본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%99%A9%ED%99%94%EA%B5%AC%EB%A6%AC
최신순
조회순
육종민 교수, 나트륨 이차전지의 음극 소재 원리 규명
〈 왼쪽부터 육종민 교수, 박재열 박사과정, 박지수 박사과정 〉 우리 대학 신소재공학과 육종민 교수 연구팀이 황화구리를 기반으로 한 나트륨 이차전지 전극 재료의 나트륨 저장 원리를 밝혔다. 나트륨 이차전지는 1일 1회 충, 방전 시 5년 이상 사용할 수 있는 우수한 성능을 가진 전지로, 이번 연구를 통해 수명이 긴 전극 재료 개발에 기여할 것으로 예상된다. 연구팀의 이번 연구는 높은 저장 용량을 가지는 소재의 충. 방전 반복에 따른 열화 방지 관련 핵심원리를 규명했다는 점에서 의의가 있다. 황화구리는 지구상에 풍부한 구리와 황으로 이뤄져 있어 다른 나트륨 저장 소재 대비 경쟁력이 높아 나트륨 전지의 상용화를 크게 앞당길 것으로 기대된다. 박재열 박사과정이 1 저자로 참여한 이번 연구는 국제 학술지 ‘어드밴스드 사이언스(Advanced Sciences)’ 6월호 표지논문(Inside back cover)에 선정됐다. (논문명 : Pulverization-tolerance and capacity recovery of copper sulfide for high performance sodium storage) 리튬 이온 전지는 휴대전화, 전기차 등 일상과 밀접한 다양한 곳에 사용된다. 리튬 이온 전지의 원자재인 리튬, 코발트, 니켈 등은 매장지역이 한정돼 있어 가격 흐름이 매우 불안정하다. 2018년에는 수요가 급등해 공급량이 부족해져 리튬과 코발트 가격이 한때 3배 이상 급등하기도 했다. 이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재해 원자재 공급 문제를 해결할 수 있다. 따라서 리튬 이온 전지 대비 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다. 하지만 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 그 이유는 흑연 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장되는데 나트륨 이온을 저장하기에는 흑연의 층간 거리가 너무 좁기 때문이다. 비슷한 이유로 다른 삽입반응을 거치는 나트륨 저장물질들도 저장 용량이 낮다. 낮은 저장 용량 문제를 해결하기 위해서는 높은 저장 용량을 얻을 수 있는 전환(conversion)반응이나 합금(alloying) 반응을 거치는 물질을 사용해야만 한다. 그러나 이 두 가지 반응을 이용하면 부피팽창이 너무 커지고 급격한 결정구조의 변화에 따라 입자가 분쇄돼 성능이 빠르게 저하된다. 육 교수 연구팀은 일반적인 통념과 달리 황화구리는 전환반응을 거침에도 불구하고 오히려 저장 용량이 회복되며 안정적인 충, 방전이 가능하다는 사실을 발견했고 그 원리를 투과전자현미경을 이용해 관찰했다. 그 결과 전환반응에서 유사 정합 경계면 (두 상 혹은 두 결정립 사이의 결정 격자의 합이 잘 맞는 경계면) 을 형성해 입자의 분쇄를 막아준다는 사실을 밝혀냈다. 일반적인 전환반응의 경우 전환반응 전후의 결정구조가 완전히 다르고 부피팽창도 크기 때문에 입자가 분쇄돼 성능 열화를 유발한다. 그러나 황화구리는 나트륨 저장에 따라 유동적인 결정구조 변화를 해 유사 정합 경계면을 형성하고, 이는 입자의 분쇄를 막아주는 결정적인 역할을 한다고 연구팀은 설명했다. 그 결과 황화구리는 입자의 크기나 형상에 상관없이 높은 나트륨 저장 성능을 보이는 것을 확인했다. 수십, 수백 마이크로미터 크기의 별다른 최적화를 거치지 않은 황화구리 입자가 기존 흑연의 이론 용량 대비 약 17% 높은 ~436mAh/g의 저장 용량을 갖고, 2천 회 이상의 충, 방전에도 93% 이상의 저장 용량을 유지함을 확인했다. 육 교수는“이번 연구가 미세먼지 해결을 위한 고성능 배터리 개발에 이바지할 수 있을 것이다”라고 말했다. 이번 연구는 한국연구재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 어드밴스드 사이언스 표지 그림2. 황화구리 내 나트륨이 저장되면서 나타나는 유사 정합 경계 (Semi-coherent interface) 들
2019.07.01
조회수 11920
육종민, 이정용 교수, 나트륨 기반의 이차전지 음극 소재 개발
우리 대학 신소재공학과 육종민 교수와 이정용 명예교수(前 기초과학연구원 나노물질 및 화학반응연구단) 공동 연구팀이 리튬 기반 이차전지 음극재료에 비해 저렴하고 수명이 긴 나트륨 기반 이온 전지용 음극 소재를 개발했다. 기존의 이차전지 음극재료 대비 1.5배 수명이 길고 약 40% 저렴한 나트륨 이온 전지용 음극 소재 개발을 통해 나트륨 이온 전지의 상용화에 기여할 것으로 기대된다. 박재열 박사과정과 기초과학연구원 김성주 박사가 공동 1저자로 참여한 이번 연구는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’ 3월 2일자 온라인 판에 게재됐다. 현재 리튬 이온 전지는 휴대폰, 전기차 등 일상생활과 밀접한 다양한 곳에 사용되고 있다. 그런데 리튬은 매장지역이 한정돼 있고 수요가 급등해 공급량이 부족한 상황이다. 2015년과 대비해 현재 리튬의 가격은 3배 이상 상승했다. 이런 문제를 해결하기 위해 리튬 이온 전지의 대안으로 나트륨 이온 전지가 주목받고 있다. 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하기 때문에 공급 문제가 해결된다. 따라서 나트륨 이온 전지는 기존 리튬 이온 전지에 비해 40% 저렴한 가격으로 같은 용량의 에너지를 저장할 수 있을 것으로 전망된다. 그러나 리튬 이온 전지의 음극 재료인 흑연은 나트륨의 저장에 적합하지 않다. 흑연 간의 층 사이에 리튬 이온들이 삽입(intercalation)되며 저장이 이뤄지는데 나트륨 이온을 저장하기에는 흑연 층간 거리가 너무 좁기 때문이다. 이러한 이유로 나트륨 이온 전지 상용화를 위해서는 이에 적합한 음극 소재를 개발하는 것이 필수적이다. 연구팀은 흑연의 대안을 나노판상 구조를 가진 황화구리에서 찾았다. 황화구리는 높은 전기전도도와 이론용량을 갖는다. 또한 황화구리에 나트륨이 저장되는 과정을 원자단위에서 실시간 분석한 결과 황화구리의 결정 구조가 유동적으로 변화하며 안정적으로 나트륨 이온을 저장하는 것을 확인했다. 그 결과로 황화구리의 나트륨 저장 성능이 흑연 이론용량(~370mAh/g)의 1.5배(~560mAh/g)에 달하는 것을 확인했고 충, 방전을 250회 반복한 이후에도 이론용량의 90% 이상이 유지됨을 증명했다. 이번 연구로 나트륨 이온전지가 상용화되면 지구 표면의 약 70%를 차지하는 바다에 무궁무진하게 존재하는 나트륨을 활용할 수 있다. 이는 배터리 원가 절감으로 이어지고 휴대폰, 전기 자동차, 노트북 등의 단가를 약 30% 정도 낮출 수 있을 것으로 기대된다. 이정용 교수는“이번 연구결과가 차세대 고성능 나트륨 이온 전지 개발에 크게 기여할 것으로 기대된다”고 말했다. 육종민 교수는 “요즘 미세먼지 등의 환경오염 문제로 특히 신재생 에너지 상품에 관심이 많은데 이번 연구 결과를 통해 우리나라가 관련 제품에 대한 우위를 점할 수 있는 토대를 한 단계 다졌다고 생각한다”고 말했다. 이번 연구는 한국연구재단의 생애첫연구사업 및 나노, 소재기술개발사업과 기초과학연구원의 지원을 받아 수행됐다. □ 그림 설명 그림1. 판상구조 황화구리 촬영 사진 그림2. 황화구리 내 나트륨이 저장되면서 나타나는 결정구조 변화 양상 그림3. 황화구리 내 나트륨 충방전 횟수별 저장 용량
2018.03.08
조회수 16315
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1