본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EC%BD%94%EB%A1%9C%EB%82%98%EB%B0%94%EC%9D%B4%EB%9F%AC%EC%8A%A4
최신순
조회순
코로나바이러스 전염 메커니즘 규명
중증급성호흡기증후군(이하 SARS) 코로나바이러스와 같은 코로나 19(COVID-19)는 전 세계적 팬데믹으로 짧은 시간 안에 확산되었지만 왜 급격히 복제돼 빠르게 전염되는지 기전이 아직까지 규명되지 않았다. 우리 연구진이 코로나바이러스 핵심 효소 단백질(헬리케이스)의 복제과정이 급격히 촉진되어 전염되는 메커니즘을 밝혀내며 바이러스 백신 및 치료제 개발에 새로운 가능성을 제시했다. 우리 대학 생명과학과 이광록 교수 연구팀이 nsp13 단백질*은 두 가지 활성을 가지고 있어 시너지 효과를 내며, 이를 통해 SARS 코로나바이러스의 유전물질인 RNA 복제를 촉진한다는 기전을 규명했다고 17일 밝혔다. *nsp13 단백질: SARS 코로나바이러스의 헬리케이스로, 바이러스가 증식하는 데 필수적인 유전자 복제와 전사 과정에 중요한 효소이다. 헬리케이스는 마치 지퍼를 열고 닫는 것처럼 DNA나 RNA의 꼬인 구조를 풀어주는데, 유전정보를 읽거나 복제할 때 유전물질을 먼저 풀려야 하므로 필수적이다. 쉽게 말해, 헬리케이스는 엉킨 실타래를 푸는 효소단백질이다. 여기 두 가지 활성에 해당되는 첫번째 헬리케이스 활성은 DNA 또는 RNA와 같은 이중 가닥 핵산을 단일 가닥으로 풀어주는 효소 기능이며, 복제나 전사 과정을 촉진시킨다. 두번째 RNA 샤페론 활성은 핵산 구조의 올바른 접힘(folding)과 풀림 기능을 돕는 단백질로, 잘못된 RNA를 교정하거나 안정성을 향상시켜 세포 내 RNA 대사과정을 돕는 역할을 한다. 코로나바이러스가 빠르게 전파하기 위해서는 바이러스의 유전물질을 빠르게 복제하고 구성성분인 단백질을 생산해서 이들을 조합하는 것이 필수적이다. 연구팀은 첫 번째 단계인 유전물질의 RNA 복제가 다른 바이러스에 비해 왜 빠르게 일어나는지 알려지지 않았으나, nsp13 단백질이 기존의 헬리케이스 활성과 이제까지 알려지지 않은 새로운 샤페론 활성으로 유전자 복제 과정을 빠르게 촉진한다는 것을 규명했다. nsp13 단백질은 유전적으로 잘 보존되어 다양한 변이 코로나바이러스에 대응하는 백신이나 감염 치료의 중요 표적이지만, 정확한 작용 메커니즘에 대해서는 완전한 이해가 부족했다. 연구팀은 nsp13 헬리케이스가 ATP(아데노신 삼인산)*를 분해하여 나온 화학에너지를 이용하여 유전물질인 RNA의 꼬인 구조를 단일 가닥으로 풀어주고 부산물로 ADP(아데노신 이인산)*가 생성하게 된다. 이때 생성된 ADP가 nsp13와 재결합하게 되면 샤페론 기능을 활성화시켜 RNA 이차구조를 추가로 불안정화한다는 사실을 알아냈다. *ATP(아데노신 삼인산)는 충전된 배터리처럼 에너지를 담고 있고 효소가 일을 할 때는 에너지를 공급해준다. ATP는 인산 3개를 가지고 있어 인산이 분해 될 때 에너지를 방출하고 인산 2개를 가진 ADP(아데노신 이인산)를 부산물로 생성한다. 결론적으로 헬리케이스 활성과 샤페론 활성이 시공간적으로 동시에 협력해 RNA 복제를 촉진하게 된다는 새로운 방식의 작용기전을 규명했다. 이광록 교수는 “이번 연구는 대표적 핵산-효소 단백질인 헬리케이스가 ADP를 통해 샤페론적 활성을 나타내는 새로운 발견이며, 이를 통해 헬리케이스의 기능 다양성에 대한 이해의 폭을 넓혀주고, SARS 코로나바이러스의 다양한 변이에 대응할 효과적 치료제 및 백신 개발의 실마리를 제공할 것으로 기대한다”라고 연구 결과의 의의를 밝혔다. 이 연구는 유정민 박사가 제 1저자로 세계적 국제학술지 ‘핵산 연구 (Nucleic Acids Research)’ (IF: 16.7, 생화학 및 분자생물학 분야 상위 1.8%) 온라인판에 1월 29일 게재됐다. (논문명 : A novel ADP-directed chaperone function facilitates the ATP-driven motor activity of SARS-CoV helicase) (doi: 10.1093/nar/gkaf034) 한편 이번 연구는 과학기술정보통신부와 한국연구재단의 중견연구지원, 선도연구센터 지원사업, 글로벌 기초연구 지원사업과 합성생물학핵심기술개발사업의 지원을 받아 수행됐다.
2025.02.17
조회수 1446
계산적 항체 디자인을 통한 범용성 코로나바이러스 중화항체 개발
우리 대학 생명과학과 오병하 교수 연구팀이 계산적 항체 디자인을 개발하고 이를 적용해 오미크론을 포함해 현재 유행 중인 모든 코로나19 변종 바이러스에 뛰어난 효과를 나타내는 중화항체*를 개발했다고 밝혔다. *병원체가 신체에 침투했을 때 생화학적으로 미치는 영향을 중화하여 세포를 방어하는 치료용 항체. 코로나19 감염을 유발하는 바이러스로 알려진 SARS-CoV-2 바이러스*는 스파이크 당단백질 부위에 있는 수용체 결합 부위(이하 항원)를 인간 세포막에 붙어있는 hACE2(human Angiotensin Converting Enzyme2) 수용체에 결합시켜 세포 내로 침입하는 기전을 보인다. 이러한 기전에 착안해 세계 유수의 제약회사들의 연구진은 수용체 결합 부위에 붙는 중화항체 에테세비맙(Etesevimab), 밤라니비맙(Bamlanivimab) 등을 개발했다. *현재 중증급성호흡기 증후군 팬데믹을 일으키고 있는 코로나바이러스. RNA 바이러스이며 바이러스 표면 스파이크 단백질을 통해 인간 ACE2 단백질과 결합하여 세포 내로 침투. 하지만, 이 항체들은 최초에 유행한 코로나바이러스에 효과적인 것과 다르게 알파, 베타, 델타 등과 같은 변이에는 중화능이 없거나 떨어지는 것으로 보고됐다. 변이 바이러스의 등장으로 기존 항체들의 중화능이 떨어지는 이유는 바이러스의 항체 인식부위 서열에 변이가 생겨 항체가 더 이상 제대로 결합하지 못하게 되기 때문이다. 연구진은 계산적 단백질 디자인 방법으로 바이러스 항원에서 변이가 생기지 않는 부분에 강력하게 결합하는 항체를 개발했다. 결과적으로, 이번에 개발한 항체는 오미크론을 포함해 알려진 SARS-CoV-2의 모든 변이 바이러스뿐만 아니라 SARS-CoV-1, 천산갑 코로나 바이러스에도 강력한 결합력*을 보이며 우수한 중화 능력 지표**도 확인했다. * picomolar(리터당 10-12 mole)에서 femtomolar (리터당 10-15 mole)의 결합력을 보임. ** Neutralization constant 50 (NC50) 가 0.10-8.3 nM로써 높은 중화능을 보임. 연구진이 개발한 항체는 미래에 출현할지 모르는 새로운 중증호흡기증후군 유발 코로나바이러스에도 대응할 수 있는 범용 코로나 치료항체 후보로 기대된다. 또한, 이번에 개발된 계산적 항체 디자인 기술은 항원의 특정 부위에 결합하는 항체를 발굴하는 새로운 방법으로서 그 응용성이 넓고 기술적 가치가 높다. 오병하 교수는 "이번에 개발한 항체는 아미노산 서열이 거의 바뀌지 않는 표면에 결합하기 때문에 향후 출현할 수 있는 신·변종 코로나바이러스에 즉각 대응할 수 있는 치료 물질이 될 수 있다는데 큰 의의가 있다ˮ라고 밝혔으며, 아울러, "이번 연구를 통해 개발한 계산적 항체 디자인 방법은 실험적으로는 얻기 어려운 항체를 개발하는데 널리 이용될 것으로 기대한다ˮ라고 밝혔다. 우리 대학 생명과학과 정보성 박사과정이 제1 저자로 참여한 이번 연구 결과는 항체 전문 학술지 ‘mAbs’에 게재됐다. 이번 연구는 연세대학교 조현수 교수 연구팀과 한국화학연구소 김균도 박사 연구팀도 참여했다. (관련 논문명: Computational design of a neutralizing antibody with picomolar binding affinity for all concerning SARS-CoV-2 variants) 참고로, 상기 논문 발표 후 오미크론이 새롭게 출현하였으며, 연구진은 개발한 중화항체가 이 변종에도 효과가 있음을 실험적으로 입증하였다. 한편 이번 연구는 KAIST 코로나대응 과학기술뉴딜사업단과 한국과학재단 기초과학연구실 사업의 지원을 받아 수행됐다.
2022.02.04
조회수 8302
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1