3차원 집적 형태의 제어/해독 소자를 최초로 제시 및 구현했을 뿐만 아니라 소자의 성능 면에서도 극저온에서 세계 최고 수준의 차단주파수 특성을 달성했다. 김상현 교수는 "이번 기술은 향후 대규모 양자컴퓨터의 제어/판독 회로에 응용이 가능할 것으로 생각한다ˮ라며 "모놀리식 3차원 초고속 소자의 경우 양자컴퓨터뿐만이 아니라 6G 무선통신 등 다양한 분야에서 응용할 수 있어 그 확장성이 매우 큰 기술이며 앞으로도 다양한 분야에서 활용할 수 있도록 후속 연구에 힘쓰겠다ˮ라고 말했다. 한편 이번 연구는 한국연구재단 지능형반도체기술개발사업, 경기도 시스템반도체 국산화 연구지원 사업, 한국기초과학지원연구원 분석과학연구장비개발사업(BIG사업) 등의 지원을 받아 수행됐다.
2022.06.24
조회수 7560
20큐비트급 소형 리드버그 양자컴퓨터 개발
우리 대학 물리학과 안재욱, 문은국 교수 연구팀이 20큐비트급 리드버그 양자컴퓨터를 개발해 계산과학의 난제인 최대독립집합 문제를 계산했다고 22일 밝혔다. 양자컴퓨터는 양자역학의 원리를 사용하여, 디지털컴퓨터로는 불가능한 계산을 수행할 것으로 예상되는 대표적 미래기술이다. 20큐비트급 양자컴퓨터는 기존 컴퓨터가 백만회 순차 처리해야 하는 계산량을 한 번에 처리하는 계산성능을 갖는다. 세계 주요국들은 양자컴퓨팅을 전략기술로 분류해, 국가적 연구역량을 집중하고 있으며 글로벌 대기업, 기술벤처, 국가연구소와 주요 대학의 막대한 시설과 인력, 연구비가 동원되고 있다. 우리나라 정부도 양자기술을 10대 전략기술의 하나로 선정해 투자를 확대하고 있다. 소형(20~50큐비트급)의 양자컴퓨터가 속속 개발되고 있는 현시점에서, 가장 중요한 이슈 중 하나는 `디지털컴퓨팅 알고리즘으로는 비효율적인 계산 문제(NP-문제로 분류됨)를 양자컴퓨터가 계산할 수 있는지'이다. 따라서, KAIST가 20큐비트급의 양자컴퓨터를 개발해 NP-완전문제를 계산했다는 것은 한국의 양자컴퓨팅 연구가 세계적 양자컴퓨터 개발경쟁에 진입하였음을 의미한다. 우리 대학 물리학과 안재욱, 문은국 교수 연구팀은 리드버그 원자들을 이용해, 조합 최적화 문제를 계산하는 양자 단열 컴퓨팅 방식의 양자컴퓨터를 개발했다. 연구팀은 초고진공 공간에 배치한 극저온 리드버그 원자를 사용해, 20큐비트급 그래프의 조합 최적화 문제를 실험적으로 계산하는 데 성공했다. 물리학과 김민혁, 김강흔 대학원생 연구원과 황재용 학부생 연구원이 참여한 이번 연구는 국제 학술지 `네이처 피직스(Nature Physics)' 6월 18권 7호에 출판됐다. (논문명 : Rydberg quantum wires for Maximum Independent Set problems). 한편 리드버그 원자란 높은 에너지 상태의 원자로서, 일반 원자보다 만 배 정도 큰 마이크로미터 크기의 지름을 갖고, 리드버그 원자들간의 상호작용은 일반 원자들보다 10^22배 정도로 강하다. 양자 단열형 양자컴퓨팅은 양자 회로형(또는 양자디지털형), 측정기반형과 함께 범용양자컴퓨팅 방식으로 알려져 있다. 대표적인 양자 단열형 양자컴퓨터인 D-wave 社의 양자컴퓨터는 고정 큐비트를 사용한다는 결정적 단점이 있다. 하지만 KAIST의 리드버그 양자 단열형 양자컴퓨터는 재배치 또는 이동이 가능한 큐비트를 사용하기 때문에 주목을 받는다. KAIST 리드버그 양자컴퓨터는 초고진공 상태에 최대 126개의 리드버그 원자들을 임의로 배치해 양자 단열형 양자컴퓨팅을 수행한다. 이번에 발표한 최근 연구에서는 꼭지점이 최대 20개인 그래프의 최대독립집합을 계산하는데 성공했다. 또한 원거리 꼭지점들을 잇는 리드버그 양자선 개념을 최초로 개발해 모든 꼭지점들을 임의로 연결하는 초기하학적 그래프를 계산할 수 있음을 보였다. 참고로, 디지털 컴퓨팅에서 모든 계산 문제들을 계산복잡도에 따라 P-문제(결정 다항)와 NP-문제(비결정적 다항)로 분류한다. 여행자 문제(Traveling Salesman Problem), 최대독립집합 문제 등으로 대표되는 NP-문제들은 디지털 컴퓨팅의 알고리즘으로는 효율적으로 계산할 수 없음이 잘 알려져 있다. 따라서, 양자컴퓨터가 NP-문제들을 계산할 수 있을지가 큰 관심사다. 최대독립집합 문제는 대표적인 NP-완전문제의 하나이며, 주어진 그래프(꼭지점과 간선의 집합)에서 서로 연결되지 않는 꼭지점들의 최대집합을 알아내는 계산 문제다. 그래프의 크기가 커지면, 디지털컴퓨팅 알고리즘으로는 계산량이 지수적으로 증가해 효과적인 계산을 할 수 없다. 이러한 문제를 효과적으로 계산하게 되면 산업적으로 물류, 생산관리, 작업관리, 네트워크 디자인 등에서 혁명적 경제가치를 창출하게 된다. <그림 1> 은 리드버그 양자선(각각 빨강, 주황, 노랑 꼭지점들)을 이용하여 간선으로 연결되지 않는 데이터 큐비트(하얀 꼭지점들)를 연결하는 3차원 큐비트 구조체의 모식도이다. 이 구조는 쿠라토프스키 그래프로 잘 알려진 K(3:3) 그래프이다. 참고로 쿠라토프스키 K(3:3)와 K(5) 그래프쌍은 상대적으로 만들기 쉬운 평면그래프와 조합하여 모든 그래프를 만들 수 있다. 우리 대학 연구진은 본 연구에서 K(3:3)와 K(5)를 실험적으로 최초 구현하였다. 연구를 주도한 물리학과 안재욱 교수는 “이번 연구는 리드버그 양자컴퓨터의 활용 가능성을 보였다는 데 의의가 있다”라고 자평하며 “아직은 큐비트 개수가 충분하지 않지만, 차 단계 연구를 통해 실 활용이 가능한 꿈의 양자컴퓨터를 개발할 수 있을 것”이라는 포부를 밝혔다. 한편 이번 연구는 삼성미래기술재단과 한국연구재단의 지원으로 수행됐다.
2022.06.22
조회수 9732
조용훈 교수, 피라미드 구조로 방향성과 집광 효율을 높인 고성능 반도체 양자 광원 개발
우리 대학 물리학과 조용훈 교수 연구팀이 반도체 피라미드 구조의 양자점이 피라미드 밑면으로 강한 빛을 방출함을 발견하고 이 빛을 높은 효율로 모을 수 있는 기술을 개발했다. 김세정, 공수현 박사가 공동 1저자로 참여한 이번 연구 결과는 나노분야 국제 학술지 ‘나노 레터스(Nano Letters)’ 10월 12일자에 게재됐다. 반도체 양자점은 빛 알갱이를 하나씩 내뿜는 단일광자원(양자광원)으로 활용가능하다. 단일광자원은 미래의 양자컴퓨터 또는 양자암호기술 등을 구현하기 위한 필수 요소이다. 일반적인 양자점은 불규칙적인 위치에 형성되는 반면 3차원 피라미드 구조에 얇게 양자우물(Quantum well)을 성장시키면 정확히 피라미드 꼭짓점 위치에 양자점(Quantum dot)을 형성할 수 있다. 이 기술을 활용하면 위치가 제어된 단일광자원을 높은 수율로 얻을 수 있다. 하지만 양자점에서 나오는 빛은 빛 알갱이 개수가 적고 양자점이 굴절률 높은 반도체 물질에 갇혀 있기 때문에 일반적으로 구조 바깥으로 빠져나오기 어렵다. 반도체 단일광자원 소자가 상용화 단계로 나아가려면 빛의 집광 효율을 높여야만 한다. 연구팀은 일반적으로 가지고 있는 고정관념을 벗어나 문제를 해결했다. 피라미드 구조의 빛의 지향성(directionality)을 관찰했고 이를 이용했다. 그 동안 피라미드 양자점에서 나오는 빛은 피라미드의 위, 즉 꼭짓점 방향으로 나오는 신호만을 측정했다. 피라미드 밑면 방향으로는 성장 과정상 두꺼운 기판이 반드시 존재하기 때문이다. 하지만 연구팀은 시뮬레이션을 통해 양자점이 피라미드 위쪽보다 밑면 방향으로 더 많은 빛을 방출함을 확인했다. 또한 피라미드 밑면 방향으로 진행하는 빛은 가우시안 형태의 전기장 분포 형태를 갖고 있어, 광도파로 또는 광섬유의 단일 모드와 잘 일치한다. 이는 제품과 전선을 결합하듯이 광원과 광도파로 간의 결합 효율을 높일 수 있다. 이에 연구팀은 폴리머를 이용해 피라미드 구조체를 기판에서 떼어냈다. 피라미드의 밑면으로 나오는 빛이 두꺼운 반도체 기판을 거치지 않고 공기 중으로 직접 방출되도록 한 것이다. 연구팀이 떼어낸 피라미드는 쉽게 다른 광학 소자들과 직접 결합할 수 있어 피라미드 양자점의 응용분야가 확대될 수 있는 발판이 될 것으로 기대된다. 조 교수는 “이번 연구 내용은 양자 광원 뿐 아니라 LED와 같은 광원 소자에도 적용 가능해 활용도가 높을 것으로 기대된다.”고 말했다. 이번 연구는 한국연구재단의 중견연구자지원사업과 KAIST 기후변화연구 허브사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 폴리머로 떼어낸 피라미드 양자점의 모식도 그림2. 피라미드 양자점에서 방출된 빛의 상반구 및 하반구 먼장 (far-field) 방출 패턴(좌)와 폴리머로 떼어내기 전후의 나노 피라미드 구조체(후)
2016.10.18
조회수 18328
박정기 교수팀, 빛에 의해 움직이는 고분자를 이용한 나노광학소자 신기술 개발
- 빛으로 나노광학구조의 모양과 크기를 자유자재로 제어할 수 있는 리소그래피 방법 세계 최초 개발- 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조로 분자 탐지 및 양자컴퓨터의 실용화 길 열어 생명화학공학과 박정기(朴丁基, 58) 교수팀이 조사되는 빛의 조건을 정교하게 조절하여 모양과 크기가 자유자재로 제어될 수 있는 고분자 나노패턴을 만들고 이를 형틀로 이용해 회절한계를 극복한 영역에서 빛을 다룰 수 있는 나노광학구조를 모양과 크기를 자유롭게 조절하면서 대면적으로 손쉽게 만들 수 있는 방법을 최근 개발했다. 이번 연구결과는 ‘방향성 광유체화 리소그래피를 이용한 모양과 크기가 제어된 나노구조체 제작(Directional Photofluidization Lithography for Nanoarchitectures with controlled shapes and sizes)"이라는 제목으로 나노과학 및 기술 분야의 최고 권위지인 나노 레터스(Nano Letters) 온라인판에 17일 게재됐다. 현재 관련기술은 국내.외 특허 출원중이다. 이번 연구는 교육과학기술부의 21세기 프론티어연구사업단 산하 나노소재기술개발사업단의 지원을 받아 박정기교수 연구실의 주도하에 KAIST 물리학과 이용희 교수, 신종화 박사, 미국 스탠포드대 샨휘 판(Shanhui Fan)교수 등의 공동연구로 이뤄졌다. 지금까지 개발된 나노광학소자 제작 방법은 구조의 모양과 크기, 두 가지를 동시에 그리고 대면적으로 균일하게 제어하는 것이 어려웠다. 특히 10nm 이하의 초미세 영역에서 구조의 모양과 크기를 대면적으로 제어하는 것은 미세구조체 제작 연구 분야에서 달성하기 어려운 과제로 인식되어 왔다. 박교수팀은 빛을 받았을 때 움직이는 고분자를 이용해 이 문제를 해결했다. 고분자 선모양 패턴에 빛을 조사해주면 고분자의 광유체화 현상이 발생해 조사된 빛의 편광 방향에 평행하게 고분자가 이동을 한다. 따라서 고분자의 선패턴 사이의 간격을 나노영역까지 손쉽게 줄일 수 있다. 또한 빛을 부분적으로 조사해주면 원하는 지역에서만 고분자의 광유체화 현상을 발생시켜 원하는 모양의 고분자 나노구조체를 제작할 수 있다. (그림1 참조) 박교수팀은 이를 이용해 양끝이 뽀족한 유선형 모양의 나노안테나를 대면적으로 제작하는데 성공했다. 나노안테나는 현재 일반적으로 이용되고 있는 안테나를 나노크기로 줄인 소자이며 양 끝을 뾰족하게 처리해야만 빛 증폭 효과를 극대화시킬 수 있다. 나노안테나는 회절한계를 극복한 영역에서 빛을 증폭시킬 수 있는 소자로서 광자컴퓨터 및 광자 분자 탐지를 위한 센서와 같은 첨단 광학소자 개발을 위한 가장 핵심적인 요소로 인식되고 있는 기술 중의 하나다. 박교수팀은 같은 원리를 이용해 대면적에 고집적화된 나노선 제작에도 성공했으며 이를 이용한 나노트랜지스터, 양자메모리, 양자디스플레이 등 첨단전자 소자개발에도 새로운 가능성을 보여줬다. 박 교수는 “첨단 광학소자의 필수 요소인 나노안테나 및 나노선 뿐만 아니라 수나노 크기의 대면적 초미세 소자 가능성을 새롭게 열었기 때문에 그 동안 접근하지 못했던 분자 수준의 소자 제작을 가능하게 해줄 것으로 기대된다”며 “실용적 소자 제작과 더불어 초미세 영역의 기초 물리 및 화학 연구에도 새로운 전기가 될 것”이라고 말했다. 이 논문의 제1저자인 이승우(李承祐, 27)연구원은 “이번 연구결과를 토대로 앞으로 광자컴퓨터 및 메모리와 같은 나노광학소자 실용화를 앞당길 수 있는 실제 소자제작 연구를 진행할 것”이라고 말했다.
2009.12.21
조회수 19836
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1