본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A7%80%EC%8B%9D%EA%B2%BD%EC%A0%9C%EB%B6%80
최신순
조회순
레이저 이용한 초고속 나노물질 생산 공정 개발
- 레이저를 원하는 위치에 쪼여 나노물질 성장 세계 최초 성공 -- “획기적 공정 단축을 통해 나노소자 상용화에 기여할 것” - 우리 학교 기계공학과 여준엽 박사와 고승환 교수 공동연구팀은 집광된 레이저를 이용해 나노물질을 원하는 위치에 초고속으로 만드는 기술을 개발했다. 연구결과는 신소재 응용분야 세계적 학술지 ‘어드밴스드 펑셔널 머티리얼스(Advanced Functional Materials)" 7월 9일자 표지논문(frontispiece)에 실렸다. 이번에 개발된 기술을 활용하면 기존에 수 시간에 걸쳐 만들었던 나노와이어를 단 5분 만에 성장시킬 수 있어 소요시간이 약 1/10로 단축됐다. 또 이미 발표된 수많은 나노물질 합성법과는 달리 공정이 매우 단순해 나노소자 대량생산과 상용화 가능성을 제시한 것으로 학계와 산업계는 평가하고 있다. 기존에 나노물질을 합성 및 성장시키기 위해서는 900~1000°C의 높은 온도에서 폭발성 혹은 독성이 있는 위험한 기체를 사용해왔다. 이를 전자 소자나 전자기기로 응용하기 위해서는 합성 후 분리, 집적, 패터닝 등 복잡한 공정을 거쳐야하는 단점이 있었다. 따라서 다단계의 공정과 고비용, 비환경적인 특성 때문에 나노소자의 대량생산과 상용화에 커다란 걸림돌이 되고 있었다. 연구팀은 기판위에 나노물질 전구체(어떤 물질이 되기 전단계의 물질)를 올려놓은 후 집광된 녹색파장 대역의 연속파형 레이저를 조명해 원하는 위치에 나노와이어를 합성하는데 세계 최초로 성공했다. 이 기술을 이용하면 나노물질의 집적 및 패터닝은 물론 단 한 번의 공정으로 기능성 나노소자 제작이 가능하다. 이와 함께 기판의 종류에 상관없이 공정이 가능해 유연한 플라스틱 기판에도 적용 가능하다. 또 3차원 구조물 위에서도 자유롭게 원하는 위치에 단순 레이저 조명만으로도 나노 물질을 합성, 패터닝 할 수 있다. 여준엽 박사는 이번 연구에 대해 “빛에너지를 이용해 나노물질을 합성, 집적, 패턴, 소자제작을 한 번에 가능케 하는 새로운 공정을 세계 최초로 개발했다”며 “향후 기능성 전자 소자 개발에 드는 시간을 기존의 10분의 1도 채 안되는 수준으로 단축할 수 있다”고 말했다. 여 박사는 향후 다양한 나노물질의 조합을 통해 다기능 전자 소자의 개발의 상용화와 대량생산 공정을 개발할 계획이다. 여준엽 박사와 고승환 교수팀이 주도한 이번 연구는 KAIST 기계공학과 성형진 교수, 홍석준 박사과정, 강현욱 박사과정, 미국 UC Berkeley 그리고로폴로스 교수, 이대호 박사가 참여했으며, 한국연구재단 중견도약사업과 지식경제부 협동사업, 글로벌프런티어사업, KAIST EEWS 연구단의 지원을 받았다. 붙임 : 그림설명 그림1. 레이저 조명을 쪼여 원하는 위치에 합성된 나노 물질 그림2. 개발된 공정을 이용해 3차원 구조물 위에 합성된 나노 물질 그림3. 합성된 나노 물질을 통해 제작된 기능성 전자 소자 그림4. 어드밴스트 펑셔널 머티리얼스 프런티스피스 표지 사진
2013.07.17
조회수 18295
깨지지 않는 스마트폰 화면 나온다!
- 유리섬유직물 적용한 고강도 플라스틱 디스플레이 기판 개발 - - “기존 유리 기판 대체 가능해 일대 혁신 가져올 것” - 깨지지 않는 핸드폰 화면을 구현하고, 대화면 TV의 무거운 유리 기판 대신 가벼운 플라스틱 필름을 사용할 수 있는 길이 열렸다. KAIST IT융합연구소 윤춘섭 교수(물리학과) 연구팀이 깨지기 쉬운 디스플레이 유리 기판을 대체할 수 있는 고강도 플라스틱 기판 원천기술을 개발했다. 윤 교수팀이 유리섬유직물을 무색투명 폴리이미드 필름에 함침시켜 만든 플라스틱 기판은 고내열, 고투명, 고유연, 고내화학, 고인장강도 특성을 갖고 있다. 소재는 플라스틱 필름의 장점인 유연성을 갖고 있으면서도 인장강도는 일반 유리보다 세 배 크고 강화유리와 비슷하다. 또 유리처럼 무색투명하고, 450℃까지 내열성을 가지며, 열팽창률은 기존 플라스틱 열팽창률의 10∼20%에 불과하다. 유리 기판은 표면이 매끄러울 뿐만 아니라 디스플레이 기판의 조건인 고내열, 고투명, 고내화학, 고인장강도 특성을 모두 가지고 있어 지금까지 핸드폰 화면, TV, 컴퓨터 모니터 등 거의 모든 디스플레이에 사용돼 왔다. 그러나 유리 기판은 무겁고 깨지기 쉬운 단점이 있어 최근 유리 기판을 대체할 목적으로 열적, 화학적 안정성이 우수한 플라스틱 재질의 무색투명 폴리이미드 필름이 활발하게 연구되고 있다. 그러나 무색투명 폴리이미드 필름은 내열성 및 기계적 강도가 충분하지 못하기 때문에 이를 보강하기 위해 유리섬유직물을 폴리이미드 필름에 함침시키면 필름의 표면 거칠기 및 광 투과도 조건이 악화되는 문제가 발생해 실용화되지 못하고 있다. 이는 유리섬유직물을 폴리이미드 전구체 용액에 함침시킬 때 용매가 증발하며 0.4µm(마이크로미터) 내외의 표면 거칠기가 발생하고, 무색투명 폴리이미드 필름과 유리섬유직물의 굴절률 불일치로 인한 광 산란이 심하게 발생하기 때문이다. 윤 교수팀은 투명 폴리이미드 필름의 굴절률을 유리섬유직물의 굴절률과 소수 네 자리까지 일치시키는 방법과, 필름의 표면 거칠기를 수 nm 수준으로 평탄화 시키는 핵심기술을 개발해 이 문제를 해결했다. 그 결과 110µm 두께의 유리섬유직물 함침 무색투명 폴리이미드 필름 기판에서 11ppm/℃의 열팽창률, 0.9nm의 표면 거칠기, 250MPa의 인장강도, 2mm의 굽힘곡률반경, 90%의 광 투과도를 달성했다. 윤춘섭 교수는 “개발된 기판은 기존 디스플레이의 유리 기판을 대체할 수 있고, 플렉서블 디스플레이 기판으로도 사용할 수 있다”며 “핸드폰 화면이 깨지는 문제점을 근본적으로 해결하고, 대면적 TV의 무게 및 두께를 획기적으로 줄일 수 있으며, 디스플레이 생산에 롤투롤 공정을 적용할 수 있어 디스플레이 산업에 일대 혁신을 가져올 수 있을 것”이라고 전망했다. 한편, 2008년부터 5년간 지식경제부의 ‘모바일 플렉시블 입출력 플랫폼 개발사업’의 지원으로 개발된 이 기술은 총 3건의 특허출원을 마치고 관련기업과 기술 이전을 협의 중이다. 그림1. 유리섬유직물의 굴절률이 무색투명 폴리이미드 필름의 굴절률과 일치된 경우의 필름 투명도(좌측)와 일치되지 않는 경우(우측). 좌측의 글자는 선명하게 보이는 반면 우측의 글자는 뿌옇게 보인다. 그림2. 개발한 유리직물섬유 사진
2013.05.14
조회수 16844
임춘택 교수, 새로운 무선충전 전달장치 개발
- 온라인 전기차 OLEV 용 ‘I형 무선전력 전달장치’ 개발 - - 기존의 레일형 플랫폼 대비 공사기간 10분의 1로 단축하고 선로비용 기존의 80% 수준 - 우리 대학이 개발한 온라인 전기차 올레브(이하 OLEV)가 경제성을 더욱 개선한 새로운 무선전력 전달장치 개발로 실용화에 한걸음 더 다가섰다. 우리 대학 원자력및양자공학과 임춘택 교수(49세)가 기존의 레일형 급전선로와 형태가 다른 ‘I형 무선전력 전달장치’를 개발했다 임 교수 연구팀이 개발에 성공한 I형 무선전력 전달장치는 모듈형 제작이 가능하기 때문에 기존의 급전선로에 비해 콘크리트 공사가 필요 없고 아스팔트 시설비용도 절약할 수 있어 온라인 전기차에 적용할 경우 설치비용을 크게 절감할 수 있는 이점이 있다. KAIST OLEV는 도로 밑 약 15cm 지점에 매설한 전선에서 발생하는 자기장을 차량하부에 장착한 집전장치에서 전기에너지로 변환해 운행하는 새로운 개념의 친환경 전기차인데, KAIST가 지난 2009년 세계 최초로 도로주행용 무선전기차 개발에 성공했다. KAIST OLEV는 신호대기 등 정차 중에 충전할 수 있으며 주행 중에는 실시간으로 전력을 전달받아 운행한다. 현재 대전 KAIST 문지캠퍼스를 비롯해 여수 엑스포전시관, 서울대공원에서 각각 시범운행 중인 OLEV는 레일형으로 급전선로 폭이 80cm이며 공극간격 20cm에서 집전장치 당 15kW까지 충전이 가능하다. KAIST OLEV는 그 동안 기술력과 아이디어 면에서는 크게 인정을 받은 반면 기존 도로에 설치하기 위해선 도로를 파고 시스템을 설치해야 하는 등 경제성 문제로 상용화에 어려움이 있다는 지적을 받아왔다. 임 교수팀이 이번에 새로 개발한 ‘I형 무선전력 전달장치’는 급전선로 폭을 10cm로 줄여 기존선로 폭의 1/8로 줄였으며 무선전력도 공극간격 20cm에서 25kW까지 전달할 수 있도록 성능이 대폭 향상됐다. 또한 차량의 좌우 허용편차도 24cm로 넓어졌으며 전자기장도 국제적 설계 가이드라인을 충족해 인체안전성에도 문제가 없다. 급전선로 폭이 획기적으로 줄어들고 공장에서 대량으로 모듈제작이 가능해진 만큼 그동안 경제성 측면에서 지적을 받아 온 KAIST OLEV로서는 새로운 급전시설 개발이 실용화에 큰 도움이 될 것으로 전문가들은 예상하고 있다. 임춘택 교수도 “기존 레일형에 비해 공사시간은 10분의 1로 크게 단축되고 급전선로 비용도 80%에 불과해 시공성과 경제성이 모두 크게 개선됐다”고 강조했다. 임 교수 연구팀의 이번 연구성과는 작년 12월 국제전기전자공학회 전력전자 저널 (IEEE Trans. on Power Electronics)에 게재됐다. 임 교수는 올 2월 미국에서 열린 국제 전기차학회 (Conference on Electric Roads & Vehicles)에 초청돼 관련기술에 대해 강연도 진행했다. 한편, 이번 연구는 지식경제부가 지원한 온라인 전기자동차(OLEV) 원천기술개발과제를 통해 수행됐다.
2012.06.22
조회수 14887
‘테라헤르츠파’를 아시나요?
정기훈 교수 - 광학나노안테나 접목해 테라헤르츠파 출력 최대 3배 향상시켜 -- 내시경 등 초소형 바이오 진단시스템 등 다양한 분야 응용 기대 - 광학계의 블루오션이라 불리는 ‘테라헤르츠파’의 출력이 KAIST 연구진에 의해 크게 향상됐다. 앞으로 휴대용 투시카메라나 소형 바이오 진단시스템 등 다양한 분야에 응용될 수 있을 것으로 전망된다. 우리 학교 바이오및뇌공학과 정기훈 교수 연구팀이 광학나노안테나 기술을 접목해 테라헤르츠파의 출력을 기존보다 최대 3배 증폭시키는 데 성공했다. 테라헤르츠파는 100GHz에서 30THz 범위의 주파수를 갖는 전자기파로, 가시광선이나 적외선보다 파장이 길어 X선처럼 투과력이 강할 뿐 아니라 X선보다 에너지가 낮아 인체에 해를 입히지 않는다. 이러한 특성으로 X-ray처럼 물체의 내부를 투과해 볼 수 있으며, 주파수 내에서 특정 영역을 흡수하기 때문에 X선으로는 탐지하지 못하는 우편물 등에 숨겨진 폭발물이나 마약을 찾아낼 수 있다. 심지어 가짜약도 판별해낼 수 있다. 또한, 분광정보를 통해 물질의 고유한 성질을 특별한 화학적 처리 없이 분석할 수 있어 인체에 손상이나 고통을 주지 않고도 상피암 등 피부 표면에 발생하는 질병을 효과적으로 즉시 확인할 수 있다. 테라헤르츠파는 펨토초(10-15초) 펄스레이저를 광전도 안테나가 형성된 반도체기판에 쪼여주면 피코초(10-12초) 펄스 광전류가 흐르면서 발생된다. 그러나 출력이 부족해 바이오센서 등 다양한 분야의 상용화에 어려움이 있어 그동안 과학자들이 출력을 증폭시키기 위한 많은 노력들이 이어졌다. 정 교수 연구팀은 광전도안테나 사이에 금 나노막대로 구성된 광학나노안테나를 추가하고 구조를 최적화했다. 그 결과 광전도기판에 나노플라즈모닉 공명현상이 발생되면서 광전류 펄스가 집적도가 높아져 출력이 최대 3배까지 증폭됐다. 이에 따라 물체의 내부를 더욱 선명하게 볼 수 있을 뿐만 아니라 생검을 하지 않고도 좋은 영상과 함께 성분 분석이 가능해졌다. 정기훈 교수는 “이번에 개발한 원천기술을 테라헤르츠파 소자 소형화 기술과 결합해 내시경에 응용하면 상피암을 조기에 감지할 수 있다”며 “앞으로 이 같은 바이오센서 시스템을 구축해 상용화하는 데 주력할 것”이라고 말했다. 바이오 및 뇌 공학과 박상길 박사과정, 진경환 박사과정, 예종철 교수, 이민우 박사과정, 물리학과 안재욱 교수가 공동으로 수행한 이번 연구는 나노분야 세계적 학술지 ‘ACS Nano" 3월호(27일자)에 실렸다. 한편, 이번 연구는 지식경제부 및 한국산업기술평가원의 산업융합기술/산업원천기술개발사업 및 교육과학기술부가 지원하는 한국연구재단의 도약연구자지원사업 등의 일환으로 수행됐다. 그림1. 나노안테나를갖는THz 발생기 전자현미경사진: 광학나노안테나가 집적된 테라헤르츠 생성소자의 전자현미경 이미지. 그림2. NP-PCA 개념도: 광학나노안테나가 집적된 테라헤르츠 생성 소자의 개념도. 테라헤르츠 광전도 안테나 사이의 집적된 광학나노안테나에 의해, 광전류 펄스를 생성하는 펨토초 광펄스의 세기가 기판 표면에서 증가한다. 이를 통해 기존 테라헤르츠 생성소자의 테라헤르츠 출력 파워를 증가 시킬 수 있다. 그림3.나노안테나를갖는THz 발생기모식도 : 광학나노안테나에 의한 증가되는 테라헤르츠 파 출력의 가상도.
2012.04.23
조회수 21142
KAIST, 의료영상기기의 블루오션을 개척한다!
- PET-MR 검출기 용 반도체형 실리콘 광증배관 국산화개발 성공 - - 2년 이내에 순수 국내기술로 상용화 가능 -- 전량수입에 의존하던 방사선 검출기의 국산화도 가능 - 우리 학교 원자력 및 양자공학과 조규성 교수 연구팀과 나노종합팹센터(소장 이귀로) 설우석 박사 연구팀이 공동으로 의료영상기기 중 하나인 PET-MR의 핵심소자인 ‘실리콘 광증배관(SiPM)’을 개발하는 데 성공했다. 실리콘 광증배관은 의료영상기기의 방사선 검출기에 들어오는 빛을 증폭하는 부품이다. 현재 국내에서 시판되는 PET-MR 가격이 약 50억원인데 이 부품은 전체 가격의 10% 이상을 차지할 정도로 매우 고가다. 실리콘 광증배관의 필요성이 최근 들어 크게 대두되고 있지만, 개발이 어려워 전 세계에서 독일, 일본, 미국 등 선진국들만 이 기술을 보유하고 있다. 앞으로 조 교수 연구팀이 개발한 기술이 상용화되면 국내시장 규모가 2010년 3000억원에 달했으나 국산 부품이 전무했던 PET 분야에서 커다란 경제적 파급효과를 낼 것으로 예상된다. PET-MR은 인체조직의 해부학적 영상과 물질대사의 분석이 가능한 자기공명영상기기(MRI, Magnetic Resonance Imaging)와 인체의 세포활동과 대사상태를 분자 수준까지 분석할 수 있는 양전자방출단층촬영기기(PET, Positron Emission Tomography)의 장점이 결합된 최첨단 의료영상기기다. 이처럼 PET와 MRI의 장점만 갖춘 꿈의 의료영상기기인 PET-MR의 상용화를 위해 실리콘 광증배관 개발이 필수적이다. 진공관식 광증배관을 이용하는 기존의 PET는 MR장비의 강한 자기장으로 인해 심각한 영상 왜곡이 발생하기 때문이다. 연구팀은 조도가 낮은 PET 감마선 섬광신호를 측정하는 실리콘 광증배관의 구조를 최적화하고 반응속도를 높여 에너지와 시간분해능을 동시에 향상시켰다. 또 소자 내부증폭을 통해 저조도의 광량을 100만배 증폭 시킬 수 있어 단일광자까지 측정 가능하도록 만들었다. 이와 함께 제작 공정을 단순화해 진공관식 광증배관 대비 1/10 수준의 가격경쟁력을 갖췄으며, 크기는 1/1000 수준으로 소형화를 실현했다. 조 교수 연구팀이 개발한 실리콘 광증배관은 올해 동물실험을 거쳐 앞으로 2년 이내에 우선적으로 뇌전용 PET-MR에 적용해 상용화할 계획이다. 조규성 교수는 “실리콘 광증배관의 국산화를 통해 PET와 같은 의료영상기기는 물론 후쿠시마 원전사고 이후 세계적인 수요가 급증하고 있지만 우리나라로서는 전량 수입에 의존하는 방사선 검출기의 국산화도 가능하게 됐다”며 “원전수출의 급물살에 이어 국내 방사선기기 기술의 해외시장 진출도 머지않았다”고 말했다. 한편, 이번 연구는 지식경제부가 지원하는 산업 원천기술개발사업의 일환으로 지난 4년간 수행됐다. <용어설명> ● 실리콘 광증배관(SiPM)- Silicon Photo Multiplier의 약자로 소자의 내부증폭을 이용하는 광다이오드의 한 종류다. 일반적인 광다이오드는 흡수한 광신호를 외부 증폭회로를 통해 증폭시키게 되는데 이때 외부 잡음도 함께 증폭되는 문제가 있다. 실리콘 광증배관은 소자의 내부에서 100만배로 신호를 증폭시킬 수 있어 단일 광자까지 측정가능 한 소자이다. ● 진공관식 광증배관(PMT)- 광전효과를 이용하여 빛을 증폭시키는 소자이다. 입사된 광자를 전자로 변환시킨 뒤 전기장하에서 가속하여 증폭시키는 과정을 반복한다. 증폭률이 100만배에 가깝고 그 성능을 인정받아 현제까지 가장 많이 사용되고 있는 광소자이다. 하지만 자기장 하에서 전자의 움직임이 영향을 받아 PET-MR에 사용할 수 없다. ● 양전자방출단층촬영기기(PET)- 환자에 양전자를 방출하는 동위원소를 주입한 뒤 특정부위에서 양전자가 방출되면 180° 방향으로 전자의 소멸에 의한 소멸방사선이 발생된다. 이때 환자를 둘러싼 링형태의 검출기에서 두 개의 소멸방사선을 동시에 계측하여 위치를 추정하게 된다. 암은 형성 초기에 다량의 포도당을 이용하여 에너지를 사용하므로 동위원소 표지가된 포도당을 주입하여 암의 조기 진단이 가능하다. 또한 CT나 MRI와 달리 신진대사 및 분자의 거동을 볼 수 있어 분자영상기기라고도 불린다. ● 감마선 - 방사선의 일종으로 에너지가 높아 투과율이 가장 높다. PET에서 사용되는 동위원소에서는 전자의 소멸에 의해 511keV의 감마선 쌍이 180도 방향으로 방출된다. ● 에너지 분해능 - 방사선 측정기에서 서로 다른 에너지의 방사선을 구별할 수 있는 능력. 에너지 분해능이 높아야 잡음 및 외부 방사선으로부터 표적물질이 구분 가능하다. ● 시간 분해능 - 방사선 측정기에서 측정된 서로 다른 신호의 반응 시간을 구별 할 수 있는 능력. 시간 분해능이 높아야 180도 방출된 소멸방사선의 동시계수가 가능하다. <보충자료> ▣ 의료영상기기의 특징 및 현황(2011년 6월 기준) 1) CT - 원리 : 빛 에너지인 X선을 360도 각도에서 촬영해 재구성한다. 2차, 3차원 영상촬영이 가능하다 - 특징 : 조직의 밀도차이를 구별한다. 움직이는 장기(심장, 폐, 내장) 촬영에 적합하다. MRI보다 저렴하며 조영제를 쓰기도 한다.국내보유 : 1743대, 대당가격 : 15억원 2) PET - 원리 : 방사성 약을 인체에 주사하면 포도당 등과 결합해 양전자가 나온다. 이때 나오는 감마선 신호를 영상화 한다. - 특징 : 인체 조직의 기능과 대사 상태를 영상화한다. 한 번 만에 전신을 찍는다. 문제 위치를 정확히 드러내지 않아 최근 CT와 융합해서 많이 사용한다.국내보유 : 155대, 대당가격 : 20억원 3) MRI - 원리 : 체내 물 성분의 하나인 수소 원자핵에 자기장을 걸고 핵 진동을 일으켜 신호를 분석한다. - 특징 : 수분이 많은 근육, 인대, 물렁뼈, 디스크, 혈관, 지방, 뇌를 CT보다 정확히 보여준다. 방사선을 쓰지 않는다.국내보유 : 985대, 대당가격 : 20억원 ▣ PET-MR의 임상적 유용성 PET-MR은 PET(양전자단층촬영장치)와 MRI(자기공명영상장치)의 장점만을 합친 퓨전(융합)영상기기이다. –PET는 뇌세포의 유전자 및 분자과학적인 변화를 알 수 있지만, 공간해상도가 떨어진다는 단점이 있다. –반대로 MR은 수백 mm 정도로 해상도가 높으나 유전자 및 분자과학적인 변화를 볼 수 없다. •PET-MR은 –두 영상기기의 단점을 해결해, 뇌 세포의 기능 및 분자과학적인 변화를 3차원 고정밀 영상으로 얻을 수 있다. –6겹으로 이루어진 뇌의 피질을 층마다 분리해 정밀하게 볼 수 있으며(해부학적 고해상도 영상), 뇌의 미세혈관도 분자수준에서 관찰(생리학적 고민감도 영상)이 가능하다. –MRI영상과 PET 영상을 동시에 얻음으로써 같은 위치에 있는 조직의 생화학적 변화를 동시에 관찰하여 진단의 민감도(sensitivity, TP)와 특이도(specificity, TN)를 향상시킬 수 있다.–저해상도 PET 영상이 호흡이나 심장박동과 같이 인체의 motion artifact에 의해 저해되는 것을 gated MR 영상을 이용하여 보정할 수 있다. ▣ 시장규모-2010년 미국의 PET 및 PET-CT 시장은 약 5.2조원으로 5년 평균 16.7%성장률을 기록하고 있다. 한국의 PET시장은 2010년 까지 150대에 이르는 PET기기 도입으로 3400억에 이르는 시장을 형성하고 있다. 또한 고령화 사회로 진입함에 따라 암, 치매에 대비한 PET-CT 혹은 PET-MR 융합기기의 수요가 증가하여 더 큰 규모의 시장형성이 예상된다. ▣ SiPM개발의의Siemens사는 실리콘 Avalanche photodiode (APD)를 이용하여 직접 융합하는 방식의 PET-MR을 2010년 후반부에 출시한 바 있다. 하지만 실리콘 APD는 진공관식 증배관에 비해 자기장에 강하지만 증폭도가 낮고 이득이 불안정한 것이 단점이다. 실리콘 광증배관은 5~6년전 아일랜드의 SensL사가 최초로 상용화한 광센서로서 실리콘 APD와 진공관식 광증배관의 장점만을 취할 수 있기 때문에 낮은 조도의 광신호를 크게 증폭시킬 수 있는 데 심지어는 단일 광자까지 측정 가능하다. 또한 기존 진공관식 광증배관에 비해 소형이고 양산성이 좋아 경제성이 높은 새로운 광 소자로써 각광을 받아 국내외 연구가 활발히 진행되고 있다. <그림설명> 그림1. 반도체형 광증배관과 섬광체 단결정이 결합된 PET 검출기 개념도 그림2. 연구팀이 개발한 PET-MR용 반도체형 광증배관 사진 그림3. 마이크로 셀 어레이로 구성된 실리콘 광증배소자 그림4. 단일 광증배소자 (우상) 및 4x4 어레이구조의 16채널 광증배소자(우하) 그림5. 격자형 섬광결정과 어레이형 실리콘 광증배소자 및 신호처리회로가 결합된 PET 검출기 모듈
2012.01.26
조회수 25177
스마트폰 질병진단 원천기술 개발
- 신개념의 생체분자 검출기술로 휴대용 체외진단 분야에 획기적 원천기술- 화학분야 세계적 학술지 ‘앙게반테 케미’ 1월호(16일자) 표지논문 선정 스마트폰으로도 질병을 진단하는 원천기술이 국내 연구진에 의해 개발됐다. 우리 학교 생명화학공학과 박현규 교수 연구팀이 스마트폰을 비롯한 휴대용 개인기기에 널리 이용되고 있는 정전기방식의 터치스크린을 이용해 생체분자를 검출하는 원천기술을 세계 최초로 개발하는 데 성공했다. 앞으로 병원에 가지 않고도 스마트폰을 가지고 간단한 질병을 진단하는 시대가 열릴 것으로 기대된다. 최근 스마트폰과 같은 휴대용 전자기기에 적용되는 정전기방식의 터치스크린은 일반적으로 손가락의 접촉을 통해 발생하는 터치스크린 표면의 정전용량 변화를 감지해 작업을 수행하도록 설계돼 있다. 연구팀은 DNA가 자체의 정전용량을 가지고 있으며, 농도에 따라 정전용량이 변화한다는 사실에 착안해 정전기방식의 터치스크린을 생체분자 검출에 활용할 수 있을 것이라고 예상했다. 이를 규명하기 위해 연구팀은 대표적인 생체분자인 DNA를 터치스크린 위에 가하고 정전용량 변화량을 감지했다. 실험결과 터치스크린을 이용해 DNA의 유무와 농도를 정확하게 검출할 수 있었다.이 결과에 따라 DNA뿐만 아니라 세포, 단백질, 핵산, 등 대부분의 생체분자가 정전용량을 갖고 있기 때문에 다양한 생체물질의 검출에도 활용될 수 있다는 가능성을 제시했다는 게 이 기술의 큰 특징이다. 박현규 교수는 “모바일 기기 등에 입력장치로만 이용해 왔던 터치스크린으로 생체 분자 등의 분석에 이용할 수 있음을 세계 최초로 입증한 결과”라며 “이 원천기술을 이용해 앞으로 터치스크린 기반의 스마트폰 또는 태블릿 PC 등을 이용해 개인이 질병을 진단하는 시대가 올 것”이라고 말했다. 이와 함께 논문의 제1저자인 원병연 연구조교수는 “현재는 생체분자의 유무 또는 농도만 측정 가능한 단계이며, 앞으로 특정 생체분자를 선택적으로 검출할 수 있는 기술을 개발해 가까운 시일 내에 상용화에 주력할 것”이라고 덧붙였다. 한편, 이번 연구는 지식경제부가 시행하는 ‘산업원천기술개발사업’으로 수행됐으며, 연구의 중요성을 인정받아 화학 분야의 세계적 학술지 ‘앙게반테 케미(Angewandte Chemie International Edition)’ 1월호(16일자) 표지논문으로 선정됐다. 그림1. 터치스크린을 이용한 생체 분자 검출 시스템 모식도 (앙게반테 케미 논문 표지). 휴대용 모바일 기기의 입력장치인 터치스크린 위에서 세포, 단백실, 핵산, 소분자 등의 생체 분자를 검출할 수 있다. 그림2. 정전용량 터치스크린 방식의 한가지인 surface capacitive touchscreen을 이용한 시스템 모식도. 여러 지점을 동시에 접촉했을 때 접촉점의 시료 농도에 따라 터치 신호의 위치가 변하는 원리를 이용한 방법. 동시에 두 개의 미지 시료의 농도를 측정할 수 있다. 그림3. 정전용량 터치스크린 방식의 한가지인 projected capacitive touchscreen을 이용한 시스템 모식도. 현재 스마트폰 등에 쓰이는 터치스크린 방식으로서, 터치스크린 표면 내부에 여러 라인의 전극이 패턴되어 있어, 각 전극의 정전용량 변화를 각각 측정함으로써 여러 접촉 시료의 농도를 동시에 검출할 수 있다.
2012.01.16
조회수 18378
고성능 플렉시블 디스플레이 기술 개발
- 금속 나노입자 펨토초레이저 소결공정을 이용한 극미세 금속패턴 제작 -- 세계적 학술지 ‘어드밴스드 머티리얼즈’ 7월호 게재 - 국내 연구진이 플렉시블 디스플레이 전자소자 제작을 위한 차세대 금속 나노패터닝 기술개발에 성공했다. 우리 학교 기계공학과 고승환·양동열 교수팀이 공동으로 연구한 이번 성과는 기존의 광식각 증착공정을 이용하지 않고 수백나노의 고정밀도 금속 패턴을 펨토초레이저 스캐닝공정을 이용해 단일 디지털 공정으로 제작하는 기술을 개발했다. 이 기술을 이용하면 다양한 기판에서 고정밀 패터닝이 가능해져 유기 전자소자 기술 등과 결합하게 되면 성능과 집적도가 우수하면서도 자유자재로 휘어질 수 있는 고성능 플렉시블 전자소자나 디스플레이 등이 실현될 수 있을 것으로 기대된다. 일반적으로 집적도가 높은 전자소자 제작을 위해서는 고비용의 노광 혹은 광식각 공정이나 고진공 전자빔 공정을 통한 금속 패턴의 제작이 필수적이다. 최근에는 잉크젯 및 롤투롤(Roll to Roll) 프린팅 기술을 이용해 직접 금속 패턴 제작이 시도되고 있다. 그러나 공정 특성상 1㎛(마이크로미터, 100만분의 1미터) 이하의 정밀도 달성에는 한계가 있어 고집적·소형화에 불리했다. 연구팀은 3~6nm(나노미터, 10억분의 1미터) 크기의 녹는점이 낮은 은 나노 입자와 열확산을 최소화할 수 있는 금속 나노입자 펨토초레이저 소결공정 (Femtosecond laser selective nanoparticle sintering, FLSNS)을 개발했다. 더불어 유리, 웨이퍼, 고분자 필름 등 다양한 기판위에 1㎛이하의 고정밀도 금속 패턴을 단일 공정으로 제작할 수 있는 기술도 개발해, 이 기술을 이용해 최소 정밀도 380nm 선폭의 극미세 금속패턴 제작에 성공했다. 연구팀은 개발된 금속 패터닝 기술을 KAIST 전기 및 전자공학과 유승협 교수팀과의 협력을 통해 유기 전계효과 트랜지스터 제작공정에 적용해, 차세대 플렉시블 전자소자 제작에 활용될 수 있는 가능성을 제시했다. 고승환 교수는 “고가의 진공 전자빔 공정을 통해서만 제작 가능했던 기존의 디지털 직접 나노패터닝 기술을 비진공, 저온 환경에서 구현함으로써 전자빔 공정을 대체할 수 있을 뿐만 아니라 향후 다양한 플렉시블 전자소자 제작으로 적용될 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 한국연구재단의 나노원천기술개발 및 신진연구 사업지원, 지식경제부의 협동사업지원을 받아 수행됐으며, 재료과학기술 분야의 세계적 권위의 학술지인 ‘어드밴스드 머티리얼즈(Advanced Materials)’ 7월호에 게재됐다. ※ 용어설명금속 나노패터닝 : 고밀도로 집적된 전기/전자회로 구현을 위해서는 1㎛이하의 선폭을 갖는 고정밀도 금속패턴 구현 기술이 필요하다. 이에 따라 기존의 방법이 아닌 새로운 패터닝 공정에 관한 다양한 연구가 수행 중에 있다. 광식각 증착공정 : 미세 패턴 제작으로 널리 사용되어지고 있는 공정으로 빛에 반응하는 재료에 대해 선택적으로 빛을 조사하여 미세 패턴을 제작하고 원하는 물질을 고온, 진공 조건하에서 증착하는 공정으로 기존의 디스플레이, 반도체 제작 공정으로 이용되고 있다. 유기 전계효과 트랜지스터 : 전자기기 구동회로의 핵심소자인 트랜지스터는 전류의 흐름을 선택적으로 조절하는 역할을 한다. 트랜지스터의 구성에는 전류가 흐르는 채널로서 반도체가 필수적인데, 통상적으로는 고온처리가 필요한 실리콘 (Si)이 쓰이고 있다. 유기 전계효과 트랜지스터는 채널 물질로 박막의 유기반도체가 쓰이는 것으로서, 상대적으로 낮은 온도에서 플라스틱과 같은 다양한 기판에 제작 가능하여 유연한 전자 소자 제작에 이상적이며, 궁극적으로 소자 제작이 인쇄 방법으로 구현 될 경우 저비용 전자소자 제작에도 활용 가능할 것으로 예상되고 있다. 펨토초 레이저(femtosecond laser) : 긴 시간 동안 일정한 출력으로 레이저를 방출하는 연속형 레이저와는 달리 짧은 시간 동안만 레이저를 방출하는 것을 펄스형 레이저라고 한다. 이러한 펄스형 레이저의 방출 시간을 천조분의 1초, 즉 10-15초 까지 낮춘 것이 펨토초 레이저이다. 이러한 매우 짧은 펄스폭은 레이저가 조사되는 재료 내부에 열이 확산하는 시간(10-12s, 피코초)보다 짧기 때문에 가공시 열영향부가 작아 정밀 가공에 응용할 수 있다. 그림1. 선택적 금속 나노입자 펨토초 레이저 소결 공정 그림2. 극미세 금속 패턴
2011.08.02
조회수 20170
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1