본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B9%B4%EC%9D%B4%EB%9E%84%EC%84%B1
최신순
조회순
‘카이랄 나노 페인트’ 기술로 항암, 코로나 치료 혁신
기존의 의료용 나노 소재는 체내에서 잘 전달되지 않거나 쉽게 분해되는 문제가 있었다. 우리 연구진은 카이랄 나노 페인트 기술로 의료용 나노 소재에 카이랄성을 부여한 자성 나노 입자를 개발했다. 그 결과 항암 온열 치료 효과가 기존보다 4배 이상 향상됐고, 약물 전달 시스템에도 적용하여 코로나 19 백신 등 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 신소재공학과 염지현 교수 연구팀이 바이오 나노 소재의 표면에 카이랄성*을 부여할 수 있는 ‘카이랄 나노 페인트’기술을 최초로 개발했고 후속 연구로 생명과학과 정현정 교수팀과 함께 mRNA를 전달하는 지질전달체** 표면에도 성공적으로 도입했다고 19일 밝혔다. 이 연구들은 각각 국제 학술지 ACS Nano와 ACS Applied Materials & Interfaces 에 게재됐다. *카이랄성(Chirality): 카이랄성은 물체가 거울에 비친 모습과 겹치지 않는 성질을 의미함. 우리 몸에서도 카이랄성을 가진 분자들이 특정한 방식으로 작용하는데, 연구팀은 이를 활용해 나노 소재의 성능을 개선함 **지질전달체(Lipid Nanoparticle, LNP): mRNA, 유전자, 약물 등의 생체물질을 감싸서 세포 내부로 안전하게 전달하는 나노입자임. mRNA 백신(예: 코로나19 백신)과 같은 유전자 치료제에서 중요한 역할을 함. 염지현 교수 연구팀은 우리 몸은 왼손잡이(L-형)와 오른손잡이(D-형) 구조를 가진 분자들이 서로 다르게 작용하는 카이랄 선택성(Chiral Selectivity)에 주목하고 나노 소재의 표면에 ‘카이랄 나노 페인트’를 적용해 카이랄성을 부여하는 기술을 개발했다. 이를 통해 십수 나노미터(nm) 크기의 작은 나노 입자부터 수 마이크로미터 (μm) 크기의 큰 마이크로 구조체까지 다양한 크기의 소재에 카이랄성을 입히는 데 성공했다. 연구팀은 더 나아가 카이랄 나노 페인트 기술을 활용해 카이랄 자성 나노 입자를 합성하고, 이를 종양에 주입한 뒤 자기장 처리로 생성되는 열을 통해 종양 조직을 괴사시키는 항암 온열 치료 기술을 선보였다. 이 과정에서 D-카이랄성을 가진 자성 나노 입자가 L-카이랄성을 가진 자성 나노 입자보다 암세포에 더 많이 흡수되고, 그 결과 4배 이상 향상된 항암 치료 효과가 있음을 증명했다. 이와 같은 암세포 내부로의 흡수 효율 및 항암 치료 효율의 차이가 나노 입자 표면에 처리된 카이랄 나노 페인트와 세포 표면의 수용체 간의 ‘카이랄 선택적 상호작용’에 의한 것임을 컴퓨터 시뮬레이션과 세포 실험을 통해 밝혔다. 향후, 카이랄 나노 페인트 기술은 의료용 바이오 소재를 비롯해 차세대 약물 전달 시스템, 바이오 센서, 촉매 및 나노 효소 등 다양한 분야에 응용될 것으로 기대된다. 신소재공학과 정욱진 석박사통합과정 학생이 제1 저자인 이번 연구 결과는 지난 3월 2일 국제 학술지 ‘에이씨에스 나노(ACS Nano)’에 온라인 게재됐다. (논문명: Universal Chiral Nanopaint for Metal Oxide Biomaterials) DOI: 10.1021/acsnano.4c14460 후속 연구로 mRNA를 전달하는 지질전달체 표면에 카이랄 페인트 기술을 도입했다. mRNA 기반 치료제는 세포 내에서 단백질을 직접 합성할 수 있도록 유전 정보를 전달하는 방식이지만, 전달체의 불안정성으로 인해 치료 효과가 제한적이었다. 카이랄 나노 페인트 기술은 이러한 문제를 해결하여 mRNA 치료제의 효율성을 극대화할 수 있는 새로운 패러다임을 제시했다. 그 결과, D-카이랄성 페인트를 도입한 지질전달체를 사용한 경우 mRNA의 세포 내 발현을 2배 이상 안정적으로 증가시켰다. 이 연구는 생명과학과 이주희 연구원과 신소재공학과 정욱진 박사과정 학생이 공동 1 저자로 국제 학술지 ‘에이씨에스 응용 재료 및 인터페이스(ACS Applied Materials & Interfaces)’에 3월 17일 게재됐다. (논문명: Chirality-controlled Lipid Nanoparticles for mRNA Delivery, DOI: https://doi.org/10.1021/acsami.5c00920) 염지현 교수는 “이번 연구를 통해 바이오 나노 소재의 성능을 크게 향상시키고 다양한 크기 및 모양을 가진 혁신적 나노 소재 합성 방법론을 제시했다. 앞으로는 이러한 카이랄 나노 소재를 활용해 암, 코로나 등 다양한 질병을 예방하는 백신부터 진단 및 치료하는 차세대 바이오 플랫폼 개발 및 연구를 지속할 계획”이라고 설명했다. 이번 연구는 과학기술정보통신부의 재원으로 범부처전주기의료기기연구개발사업단, 연구재단 우수신진사업 등의 지원을 받아 수행됐다.
2025.03.19
조회수 1407
빛에 담긴 비대칭성을 증폭하는 카이랄 초분자 형성원리 규명
우리 대학 화학과 서명은 교수를 주축으로 한 연구팀이 분자 자기조립 시스템에 대한 연구를 통해 빛으로부터 *초분자 나선 방향이 결정되는 원리를 규명했다고 16일 밝혔다. ☞초분자(supermolecule): 분자 간 결합 또는 인력을 통해 둘 또는 그 이상의 작은 분자들이 모여 생성된 거대한 분자들의 집합을 말한다. 효소 등 기능성 생체 분자들도 초분자로 볼 수 있다. 단백질을 이루는 아미노산 분자는 오른손과 왼손처럼 모양은 같지만 서로 겹칠 수 없는 거울상이 존재할 수 있다. 그러나 지구상에서 탄생한 생명은 한 종류의 거울상 아미노산만을 선택해 단일한 *카이랄성을 띠게끔 진화했다. 아미노산에 담긴 카이랄 정보가 단백질로 전달되면 한쪽으로 꼬인 나선과 같이 분자를 넘어선 초분자 수준에서 증폭돼 나타나며, 이는 단일 카이랄성이 만들어지는 데 중요했을 것으로 여겨진다. 즉, 어떻게 카이랄성이 탄생하고 증폭됐는지는 자연이 단일 카이랄성을 지니게 된 이유와 연관 지을 수 있어, 생명의 기원과 깊게 관련된 문제다. ☞ 카이랄(Chiral): 수학, 화학, 물리학, 생물학 등 다양한 과학 분야에서 비대칭성을 가리키는 용어중 하나다. 이는 어떤 대상의 모양이 거울에 비춘 모양과 일치되지 않을 때 카이랄 성이 존재한다고 일컫는다. (Ex) 오른손 & 왼손) 태초에 같은 양씩 존재했을 거울상 분자 한 쌍 중에 한쪽의 비율이 높아질 수 있는 원인으로 시계 방향 혹은 반대로 회전하면서 나아가는 빛인 원편광이 흔히 거론되는데, 거울상 분자가 원편광을 흡수하는 정도가 서로 다르기 때문이다. 자연적으로 지구에 내리쬐는 원편광은 그 회전 방향이 무작위할 것이므로 분자와 원편광에 담긴 카이랄 정보가 서로 경쟁하는 가운데 어느 순간 한쪽 거울상이 과잉되면서 단일한 카이랄성이 출현했을 것으로 추론할 수 있으나, 분자와 원편광으로부터 카이랄 정보가 동시에 전달될 때 어떤 현상이 일어나는지는 거의 연구된 바 없었다. 우리 대학 서명은 교수 연구팀은 빛에 반응해 자기조립되는 프로펠러 모양의 분자를 찾고, 분자와 빛에 담긴 카이랄 정보가 전달돼 초분자 나선으로 나타날 때 각각 얼마나 효과적인지 연구했다. 먼저 원편광의 회전 방향과 분자 프로펠러 방향이 맞을 때 광화학 반응이 우세하게 일어나고, 이는 자기조립을 유도해 정해진 나선 방향으로 성장함을 밝혔다. 나아가 한쪽 거울상 분자가 과잉된 조건에서 원편광을 쬐어 나선 방향이 어느 쪽을 따라가는지 살핀 결과, 양자의 정보가 일치할 때 초분자 카이랄성이 증폭되고 반대일 때 상쇄되며, 심지어 빛으로 분자 카이랄 정보를 눌러 나선 방향을 반전할 수 있음을 정량적으로 보였다. 또한 일정 비율 이상의 거울상 분자가 축적되면 빛과 관계없이 단일한 나선 방향이 유지되는 것 역시 확인했다. 원편광을 선택적으로 걸러내는 소재는 현재 OLED, 3D 안경 등 디스플레이에 널리 쓰이고 있고, 원편광을 내는 재료 등은 차세대 디스플레이용 소재로 떠오르고 있다. 초분자 나선 구조는 개개의 분자에 비해 원편광을 훨씬 효과적으로 흡수하고 방출할 수 있다. 따라서 초분자 나선 구조를 한번 더 조립하여 분자-초분자-거시적 스케일에서 모두 카이랄성을 띠는 멀티스케일 카이랄 구조체를 구현한다면 카이랄성을 극도로 증폭할 수 있는 소재를 만들 수 있을 것으로 기대된다. 또한 약물로 쓰이는 화합물은 탈리도마이드처럼 반대 거울상 분자가 기형을 유발하는 등의 부작용을 일으킬 수 있는 만큼, 한쪽 카이랄성만을 가지게끔 합성하는 것이 필수적이다. 멀티스케일 카이랄 구조체는 이러한 비대칭 합성에서도 강력한 카이랄 환경을 제공하여 입체 선택성이 높은 촉매를 제조하거나, 거울상 분자를 효과적으로 검출할 수 있는 센서를 만드는 플랫폼이 될 수 있다. 연구진은 "이번 연구를 통해 빛에 담긴 비대칭성이 어떻게 분자 및 초분자 수준으로 전달되고 증폭될 수 있는지를 이해할 수 있었을 뿐 아니라, 분자에 담긴 정보와 별개로 초분자 카이랄성을 제어할 수 있는 가능성을 보였다는 데 큰 의의가 있다ˮ며, "이번 연구를 발판으로 카이랄 광학 소재, 비대칭 촉매 등 미래 먹거리가 될 수 있는 멀티스케일 카이랄 신소재 개발로 연구를 확장하겠다ˮ고 소감을 밝혔다. 우리 대학 화학과 강준수 석박사통합과정 학생이 제1 저자로 연구를 주도하고, 화학과 김우연 교수, 임미희 교수, 윤동기 교수 연구팀이 협업한 이번 연구 결과는 미국화학회가 발행하는 국제 학술지 `미국화학회지(Journal of the American Chemical Society)'에 2월 4일 字로 온라인 게재됐다. (논문명 : Circularly Polarized Light Can Override and Amplify Asymmetry in Supramolecular Helices) 이번 연구는 한국연구재단(NRF)에서 선정한 선도연구센터인 카이스트 화학과 멀티스케일 카이랄 구조체 연구센터의 지원을 받아 주로 진행됐다.
2022.02.16
조회수 12586
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1