본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%95%AB%EC%A0%84%EC%9E%90
최신순
조회순
핫전자(뜨거운 전자) 이용, 온실가스 저감원리 규명
우리 연구진이 금속-산화물 계면에서의 촉매 화학 반응 과정에 대한 메커니즘을 직접 밝히고, *핫전자(뜨거운 전자)가 촉매 선택도를 향상시키는 데 결정적인 요소임을 실시간 핫전자 검출을 통해 입증했다. ☞ 핫전자(Hot electron): 분자의 흡착, 화학 촉매 반응, 빛의 흡수와 같은 외부 에너지가 금속 표면에 전달될 때, 화학 에너지의 순간적인 전환과정에서 에너지가 올라간(물질의 자유전자보다 약 100배 높은) 상태의 전자를 말한다. 태양광을 전기에너지로 전환하는 데 사용되는 매개체로도 사용된다. 우리 대학 화학과 박정영 교수(기초과학연구원(IBS) 나노물질 및 화학반응 연구단 부연구단장), 신소재공학과 정연식 교수, 생명화학공학과 정유성 교수 공동연구팀이 차세대 고성능 촉매 설계에 활용할 수 있는 반응성 향상 원리의 기틀을 마련했다고 8일 밝혔다. 현재 에너지 사용량 절감과 친환경 화학 공정 개발이라는 글로벌 도전 과제를 해결하기 위해 새로운 고효율 촉매 소재 개발은 필수적이다. 친환경 화학을 위한 불균일 촉매의 궁극적인 목표는 원하는 생성물에 대해 높은 선택성을 가진 재료를 설계하는 것이다. 많은 화학 촉매 반응 중 알코올의 선택적 산화는 에너지 변환 및 화학 합성에서 중요한 변환 과정이며, 특히 메탄올의 부분 산화를 통해 생성되는 메틸 포르메이트는 포름알데히드 및 포름산과 같은 귀중한 화학 물질의 화학연료로 사용되는 고부가 가치 생성물이다. 따라서 지구온난화 문제의 핵심인 이산화탄소의 저감과 고부가 가치 화학연료 생성의 향상을 위해서는 열역학적인 장벽을 뛰어넘어 높은 선택도를 가지는 우수한 성능의 촉매 개발이 필요하다. 공동연구팀은 이를 해결하는 방안으로, 백금 나노선을 티타늄 산화물에 접합시켜 `금속 나노선-산화물 계면'이 정밀하게 제어되는 신개념의 촉매를 개발했고, 더 나아가 금속 나노선-산화물 계면 기반의 `핫전자 촉매소자'를 활용해 실시간으로 핫전자의 이동을 관찰했다. 연구진은 금속-산화물 계면이 형성되면 메틸 포르메이트의 생성효율이 향상되는 동시에 이산화탄소의 생성이 현저히 감소하는 점을 관찰했으며, 이 높은 선택도는 촉매 표면에 형성된 계면에서의 증폭된 핫전자의 생성과 연관이 있음을 규명했다. 또한 연구진은 계면에서의 증가된 촉매 성능을 실험뿐 아니라 이론적으로도 입증했다. 연구진은 금속 나노선-산화물 계면에서의 증폭된 촉매 선택도가 계면에서의 완전히 다른 촉매 반응 메커니즘에서 기인하는 것임을 양자역학 모델링 계산 결과 비교를 통해 증명했다. 연구를 주도한 화학과 박정영 교수는 "핫전자와 금속 나노선-산화물 계면을 이용해 온실가스인 이산화탄소의 생성을 줄이고 고부가 가치 화학연료의 생성을 증대시킬 수 있다ˮ며 "촉매의 선택도를 핫전자와 금속-산화물 계면을 통해서 제어할 수 있다는 개념은 에너지 전환 및 차세대 촉매 개발에 이용될 수 있고 지구온난화의 주원인인 온실가스의 저감 등의 응용성을 가질 거라고 예상된다ˮ고 말했다. 나노선과 산화물의 접합 연구를 주도한 신소재공학과 정연식 교수는 "기존의 촉매 소자 시스템에서는 기술적으로 어려웠던 금속-산화물 계면에서의 핫전자 검출을 아주 정밀한 나노선 프린팅 기술로 인해 가능하게 만든 연구며, 이 기술은 향후 다양한 차세대 하이브리드 촉매 개발에 활용할 수 있으리라 기대된다ˮ고 말했다. 이론적인 계산으로 계면과 촉매 선택도 간 관계 입증을 주도한 생명화학공학과 정유성 교수 역시 "촉매 화학 반응에서의 선택도를 높이기 위해 금속-산화물 계면이 중요한 역할을 할 수 있음을 실험적 관찰과 이론적인 양자 계산을 통해 증명한 연구로, 불균일 촉매를 이용한 화학 공정 개발에 활용될 수 있을 것으로 기대된다ˮ 라고 언급했다. 우리 대학 화학과 이시우 박사가 제1 저자로 참여하고 기초과학연구원(IBS) 및 한국연구재단의 지원으로 수행된 이번 연구 결과는 종합 과학분야의 국제 학술지 `네이처 커뮤니케이션스(Nature Communications)에 1월 4일 字 게재됐다. (논문명 : Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces)
2021.01.11
조회수 62344
박정영, 정유성 교수, 합금 나노촉매 성능 향상 원리 밝혀
〈 박 정 영 교수, 정 유 성 교수〉 우리 대학 EEWS 대학원 및 화학과 박정영 교수 연구팀이 정유성 교수 연구팀과의 공동 연구를 통해 합금 나노 촉매 표면에 형성된 금속-산화물 계면이 촉매 성능을 향상시키는 중요한 요소임을 밝혔다. 이번 연구결과는 종합 과학 분야 국제 학술지 ‘네이처 커뮤니케이션즈’(Nature Communications) 6월 8일자 온라인 판에 게재됐다. 합금 나노입자는 높은 효율의 촉매 활성도를 가져 석유화학 공정뿐만 아니라 수소 연료 전지, 물 분해 등 친환경 촉매로 주목받고 있다. 합금 나노입자는 화학적 조성에 따라 촉매 표면의 전자 구조 및 결합 에너지를 제어할 수 있어 활용성이 크다. 이런 우수한 특성에도 불구하고 실제 촉매 환경에서는 반응물과 조건에 따라 나노 입자 표면 구조가 쉽게 달라져 합금 나노 촉매의 반응 원리 규명에 어려움이 있었다. 촉매 반응의 원리를 결정하는 핵심 요소는 핫전자이다. 화학반응이 일어날 때 촉매 표면에 순간적으로(펨토초, 1천조분의 1초) 발생하고 사라지지만 촉매 반응의 활성도를 파악할 수 있는 척도와 같다. 촉매 활성도가 증가하면 핫전자 양도 늘어나기 때문이다. 실시간으로 핫전자를 직접 검출할 수 있는 방법이 마땅히 없던 중 2015년 박정영 부연구단장 연구진이 핫전자를 관찰할 수 있는 핫전자 촉매센서를 개발했다. 이후 박 부연구단장은 핫전자 촉매센서를 중심으로 활발한 연구를 통해 다양한 결과를 내고 있다. 이번 연구에서는 백금과 코발트가 합금된 나노입자를 핫전자 촉매센서에 접목하는 방식으로 연구를 설계했다. 백금-코발트 합금 나노입자는 화학산업 및 에너지·환경 분야에 중요한 촉매 구성요소다. 백금-코발트 합금 나노입자처럼 복잡한 구조를 가진 나노 촉매 구조에 핫전자 촉매센서를 적용해 실시간으로 핫전자를 관찰하는 것이 이번 실험의 큰 관건이었다. 먼저 연구진은 여러 비율로 백금과 코발트를 합성해 합금 나노 촉매들을 제작하고 핫전자 촉매센서를 적용했다. 그 결과 75% 백금과 25% 코발트 비율로 합금 나노입자를 합성할 경우, 가장 많은 핫전자가 발생하고 촉매 성능이 높다는 것을 확인했다. 이후 핫전자 발생량과 촉매 성능의 상관관계를 보다 명확히 밝히고자 실시간 투과전자현미경(TEM, Transmission Electron Microscopy)으로 실험 과정을 관찰했다. 수소산화 반응에 합금 나노촉매를 적용하자 한 층의 코발트 산화물이 백금-코발트 합금 나노 입자 표면 위에 형성되면서 금속-산화물(백금-코발트 산화물)계면이 만들어졌다. 금속-산화물 계면에서 전하 이동이 늘어나면서 핫전자 검출 효율이 증가한 것이다. 다시 말해 금속-산화물 계면이 합금 나노 촉매의 활성을 높이는 데 결정적임을 실제로 입증한 것이다. 이번 연구는 실험 뿐 아니라 이론적으로도 계면과 촉매 성능 간 상관관계를 입증했다. 정유성 교수 연구진은 밀도범함수이론(Density Functional Theory) 기반의 양자계산을 통해 백금-코발트 산화물 계면에서 낮은 활성화 에너지로 일어나는 반응 원리를 이론적으로 뒷받침해 핫전자 발생 및 촉매 성능에 대한 근원적인 해석을 제안했다. 정 교수는 “이번 결과는 촉매 연구자들이 금속-산화물 계면의 중요성을 다시 주목하게 되는 계기가 될 것이다”고 말했다. 박 교수는 “이번 연구로 합금 나노촉매의 반응 중 자연스럽게 형성되는 두 물질 사이의 계면이 촉매 반응성과 핫전자의 생성을 증폭시킨다는 점을 규명했다”며 “실제 촉매반응이 일어나는 상압과 고온 환경에서 얻어진 결과를 토대로 향후 고효율의 차세대 촉매물질을 개발하는데 연구 결과를 응용할 수 있다”고 전망했다. □ 그림 설명 그림1. 나노 촉매계면에서의 핫전자 움직임 실시간 관찰 그림2. 핫전자 촉매센서를 이용한 합금 나노입자에서의 핫전자 움직임 관찰
2018.07.06
조회수 11561
박정영 교수, 촉매 비밀의 핵심인 '핫 전자' 검출 및 전류 측정 성공
〈 박 정 영 교수 〉 우리 대학 EEWS 대학원 박정영 교수 연구팀이 과산화수소 수용액에 금속 나노 촉매를 넣어 액상 환경 속 촉매반응에서 핫전자를 검출하고 전류를 측정하는 데 성공했다. 대다수 상용 화학공정과 동일한 액체 환경에서 핫전자를 검출해낸 것은 이번이 처음이다. 이번 연구 성과는 국제 학술지 앙게반테 케미(Angenwandte Chemi International Edition)에 7월 4일자 온라인 판에 게재됐다. 촉매는 원유 정제, 플라스틱 합성 등 다양한 화학공정에서 반응 효율을 높여 작업시간을 줄이고 비용을 낮춰주는 핵심요소다. 청정 동력원으로 떠오른 수소연료전지, 이산화탄소 제거를 위한 인공광합성 장치 등 새로운 환경기술영역에서도 큰 역할이 기대되고 있다. 학계에서는 고효율 촉매 개발을 위해 촉매의 작동원리를 규명하기 위한 연구가 활발히 진행되고 있다. 특히 반응 시 촉매에서 발생하는 ‘핫전자’가 촉매의 원리를 규명할 수 있는 열쇠로 주목받고 있다. 연구팀은 나노 두께의 금속박막 촉매를 실리콘 기판 위에 붙여 둘 사이에 낮은 전위장벽을 생성했다. 이후 촉매반응으로 만들어진 핫전자가 전위장벽을 넘어 전류로 흐르는 것을 측정, 액체 내 촉매반응에서 생긴 핫전자를 검출했다. 연구팀은 반응에서 생긴 산소 기체를 기체크로마토그래피로 분석, 핫전자 측정값으로 계산해 낸 이론값이 실제 실험값과 일치함을 확인했다. 특히 금속박막 나노촉매의 소재를 백금, 금, 은으로 다양화하고 박막 두께와 과산화수소 수용액의 농도를 조절, 다양한 조건에서 핫전자 전류를 측정함으로써 액상 환경의 고체 촉매 반응 원리 규명에 한 발짝 더 다가섰다. 연구팀은 앞서 그래핀을 이용한 핫전자 촉매센서를 개발, 수소산화반응시 백금 나노촉매 표면에서 발생하는 핫전자를 처음으로 검출하는 데 성공한 바 있다. 당시 기체-고체 계면에서 발생한 핫전자 검출 효율은 1% 미만에 그쳤으나, 이번 액상 환경에서의 검출 효율은 훨씬 높은 10%에 달했다. 이에 액상 환경의 핫전자 검출기술이 보완돼 고온·고압 환경에 적용된다면, 에너지 및 환경 분야를 포함한 화학산업 전반의 고효율 나노촉매 개발이 활기를 띌 전망이다. 박정영 교수는 “액체에서 작동하는 ‘촉매 핫전자 탐지기’를 이용해, 액상 촉매 반응 핫전자를 세계 최초로 검출했다”라며 “핫전자 검출 효율이 기상 화학반응보다 액상 화학반응 시 월등히 높아, 촉매 작동 원리 규명파악이 가능해졌다. 이로써 새로운 형태의 고효율 나노촉매 시스템 개발을 앞당길 것”이라고 전했다. □ 그림 설명 그림1. 은나노촉매 표면에서 과산화수소 분해 촉매 반응 중에 발생하는 핫전자의 측정 원리 및 모식도 그림 2. 다양한 나노 촉매 다이오드에서 측정된 화학 전류와 촉매 물질의 두께와의 상관관계
2016.08.02
조회수 12259
박정영 교수, 핫전자 태양전지 원천기술 개발
- Nano Letters 발표, “에너지 손실을 최소화한 핫전자 태양전지 개발 가능성 열어”- 태양광을 흡수하여 생성되는 핫전자 태양전지 원천기술이 국내 연구진에 의해 개발되었다. 우리 학교 EEWS 대학원 박정영 교수(41세, 교신저자, 지속가능한 에너지공학기술사업단 해외학자)가 주도한 이번 연구는 교육과학기술부(장관 이주호)와 한국연구재단(이사장 오세정)이 추진하는 WCU(세계수준의 연구중심대학)육성사업과 중견연구자지원사업의 지원을 받아 수행되었고, 연구결과는 나노과학 분야의 권위 있는 학술지인 ‘Nano Letters’ 온라인 속보(9월 14일)에 게재되었다. (논문명 : Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes) 박정영 교수팀은 태양광을 흡수하여 생성되는 핫전자와 표면플라즈몬의 상관관계를 규명하였다. 박 교수팀은 금속박막과 산화물 반도체로 이루어진 나노다이오드를 이용해 빛에 의해 표면에 여기된 핫전자를 검출하고, 나노다이오드 금속박막의 표면처리를 통해 수십 나노미터 크기의 나노섬 형태로 변형하였는데, 이러한 나노섬은 표면플라즈몬을 보여준다. 연구팀은 나노다이오드에 검출된 핫전자를 측정하여 표면플라즈몬에 의한 핫전자의 증폭을 관찰하였다. 이는 표면플라즈몬이 핫전자의 생성을 극대화시키고, 이 원리는 태양전지의 효율을 높이는데 활용될 수 있다. 이 연구에는 EEWS 대학원의 이영근 석사과정생 (제 1저자)와 정찬호 박사과정생 (제 2저자) 이 참여하였다. 박정영 교수는 “핫전자를 정확히 이해하고 측정하는 것은 에너지 손실과정을 근본적으로 이해할 수 있도록 도와준다는 점에서 표면과학 및 에너지공학에서 매우 중요하다. 이번 핫전자 원천기술의 개발은 핫전자를 이용한 고효율 에너지 전환소자 개발에 응용이 될 수 있다”고 연구의의를 밝혔다. <그림>표면플라즈몬에 의해서 증폭된 핫전자의 측정을 위한 나노다이오드의 구조
2011.10.06
조회수 19983
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1