본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%B9%B4%EC%9D%B4%EB%9E%84+%EA%B5%AC%EC%A1%B0%EC%B2%B4
최신순
조회순
7배 이상 높은 발광 3차원 퀀텀닷 나노구조체 개발
3차원 광학 나노구조체는 빛의 진폭, 위상, 편광 상태를 정밀하게 조작할 수 있어 포토닉스 분야에서 큰 관심을 받고 있다. 한국 연구진이 기존 기술로는 구현이 어려웠던 3차원 퀀텀닷 나노구조체를 정교하게 쌓아 올리는 적층 방식으로 구현하는 데 성공했다. 우리 대학 신소재공학과 정연식 교수, 전기및전자공학부 장민석 교수, 동국대학교 최민재 교수 공동 연구팀이 초미세 전사 프린팅 기반으로 3차원 퀀텀닷 구조 제작 기술을 개발했다고 27일 밝혔다. 연구팀이 개발한 이 기술은 대부분의 나노입자에 적용될 수 있어 범용성이 뛰어나고 우수한 패턴 품질을 제공할 수 있다. 또한, 프린팅 방식으로 대면적화가 가능해 고성능 소자 양산에 활용할 수 있는 장점을 가진다. 특히 편광 빛에 대한 선택적 반응을 보이는 구조적 비대칭성을 가진 대면적 카이랄 구조체를 구현해 기존 최고 기록인 19도* 대비 향상된 약 21도의 세계 최고 수준 **원편광 이색성(Circular dichroism) 성능을 달성했다. *참조: https://www.nature.com/articles/ncomms14180/figures/2 **원편광 이색성(Circular dichroism): 광학 활성이 있는 물질이 왼쪽과 오른쪽의 편광을 다르게 흡수해 나타나는 현상. 주로 단백질 등 유기화합물들의 구조체를 분석하는 용도로 활용됨. 높은 원편광이색성(단위: 도) 세기를 갖는 물질을 활용할수록 보다 정밀하고 빠른 검출이 가능해짐. 이론적으로 구현할 수 있는 최댓값은 45도임. 따라서 이 기술은 카이랄 특성을 가진 바이오 물질들을 검출할 수 있는 플랫폼으로 활용될 수 있으며, 높은 반응성 덕분에 더 정밀하고 빠른 약물 스크리닝이 가능할 것으로 기대된다. 또한, 장민석 교수팀이 설계한 그물 형태의 퀀텀닷 나노 패턴을 해당 기술을 활용하여 실험적으로 구현한 결과, 일반 퀀텀닷 필름 대비, 약 7배 이상 높은 발광 효율을 달성해 향후 고성능 퀀텀닷 디스플레이 소자에의 응용 가능성을 보였다. 연구를 주도한 정연식 교수는 “이번 연구는 퀀텀닷뿐만 아니라 다양한 고성능 콜로이드 소재를 3차원 나노 구조화함으로써, 차세대 광학 메타물질 및 고감도 바이오센서 분야 등에서 새로운 장을 열 것으로 기대된다 아울러 광학 설계 및 분석 연구와 초미세 나노공정 기술이 융합해 이룬 성공 사례의 하나로도 볼 수 있다”라고 말했다. 신소재공학과 김건영 박사와 전기및전자공학부 김신호 박사가 공동 제1 저자로 연구를 주도한 이번 연구는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 8월 14일 게재됐다. (논문명: Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns) 한편 이번 연구는 과학기술정보통신부와 한국연구재단이 지원하는 나노 및 소재기술개발사업, 교육부가 추진하는 이공분야 학술연구사업, 산업통상자원부에서 추진하는 전자부품산업기술개발사업의 지원을 받아 수행됐다.
2024.09.28
조회수 1398
윤동기 , 김형수 교수, DNA 마이크로패치 제작 기술 개발
〈 윤동기 교수, 김형수 교수, 박순모 연구원 〉 우리 대학 화학과/나노과학기술대학원 윤동기, 기계공학과 김형수 교수 공동 연구팀이 마이크로 크기의 DNA 2차원 마이크로패치 구조체를 제작하고 이를 제어, 응용하는 기술을 개발했다. 윤 교수 연구팀은 커피가 종이에 떨어지고 물이 마르면 동그랗게 환 모양이 생기는 이른바 ‘커피링 효과’라 불리는 현상을 DNA 수용액에 적용해 세계 최초로 DNA 기반의 마이크로패치를 제작했다. 차윤정 박사, 박순모 박사과정 학생이 공동 1 저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 6월 7일 자 온라인판에 게재됐다. (논문명 : Microstructure arrays of DNA using topographic control) 유전 정보를 저장하는 기능을 하는 DNA는 이중나선 구조와 나노미터 주기의 규칙적인 모양을 가져 소재 분야에서 일반적인 합성방법으로는 구현하기 힘든 정밀한 구조재료이다. 정밀한 DNA 합성과 오리가미(Origami) 기술을 이용해 스마일 패치(smile patch) 등의 재미있는 모양을 구현해 왔지만, 재료의 가격이 높아 실제 응용에 어려움을 겪었다. 윤 교수 연구팀은 이를 극복하기 위해 연어에서 추출한 DNA 물질을 이용해 기존보다 1천 배 이상 저렴한 비용으로 잘 정렬된 뜨개질(knit) 혹은 아이스크림콘 모양의 기존에 없던 마이크로패치 구조체를 대면적에서 구현했다. 연구팀은 DNA가 물에 녹으면 마치 물풀과 끈적끈적해지면서 서로 적당한 힘으로 끌어당기며 일정한 방향으로 정렬하는 액정상(liquid crystal phase)을 보인다는 점에 주목했다. 액정 표시장치(LC display 혹은 LCD)에서 액정분자들이 전기장을 통해 방향성이 제어되는 것처럼 수용액 상태의 DNA 액정상이 두 기판 사이에서 문질러지며 물의 증발이 이뤄질 때 DNA 나노 구조체들이 원하는 방향으로 정렬하게 된다. 과일 잼을 식빵에 바르면 과일 알맹이(pulp)가 한 방향으로 잘 펴 발라지면서 마르는 현상과 유사하다. 연구팀은 DNA가 한 방향으로 문질러져서 마를 때 바닥에 평평한 기판 대신 일정한 모양을 갖는 수 마이크론 크기의 기둥(혹은 요철)들이 있는 기판을 사용하면 2차원의 뜨개질 모양, 아이스크림콘 모양 등 좀 더 흥미로운 들을 제작할 수 있음을 확인했다. 또한, 금 나노막대와 같은 플라즈몬 공명(plasmon resonance)을 나타내는 소재와 결합해 디스플레이 소자에 응용을 시도했다. 플라스몬 공명은 금속으로 만들어진 기판에 빛을 쪼일 때 그 표면 위에서 전자가 일정하게 진동하면서 자신의 에너지와 일치하는 빛에만 반응하는 현상으로 특정한 색만 반사하여 선명도와 표현력을 높이는 데 사용된다. 이 방식에서 가장 중요한 점은 어떤 방향으로 금 나노막대가 정렬하는지를 나타내는 배향(orientation)이다. 즉 막대들이 한 방향으로 나란히 정렬될 때 광학·전기 특성이 극대화된다. 윤 교수 연구팀은 이러한 점에 착안해 DNA 마이크로패치를 일종의 틀로 삼아 금 나노막대들을 독특한 형태로 배향하고 플라즈몬 컬러 기판을 제작하는 데 성공했다. 연구팀이 개발한 DNA 2차원 마이크로패치 제작 기술은 DNA를 구조재료 및 전자소재로써 활용할 수 있는 단서를 마련했을 뿐 아니라 증발 현상과 DNA 액정물질이 접목될 때 나타나는 독특한 형태의 복잡한 분자 거동 해석에 대한 단서를 제공할 것으로 기대된다. 윤 교수는 “연구를 통해 밝힌 것처럼 DNA가 금 나노막대와 같은 광학 소재와 복합체를 쉽게 만들 수 있는 만큼, 자연계에 무한히 존재하는 DNA를 디스플레이 관련 분야의 신소재로서 응용할 수 있을 것으로 기대한다”라고 말했다. 이번 연구는 과학기술정보통신부-한국연구재단의 전략과제, 멀티스케일 카이랄 구조체 연구센터, 미래유망 융합기술 파이오니아사업과 신진연구 과제의 지원을 받아 수행됐다. □ 그림 설명 그림1. DNA 분자 배향 모식도 그림2. DNA-금 막대 입자 복합체의 배향 양상과 나타나는 플라즈모닉 광학 현상
2019.06.18
조회수 17292
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1