본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%A7%81%EC%A0%91%EA%B3%B5%EA%B8%B0%ED%8F%AC%EC%A7%91
최신순
조회순
이산화탄소만 잡아내는 유망 소재를 AI로 쉽게 찾는다
기후 위기를 막기 위해 이미 배출된 이산화탄소를 적극적으로 줄이는 것이 필수적이며, 이를 위해 공기 중 이산화탄소만 직접 포집하는 기술(Direct Air Capture, 이하 DAC)이 주목받고 있다. 하지만 공기 중에 존재하는 수증기(H₂O)로 인해 이산화탄소만 효과적으로 포집하는 것이 쉽지 않다. 이 기술의 핵심 소재로 연구되는 금속–유기 구조체(Metal-Organic Frameworks, 이하 MOF)를 활용해 우리 연구진이 AI 기반 기계학습 기술을 적용, MOF 중에서 가장 유망한 탄소 포집 후보 소재들을 찾아내는 데 성공했다. 우리 대학 생명화학공학과 김지한 교수 연구팀이 임페리얼 칼리지 런던(Imperial College London) 연구팀과 공동 연구를 통해 대기 중 이산화탄소 포집에 적합한 MOF를 빠르고 정확하게 선별할 수 있는 기계학습 기반 시뮬레이션 기법을 개발했다고 29일 밝혔다. 복잡한 구조와 분자 간 상호작용의 예측 한계로 인해 고성능 소재를 찾는 데 큰 제약을 극복하기 위해, 연구팀은 MOF와 이산화탄소(CO2), 물(H2O) 사이의 상호작용을 정밀하게 예측할 수 있는 기계학습(머신러닝) 기반 역장(Machine Learning Force Field, MLFF)을 개발하고, 이를 통해 양자역학 수준의 예측 정확도를 유지하면서도 기존보다 월등히 빠른 속도로 MOF 소재들의 흡착 물성을 계산할 수 있도록 했다. 연구팀은 개발된 시스템을 활용해 8,000여 개의 실험적으로 합성된 MOF 구조를 대규모 스크리닝한 결과, 100개 이상의 유망한 탄소 포집 후보 소재를 발굴했다. 특히 기존의 고전 역장 기반 시뮬레이션으로는 확인되지 않았던 새로운 후보 소재들을 제시했으며, MOF의 화학 구조와 흡착 성능 간의 상관관계를 분석해 DAC용 소재 설계에 유용한 7가지 핵심 화학적 특징도 함께 제안했다. 이번 연구는 MOF–CO2 및 MOF-H2O 간 상호작용을 정밀하게 예측함으로써, DAC 분야의 소재 설계 및 시뮬레이션 기술을 크게 향상한 사례로 평가된다. 우리 대학 생명화학공학과 임윤성 박사과정과 박현수 박사가 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 `매터 (Matter)'에 지난 6월 12일 게재됐다. ※논문명: Accelerating CO2 direct air capture screening for metal-organic frameworks with a transferable machine learning force field ※DOI: 10.1016/j.matt.2025.102203 한편, 이번 연구는 Saudi Aramco-KAIST CO2 Management Center와 과학기술정보통신부의 글로벌 C.L.E.A.N. 사업의 지원을 받아 수행됐다.
2025.06.30
조회수 238
전기 공급만으로 공기 중 CO₂를 제거하다
대기 중 이산화탄소 농도가 증가됨에 따라 지구 평균 기온도 약 1.2도 상승했으며 이는 극단적인 기상 현상, 해수면 상승, 생태계 파괴 등 심각한 환경 문제를 초래하고 있다. 우리 연구진이 공기 중 0.04%가량 존재하는 이산화탄소를 95% 이상 순도로 포집해 추후 이산화탄소 기반 연료 및 화학제품 생산 등 사용할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 순수 전기만으로 작동해 공기 중 이산화탄소를 효율적으로 제거할 수 있는 혁신적인 탄소 포집기를 개발하고 상용화하는 데 성공했다고 29일 밝혔다. 이 기술은 이번 연구를 주도한 김규남 박사과정 연구원의 학생 창업기업(소브(Sorv), 대표 김규남)을 통해 기술 상업화를 추진 중이다. 고동연 교수 연구팀은 전기 가열원이 이산화탄소 흡착제와 한꺼번에 대량 생산될 수 있는 기술을 자체적으로 개발하고, 이를 통해 벤치 규모의 직접 공기 포집(Direct Air Capture, 이하 DAC) 시스템 구현에 성공했다. 외부 열에너지의 공급 없이 전기만으로 구동할 수 있는 본 기술은 태양광, 풍력 등 다양한 재생에너지원을 직접 이용할 수 있고, 시스템의 부피가 매우 작아 기존 탄소 포집기가 적용될 수 있는 영역의 한계를 뛰어넘을 수 있다. 공기 중 극미량 존재하는 이산화탄소를 포집하는 기술을 기술 수준 하단에서 상단까지, 즉 실험실 단계에서 상업적 규모로 확대하는 것은 매우 어려운 일이다. 첫째, 대기 중 이산화탄소 농도가 낮아 이를 효과적으로 포집하기 위해서는 매우 효율적인 흡착제가 필요하다. 둘째, 포집된 이산화탄소를 경제적이고 에너지 효율적으로 분리하는 시스템이 필요하다. 셋째, 이 모든 과정을 대규모로 구현하기 위해서는 안정하고 일관성 있는 공정이 보장돼야 한다. 연구팀은 이러한 도전에 맞서 전기 가열원이 통합된 흡착제 및 시스템을 개발해 이산화탄소 포집기의 성능을 극대화했다. 이 흡착제는 대량 생산이 가능하며, 넓은 비표면적을 제공해 이산화탄소를 더 효율적으로 흡착할 수 있다. 또한, 빠른 흡착 및 탈착 속도를 자랑하며, 구조적으로 강해 반복적인 사용에도 변형이 적다. 연구팀이 개발한 탄소 포집기는 고성능의 흡착 소재에 이산화탄소를 흡착한 후 전기로 작동하는 가열원을 통해 발생하는 열을 이용해 순수한 이산화탄소 얻어내는 방식으로, 에너지 효율이 높고 정밀한 온도 제어가 가능하다. 이 시스템의 큰 장점 중 하나는 재생에너지로만 가동이 가능할 정도로 에너지 효율적이라는 점이다. 이는 전기에 접근성이 있는 모든 지리적 환경에 배치가 가능해, 다양한 장소에서 이산화탄소를 포집할 수 있게 한다. 현재 실험실 스케일에서는 하루 약 1~3kg의 이산화탄소를 처리할 수 있을 것으로 예상된다. 이 기술은 향후 하루 포집량 1톤 규모 이상으로 스케일업 및 대규모 배치도 가능하며 대기 중 이산화탄소를 포집하는 용도 뿐만 아니라 화력발전소, 시멘트 공장, 철강 공장 등 대규모 이산화탄소 배출원을 대상으로도 중요한 역할을 할 것으로 기대된다. 김규남 박사과정 연구원은 "이번 연구는 대기 오염 문제 해결에 한 발 더 다가설 수 있는 중요한 성과이며, 앞으로도 지속적인 연구를 통해 기술을 발전시키고 실제 환경에서의 적용 가능성을 높이겠다”라고 말했다. 연구팀은 본 기술의 혁신성을 인정받아 2022년에는 랩 스타트업(Lab Startup) KAIST 최우수상 수상, 2023년에는 미국 R&D 100 어워즈(Awards)의 파이널리스트(Finalist)로 선정됐으며, 2024년 1월에는 라스베이거스에서 개최된 국제전자제품박람회(CES 2024)에 e-DAC 데모 유닛을 전시하고 부스 발표를 하며 기술의 우수성을 널리 알린 바 있다. 이번 연구는 사우디 아람코-KAIST 이산화탄소 연구센터의 지원으로 이루어졌으며, 양 기관의 지속적인 협력을 통해 더욱 혁신적인 기술 개발이 기대된다.
2024.07.29
조회수 5578
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1