본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%9D%B8%EA%B3%B5%EA%B4%91%ED%95%A9%EC%84%B1
최신순
조회순
식물 리그닌의 광촉매 특성 발견
우리 대학 신소재공학과 박찬범 교수 연구팀이 식물의 주요 구성성분인 *리그닌의 광촉매 특성을 규명하고, 리그닌 기반 광 촉매반응과 산화환원 효소 반응을 접목해 태양광으로 고부가가치 화합물을 생성하는 인공광합성을 성공시켰다고 28일 밝혔다. ☞ 리그닌(lignin): 식물 목질부를 형성하는 주요 물질로 셀룰로오스 다음으로 풍부한 성분이다. 주로 식물을 지지, 보호하는 구조체 역할을 한다. 신소재공학과 김진현 박사과정이 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 신세시스(Nature Synthesis)' 3월호 표지논문으로 출판됐다. (논문명: Lignin as a Multifunctional Photocatalyst for Solar-Powered Biocatalytic Oxyfunctionalization of C-H Bonds) 식물의 20~30%를 차지하는 주요 구성성분인 리그닌은 세포벽 형성, 물 수송, 씨앗 보호 및 스트레스 적응 등의 역할을 담당한다. 바이오 연료, 펄프 및 종이를 생산하는 목재산업에서 리그닌이 부산물로 대량 배출되는데, 그 양은 연간 5천만 톤에 달한다. 그러나 리그닌은 분자구조가 상당히 복잡한 까닭에 활용이 어려워 95% 이상 소각되거나 폐기되고 있다. 연구팀은 자연계 리그닌이 일반적인 광촉매들이 지닌 작용기를 가지고 있다는 것에 착안해 리그닌이 광촉매 역할을 수행할 수 있다는 가설을 세웠다. 그리고 연구팀은 다양한 리그닌 고분자 모델이 가시광선하에서 과산화수소를 생성한다는 것을 입증했다. 또한, 분광학적 및 (광)전기화학적 분석을 통해 리그닌이 열역학적으로 해당 광 산화환원 반응(photoredox reaction)을 일으킬 수 있다는 것을 확인했다. 일반적인 광촉매는 산소를 환원해 과산화수소를 생성할 때 희생 전자 공여체(sacrificial electron donor, 예: 알코올, 포름산, 글루코스)를 필요로 한다. 이러한 요구 조건 때문에 기존의 과산화수소를 생성하는 광 촉매반응은 원자 경제성(atom economy)이 낮고, 바람직하지 않은 부산물이 축적된다는 한계가 있다. 하지만, 리그닌은 희생 전자 공여체 없이 산소와 물을 이용해 과산화수소를 합성할 수 있어 높은 원자 경제성(94.4%)을 보여주며, 부산물 축적 문제에서 벗어난다. 연구팀은 더 나아가 가시광선을 흡수하는 리그닌의 광 촉매반응을 생체촉매인 퍼옥시게나아제 활성에 적용했다. 퍼옥시게나아제는 유기합성에서 상당히 중요한 선택적 옥시 기능화 반응을 유도할 수 있는 효소다. 퍼옥시게나아제는 과산화수소를 필수적으로 요구하지만, 고농도의 과산화수소에 의해 비활성화된다는 단점이 있다. 이 문제를 극복하기 위해 연구팀은 리그닌이 광화학적으로 과산화수소를 적절한 속도로 생성하도록 설계해 퍼옥시게나아제가 지속해서 옥시 기능화 반응을 수행하도록 만드는 데 성공했다. 박찬범 교수는 "이번 연구는 리그닌을 고부가가치 화합물 생성에 이용할 수 있는 친환경적 방법을 제시했다는 것에 의의가 있다ˮ면서, "리그닌의 광촉매적 메커니즘을 더 자세하게 밝혀 리그닌의 촉매 성능을 높이고, 다양한 효소와 접목, 정밀화학제품을 생산하여 산업적 파급력을 높일 계획ˮ이라고 밝혔다. 한편 이번 연구는 과학기술정보통신부 리더연구자지원사업(창의연구), 한국연구재단 글로벌박사 양성사업 등의 지원을 받아 수행됐다.
2022.03.28
조회수 8580
탄소중립 인공 광합성 기술 개발
우리 대학 생명과학과 조병관 교수 연구팀이 기후변화의 주된 요인인 C1 가스(이산화탄소, 일산화탄소 등 탄소 1개로 구성된 가스)를 고부가가치 바이오 화학물질로 전환하는 기술을 개발했다고 9일 밝혔다. 조 교수 연구팀은 광 나노입자가 빛을 받으면 내놓는 전자를 미생물이 에너지원으로 이용할 수 있도록 고효율 광 나노입자가 표면에 부착된 미생물-광 나노입자 인공광합성 시스템을 개발했다. 이 기술은 빛을 유일한 에너지원으로 활용해 미생물이 C1 가스를 다양한 바이오 화학물질로 전환하는 친환경 C1 가스 리파이너리 기술로 정부가 선언한 2050 탄소중립 실현을 위한 다양한 응용 가능성을 제시한다. 생명과학과 진상락 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 국제 학술지 `미국국립과학원회보(Proceedings of National Academy of Science, PNAS)'에 2월 23일 字 온라인판에 게재됐다.(논문명: Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth) 아세토젠 미생물은 우드-융달 대사회로를 통해 C1 가스를 아세트산으로 전환할 수 있다. 이에 C1 가스로부터 바이오 화학물질 생산을 위한 바이오 촉매로 활용 가능성이 커 탄소 포집 및 활용 기술로 많은 주목을 받고 있다. 아세토젠 미생물은 C1 가스 대사를 위한 환원 에너지를 당이나 수소를 분해해 얻는다. 당이나 수소를 대체하기 위해 나노입자 크기의 개별 광전극 역할을 하는 광 나노입자를 미생물 표면에 부착시켜 빛에너지를 미생물로 전달시키면 당이나 수소 없이도 C1 가스를 활용할 수 있다. 기존기술은 광 나노입자를 생합성해 세포 표면에 부착시키는 방법으로 광 나노입자의 구조와 크기를 조절하기 어려워 C1 가스 대사 효율을 높이는 데 한계가 있었다. 이는 구조와 크기에 따라 광전도효과의 성능에 차이가 생기는 광 나노입자의 독특한 특성 때문이다. 이와 같은 한계를 극복하기 위해 연구팀은 구조와 크기가 균일하고 우수한 광전도효과를 나타내는 고효율 광 나노입자를 화학적 방법으로 합성하고, 산업적으로 활용 가능한 아세토젠 미생물 중 하나인 `클로스트리디움 오토에타노게놈(Clostridium autoethanogenum)'의 표면에 부착시켰다. 연구팀은 광 나노입자를 부착한 미생물이 C1 가스로부터 아세트산을 생산할 수 있음을 입증해 빛을 이용한 친환경 인공광합성 시스템을 구축하고 구축된 인공광합성 시스템 미생물의 전사체 분석(세포 내 모든 RNA를 분석해 유전자 발현 유무를 규명하는 기술)을 통해 광 나노입자로부터 생성된 전자가 미생물 내로 전달되기 위한 전자수용체를 규명했다. 연구를 주도한 조병관 교수는 "C1 가스 고정과정에서 사용되는 당 또는 수소를 친환경 빛에너지로 대체할 수 있고, 미생물 기반의 생합성 광 나노입자를 활용한 기존 인공광합성 시스템의 한계를 극복했다ˮ며 "고효율 광 나노입자를 사용해 인공광합성 효율을 증대시킬 수 있고, 광 나노입자로부터 생성된 전자를 효율적으로 수용할 수 있는 인공미생물 개발연구에 실마리를 제공했다ˮ 고 의의를 설명했다. 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 추진하는 C1 가스 리파이너리 사업단 및 지능형바이오시스템 설계 및 합성연구단(글로벌프론티어사업)의 지원을 받아 수행됐다.
2021.03.09
조회수 97194
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉 우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다. 대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다. 이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다. 촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다. 청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다. 학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다. 연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다. 연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다. 특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다. 연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다. 당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다. 이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다. 박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다. □ 그림 설명 그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도 그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 12253
기체가 저장물질에 흡착되는 과정 관찰
우리 대학 EEWS 대학원 강정구 교수와 오사무 테라사키 공동 연구팀이 2~5 나노미터(10억분의 1m) 크기의 구멍을 갖는 메조다공성 금속유기골격체(metal organic framework, MOF) 안에 기체가 흡착되는 과정을 관찰하는 데 성공했다. 관찰 과정에서 기체들이 각자의 기공에 일정하지 않은 각기 다른 밀도로 흡착된다는 사실을 발견했다. 이는 기존의 학설과 반대되는 개념으로 금속유기골격체에서 기체가 초격자 구조를 형성한다는 사실을 최초로 발견한 것이다. 이번 연구는 국제 과학 학술지 ‘네이처’ 11월 9일자 온라인 판에 게재됐다. 메조다공성 금속유기골격체는 넓은 비표면적을 갖고 있어 수소나 메탄, 이산화탄소 등의 가스 저장에 용이한 저장물질이다. 효율적인 가스 저장을 위해서는 기체가 저장물질에 어떻게 흡착하는지 이해하는 것이 중요하다. 그러나 일반적인 기체 흡착 측정 장비의 경우에는 흡착 거동을 직접적으로 관찰할 수 없다는 한계가 있었다. 문제 해결을 위해 연구팀은 기존에 존재하는 두 개의 장비를 이용했다. 구조적 정보를 얻을 수 있는 X-선 소각산란(small angle X-ray scattering, SAXS) 측정 장비와 기체흡착 측정 장비를 결합했다. 두 장비가 결합된 실시간 기체 흡착 SAXS 시스템을 개발해 메조다공성 금속유기골격체의 결정에 기체가 흡착하는 과정을 실시간으로 관찰했다. 연구팀은 관찰 과정에서 금속유기골격체의 모든 기공에 기체가 균일하게 흡착되지 않고 각자 다른 밀도로 흡착된다는 사실을 발견했다. 그리고 압력이 증가하면서 급격하게 초격자 구조로 변이된 후 서서히 균일하게 분포하는 것 또한 확인했다. 이는 모든 기공에 균일하게 기체가 들어간다는 학설을 뒤집는 발견이다. 이것이 가능했던 이유는 메조다공성 금속유기골격체의 경우 골격이 얇고 기공이 커 다른 구멍의 기체분자끼리도 상호작용하기 때문에 발생하는 현상이다. 따라서 메조다공성 금속유기골격체를 사용한다면 기존 저장물질에 비해 더 적은 용량으로 더 많은 가스를 저장할 수 있는 고효율 저장장치를 개발할 수 있게 된다. 이 기술을 기반으로 새로운 고용량 가스저장 물질의 제작이 가능해짐으로써, 여러 운송수단이나 가스를 사용하는 기계의 성능을 끌어올릴 수 있을 것으로 기대된다. 연구를 주도한 조해성 박사는 “단일 기공 내부의 기체 분자 뿐 아니라 다른 기공의 기체 분자 간 상호작용에 의해 기체의 흡착 메커니즘이 발생함을 새롭게 발견했다”고 말했다. 이번 연구는 미래창조과학부 글로벌프론티어사업, 인공광합성사업, BK21PLUS의 지원을 받아 수행됐다. □ 그림 설명 그림1. 실시간 기체흡착 SAXS 시스템 모식도 그림2. 메조다공성 MOF 결정에 기체가 흡착되는 과정 그림3. 메조다공성 MOF 결정에서 기체분자의 상호작용 모델
2015.11.11
조회수 12466
양자점 이용한 고효율 투명 태양전지 개발
- 양자점 전해질에 분산해 9%대 고효율 염료감응 태양전지 원천기술 개발 -- 네이처 자매지 ‘사이언티픽 리포트’ 19일자 게재 - 우리 학교 신소재공학과 강정구 교수 연구팀은 모바일 양자점(mobile quantum dots)을 활용해 투명한 고효율 염료감응 태양전지 원천기술을 개발하는데 성공했다. 연구 결과는 세계적 학술지인 네이처(Nature)에서 발간하는 사이언티픽 리포트(Scientific Reports) 19일자 온라인판에 게재됐다. 현재 양산 가능한 염료감응 태양전지는 효율이 약 14% 정도로 낮아 가시광선 및 적외선 영역의 빛 흡수를 높이기 위해 염료, 빛 산란층, 플라즈몬 구조 등을 적용해 왔다. 그러나 이러한 구조들로 인해 태양전지가 두꺼워져 고효율의 투명 태양전지 구현에 한계가 있었다. 연구팀은 빛 흡수를 높이기 위해 염료감응 태양전지의 전해질에 양자점을 분산시켜 빛 산란층과 플라스몬 구조 없이도 9%대의 고효율을 달성했다. 아직은 현재 양산 가능한 태양전지보다 효율이 낮고, 상용화에는 많은 시간이 소요될 것으로 예상되지만 근본적으로 두께가 얇고 저렴한 염료감응 태양전지의 장점으로 인해 매우 의미 있는 연구결과라고 연구팀은 전했다. 이와 함께 연구팀은 전해질에 분산돼 있는 양자점이 염료와 함께 빛을 흡수하고 나서 다시 빛을 방출해 TiO2-염료 층과 전해질이 있음에도 불구하고 투명한 태양전지를 구현해내는데 성공했다.연구팀은 또 이번 연구를 통해 △가시광선 영역대에서도 양자점의 흡수와 방출 스펙트럼에 따라 형광공명 에너지 이동과 빛을 흡수한 양자점이 산화된 염료의 환원을 가속화시켜 태양전지 효율이 증가했으며 △빛 분산층과 플라즈몬 구조가 있는 투명하지 않은 셀과의 비교에서도 양자점의 흡수에 의한 효율 증가가 다른 효과보다 크고 투명한 특성을 보였음을 밝혀냈다. 강정구 교수는 이번 연구에 대해 “염료감응 태양전지의 높은 효율과 투명성을 모두 확보할 수 있게 됐으며, 투명한 유리창에 태양전지를 설치하는 것이 최종 목표”라며 “적외선 영역의 빛을 사용해 전기를 만들 수 있는 방법을 제시해 염료감응 태양전지의 적용 범위가 더욱 확대될 것으로 기대된다”고 말했다. 이번 연구는 KAIST 인공광합성센터, 고효율박막태양전지센터, 나노계면센터, WCU, 글로벌프론티어 사업 등의 지원을 통해 수행됐다. 그림1. 모바일 양자점이 포함된 염료감응태양전지의 흡수 스펙트럼, 외부양자효율, 전압-전류.(상단) 플라즈몬 구조, 빛반사층과 모바일 양자점이 구현된 태양전지의 외부양자효율, 산란파워, 그리고 사진의 비교. (하단) 그림2. 모바일 양자점이 전해질에서 염료에 흡수된 빛 에너지를 전달하는 메커니즘(좌측)과 염료 및 양자점의 흡수스펙트럼과 양자효율 (우측): Foster Resonance Energy Transfer (FRET) (상단), 양자점에서 흡수된 빛에너지에 의한 산화된 염료의 환원 작용(중단), 2광자 흡수 (하단) 그림3. 염료감응 태양전지 샘플 그림4. 연구원 사진
2013.09.25
조회수 16600
태양전지 소재 이용, 인공광합성 기술개발
- 국제저명학술지 어드밴스드 머티어리얼스 최근호 게재- 이종 분야 (생명과학, 태양전지)간 융합연구 성공사례로 주목 인류는 지금 지구온난화와 화석 연료의 고갈이라는 문제점을 갖고 있다. 이를 해결하기 위해 온난화의 원인인 이산화탄소를 배출하지 않고 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고 있다. 이러한 가운데 우리학교 신소재공학과 박찬범 교수와 류정기 박사팀이 태양전지 기술을 이용해 자연계의 광합성을 모방한 인공광합성 시스템 개발에 성공했다. 이 기술은 정밀화학 물질들을 태양에너지를 이용해 생산해 내는 ‘친환경 녹색생물공정’ 개발의 중요한 전기가 될 전망이다. 광합성은 생물체가 태양광을 에너지원으로 사용해 일련의 물리화학적 반응들을 통해 탄수화물과 같은 화학물질을 생산하는 자연현상이다. 박 교수팀은 이 같은 자연광합성 현상을 모방해 빛에너지로부터 정밀화학 물질 생산이 가능한 신개념 ‘생체촉매기반 인공광합성 기술’을 개발했다. 이번 연구에서 연구팀은 자연현상 모방을 통해 개발된 염료감응 태양전지의 전극구조를 이용해 다시 자연광합성 기술을 모방해 발전시킬 수 있다는 것을 증명해냈다. 박찬범 교수는 “지난해 양자점을 이용한 인공광합성 원천기술을 개발해 한국과학기술단체 총연합회가 선정한 10대 과학기술뉴스로 선정된 바 있다”며 “이번 연구 결과는 광합성효율을 획기적으로 향상시킴으로써 인공광합성 기술의 산업화에 한 걸음 더 다가선 것으로 평가된다”고 강조했다. 이번 연구는 독일에서 발간되는 재료분야 국제저명학술지인 어드밴스드 머티리얼스(Advanced Materials) 4월 26일자에 게재됐으며 특허출원이 완료됐다. 한편, 연구결과는 재료공학과 생명과학분야의 창의적인 융합을 통해 새로운 공정기술을 개발하는 데 크게 기여했다는 평가를 받았으며, 교육과학기술부 신기술융합형 성장동력사업(분자생물공정 융합기술연구단), 국가지정연구실, KAIST EEWS 프로그램 등으로부터 지원받아 수행됐다.
2011.04.26
조회수 20046
박찬범 교수팀, 나노크기의 광감응 소재를 이용한 인공광합성 원천기술개발
신소재공학과 박찬범(朴燦範, 41세) 교수팀이 나노소재를 이용해 자연계의 광합성을 모방한 ‘인공광합성’ 시스템 개발에 성공했다. 이러한 새로운 개념의 인공광합성 기술은 고부가가치의 각종 정밀의약품들을 태양 에너지를 이용해 생산하는 친환경 녹색생물공정 개발의 전기가 될 것으로 기대된다. 식물 등 자연계의 광합성 생물체들은 태양에너지를 이용해 환원력을 재생하여 보조인자(cofactor)라는 형태로 저장하고, 이렇게 재생된 보조인자 등을 빛이 없을 때 캘빈사이클 (calvin cycle)을 통해 생존에 필요한 탄수화물 등 각종 화학물질들을 합성하는데 이용한다. [그림 1. 자연광합성을 모방한 인공광합성 공정을 이용한 정밀화학제품 생산 개념도] 박 교수팀은 이러한 자연광합성시스템을 모방하여 자연계의 광반응 (light reaction) 대신 태양전지 등에서 사용되는 양자점 (quantum dot) 등 수 나노크기의 광감응소재로 빛에너지를 전기에너지로 효율적으로 전환하고, 이를 이용하여 보조인자를 재생했다. 또한 자연계의 복잡한 캘빈 사이클 대신 산화환원 효소반응을 보조인자 재생에 연결시킴으로써 빛에너지로부터 시작하여 최종적으로 정밀화학물질 생산이 가능한 반응시스템을 개발했다. 인류가 지구 온난화와 화석 연료의 고갈이라는 문제를 안고 있는 가운데, 온난화의 원인인 이산화탄소를 배출하지 않고 또한 무제한으로 존재하는 태양 에너지를 이용하려는 노력이 계속되고있는데, 이번에 개발된 인공광합성기술은 에너지원으로 무한한 태양광을 사용한다는 장점 때문에 그 파급효과가 매우 클것이다. 특히 각종 정밀화학물질 합성에 있어서 산화환원효소들이 매우 뛰어난 응용가능성/다양성을 가졌음에도 불구하고 이들의 효율적 사용을 위하여 필수적으로 요구되는 보조인자의 재생에 대한 연구는 지난 20여년동안 수행되어 왔으나 현재까지도 성공적인 결과가 거의 없어 향후 생물공학분야에서 해결되어야 할 미해결 난제들 중의 하나였다. 박교수팀의 연구성과는 산화환원효소를 산업적으로 활용하기 위한 토대를 마련한 것이다. [그림 2. 산화환원효소 기반 인공광합성을 통한 고부가가치 정밀화학제품 생산] 관련 연구결과는 독일에서 발간되는 나노분야 국제저명학술지인 Small지 최근호(4월 23일자 온라인판)에 게재됐으며, 최근 특허출원이 완료됐다. 이번 연구는 교육과학기술부 신기술융합형 성장동력사업(생물공정연구단) 등으로부터 지원을 받아 수행됐으며, 나노과학과 생명공학분야의 창의적인 융합을 통하여 새로운 공정기술을 개발하는데 크게 기여했다는 평가를 받았다.
2010.04.23
조회수 22789
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1