본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B3%A0%EB%B6%84%EC%9E%90
최신순
조회순
페트병 대체할 미생물 플라스틱 생산 성공하다
현재, 전 세계는 플라스틱 폐기물로 인한 환경 문제로 인해 큰 골머리를 앓고 있다. KAIST 연구진이 생분해성을 가지면서 기존 페트병을 대체할 미생물 기반의 플라스틱 생산에 성공해서 화제다. 우리 대학은 생명화학공학과 이상엽 특훈교수 연구팀이 시스템 대사공학을 이용해 PET(페트병) 대체 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 미생물 균주 개발에 성공했다고 7일 밝혔다. 유사 방향족 다이카복실산은 고분자로 합성시 방향족 폴리에스터(PET)보다 나은 물성 및 높은 생분해성을 가지고 있어 친환경적인 고분자 단량체*로서 주목받고 있다. 화학적인 방법을 통한 유사 방향족 다이카복실산 생산은 낮은 수율과 선택성, 복잡한 반응 조건과 유해 폐기물 생성이라는 문제점을 지니고 있다. *단량체: 고분자를 만드는 재료로 단량체를 서로 연결해 고분자를 합성함 이를 해결하기 위해 이상엽 특훈교수 연구팀은 대사공학을 활용, 아미노산 생산에 주로 사용되는 세균인 코리네박테리움에서 2-피론-4,6-다이카복실산과 4종의 피리딘 다이카복실산 (2,3-, 2,4-, 2,5-, 2,6-피리딘 다이카복실산)을 포함한 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 미생물 균주를 개발했다. 연구팀은 대사공학 기법을 통해 여러 유사 방향족 다이카복실산의 전구체로 사용되는 프로토카테츄산의 대사 흐름을 강화하고 전구체의 손실을 방지하는 플랫폼 미생물 균주를 구축했다. 이를 기반으로 전사체 분석을 통해 유전자 조작 타겟을 발굴해 76.17g/L의 2-피론-4,6-다이카복실산을 생산하였고, 3종의 피리딘 다이카복실산 생산 대사회로를 신규 발굴 및 구축하여 2.79g/L의 2,3-피리딘 다이카복실산, 0.49g/L의 2,4-피리딘 다이카복실산, 1.42g/L의 2,5-피리딘 다이카복실산을 생산하는 데 성공했다. 또한, 연구팀은 2,6-피리딘 다이카복실산 생합성 경로 구축 및 강화를 통해 15.01g/L의 생산을 확인하며 총 5종의 유사 방향족 다이카복실산을 고효율로 생산하는 데 성공했다. 결론적으로, 2,4-, 2,5-, 2,6-피리딘 다이카복실산을 세계 최고 농도로 생산하는 데 성공하였다. 특히 2,4-, 2,5-피리딘 다이카복실산은 기존에 극미량 (mg/L) 생산되던 것을 g/L 규모의 생산까지 달성하였다. 이번 연구를 기반으로 다양한 폴리에스터 생산 산업공정으로의 응용이 기대되며, 유사 방향족 폴리에스터 생산에 관한 연구에도 적극 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “미생물을 기반으로 유사 방향족 폴리에스터 단량체를 고효율로 생산하는 친환경 기술을 개발했다는 점에 의의가 있다”며 “이번 연구가 앞으로 미생물 기반의 바이오 단량체 산업이 석유 화학 기반의 화학산업을 대체하는 데 일조할 것”이라고 밝혔다. 해당 연구 결과는 국제 학술지인 `미국 국립과학원 회보(PNAS)'에 10월 30일 자 게재됐다. ※ 논문명 : Metabolic engineering of Corynebacterium glutamicum for the production of pyrone and pyridine dicarboxylic acids ※ 저자 정보 : 조재성(한국과학기술원, 공동 제1저자), 찌웨이 루오(한국과학기술원, 공동 제1저자), 문천우(한국과학기술원, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), 이상엽(한국과학기술원, 교신저자) 포함 총 5명 한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 ‘바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발’ 과제(과제 책임자 이상엽 특훈교수)의 지원을 받아 수행됐다.
2024.11.07
조회수 817
원전폐수의 삼중수소 제거 촉매 선보이다
후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다. 우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다. *이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함 현재 삼중수소 제거에는 주로 액상 촉매 교환(Liquid-phase catalytic exchange) 공정이 이용되며 해당 공정 중 수소-물 동위원소 교환 반응이 일어난다. 촉매에 주로 이용되는 백금은 반응성이 높지만, 비용이 많이 들고 물에 의해 반응 자리가 쉽게 비활성화되는 문제가 있다. 따라서 적은 양의 백금을 고르게 분산하고, 물을 밀어내는 성질인 소수성 물질을 도입해 수분에 의한 촉매가 활성화되도록 하는 것이 핵심이다. 고동연 교수 연구팀은 금속-유기 골격체(Metal-organic framework, MOF)와 다공성 고분자의 복합체 형태의 새로운 구조의 삼중수소 제거 촉매를 개발했다. 평균 약 2.5나노미터(nm) 지름의 백금 입자를 금속-유기 골격체에 고르게 분포시키고, 이후 화학적인 변형을 통해 소수성을 부여하는 구조다. 분자 수준에서 소수성을 조절해 촉매가 물에 의해 활성을 잃는 것을 방지하면서도 동시에 반응에 필요한 양의 물 분자는 촉매에 쉽게 접근할 수 있도록 한다. 연구팀이 개발한 촉매는 기존 촉매 연구에서 구현하지 못한 원전 운전조건과 비슷한 매우 낮은 농도의 동위원소 함량에서도 삼중수소 제거 반응에 탁월한 활성을 나타냈다. 또한 4주 연속 가동 시에도 일정 수준 이상의 성능을 유지해 내구성을 입증했다. 연구팀은 나아가 현장 난반사 적외선 분광법(in-situ DRIFTS, in-situ Diffuse Reflection Infrared Fourier Transform Spectroscopy)* 분석을 통해 아주 작은 분자 수준에서의 물 분자의 실시간 움직임을 확인했다. 이를 통해 해당 촉매가 수분에 의한 촉매 비활성화를 억제하면서도 물 분자가 촉매 활성 자리에 지속적으로 접근해 반응이 일어날 수 있음을 입증했다. *현장 난반사 적외선 분광법: 실시간으로 빛이 물질에 반사되어 돌아오는 정보를 분석함으로써 그 물질의 성분 변화를 알아내는 기술을 말함 이번 연구는 비교적 간단한 금속-유기 골격체 소재의 소수성 조절을 통해 촉매 비활성화의 주요 원인인 수분 저항성을 높이고, 삼중수소 제거 반응에 이용될 수 있는 새로운 구조의 촉매를 제안했다는 데에 의의가 있다. 생명화학공학과 고동연 교수는 “삼중수소 폐액 처리뿐 아니라 반도체에 사용되는 중수소 원료 생산과 핵융합 연료 주기 기술 등 다양한 기술에 필수적인 수소 동위원소 분리 핵심 소재로의 응용이 기대된다”고 해당 연구의 의의를 설명했다. 생명화학공학과 허희령 박사과정이 제1 저자로 참여한 이번 연구 성과는 환경 분야 국제 학술지 ‘에너지 앤 인바이런멘탈 머티리얼스 (Energy & Environmental Materials)’에 7월 31일 자로 게재됐다. (논문명 : Bifunctionally hydrophobic MOF-supported platinum catalyst for the removal of ultralow concentration hydrogen isotope) 한편 이번 연구는 한국연구재단의 원전해체 안정성강화 융복합 핵심 기술개발사업의 지원을 받아 수행됐다.
2024.08.27
조회수 2393
피부 모니터링부터 뇌심부 해석까지 쉽게 가능
실시간으로 심박수를 측정할 수 있는 스마트 워치, 심장 박동수를 조절하는 페이스메이커 등 생체신호를 지속적으로 측정해 다양한 병을 진단하거나 치료할 수 있는 전자소자인 생체전자소자에 관한 연구가 활발히 진행되고 있다. KAIST 연구진이 생체조직 접촉 시 손상을 최소화하고 3D 마이크로니들 구조로 조직표면부터 심부까지 측정할 수 있는 전도성 하이드로젤 소재를 개발해 화제다. 우리 대학 신소재공학과 스티브 박 교수, 바이오및뇌공학과 박성준 교수 공동연구팀이 3D 프린팅을 통해 다양한 형태의 생체전자소자를 쉽고 빠르게 제작할 수 있는 전도성 고분자 기반 전극 물질을 개발했다고 7일 밝혔다. 이번 연구를 통해 기존 2D 전극 패터닝 기술로 접근하기 어려웠던 한계점을 극복해, 원하는 위치 및 심부 영역의 뇌 신경세포를 자극 및 측정할 수 있어, 뇌의 심부 영역에서 뇌의 활성화 원리를 정확하게 해석할 수 있을 것으로 기대된다. 또한 3D 프린팅을 통해 이 기술은 피부에 부착하는 헬스케어 모니터링 소자부터 생체 삽입형 소자에 이르기까지 광범위하게 활용할 수 있을 것으로 기대된다. 기존 생체전자소자에 사용됐던 금속 물질은 단단한 물성으로 인해 연약한 생체조직에 상처를 입힐 수 있다는 문제점이 있었다. 또한, 이 문제를 보완하기 위해 개발됐던 전도성 하이드로젤 소재는 낮은 전기전도성을 가지고, 생체적합성을 개선하기 위해 소자 제작 후 24시간 이상의 독성 제거 공정을 진행해야 한다는 문제점이 있었다. 또한, 2D 구조의 전극 패터닝만 가능하다는 한계점 때문에 다양한 형태의 소자를 제작하기 어려웠다. 박 교수 연구팀은 전도성 고분자를 나노미터 크기의 콜로이드 형태로 가공해 유화 작용을 유도함으로써 잉크의 유변학적 특징*을 개선하고, 생체적합성에 악영향을 미치는 독성 물질을 원심분리 공정을 통해 제거함으로써 3D 프린팅이 가능하면서 후처리 공정이 필요 없는 고전도성 하이드로젤 잉크를 개발했다. *유변학적 특성: 잉크의 유동성과 그에 따른 변형, 그 응답인 응력 등의 특성을 말하며 특성이 높을수록 잉크의 압출 직후 인쇄된 형태를 유지할 수 있으며, 낮으면 압출 직후 인쇄된 형태를 유지하기 어렵다. 이 재료는 선행연구 대비 약 1.5배(286 S/cm)의 전기전도도를 가지며, 고해상도 패터닝(~50μm), 전방위 3D 전극 패터닝이 가능하다는 장점을 가진다. 또한 생체조직과 비슷한 물성(영 계수 750kPa)를 가져, 생체조직과의 접촉 시 손상을 최소화할 수 있다. 연구팀은 개발한 신소재 전극을 기반으로 심전도 측정(ECG) 및 근전도 측정(EMG) 측정 타투, 뇌 피질전도도(ECoG) 측정소자, 3D 뇌 탐침 측정 소자를 개발해 기능성을 검증했다. 또한 높은 전하 저장 능력을 활용, 낮은 전압(60mV)으로 쥐의 좌골 신경을 자극하는 소자를 개발해 생체 자극 소자로서의 성능을 확인했다. 더불어 복잡한 3D 회로를 필요한 적용 분야에 맞추어 제작할 수 있고 3D 마이크로니들 구조로 전극을 패터닝해 조직 표면에 있는 생체신호뿐만 아니라 조직 심부에 있는 뉴럴 인터페이스의 제작이 가능해졌다. 연구를 주도한 스티브 박 교수는 "기존 3D 프린팅 기술을 이용해 제작되는 전자소자의 경우 전도성 및 생체적합성을 개선하기 위해 장시간 및 복잡한 형태의 후처리가 필요해 래피드 프로토타이핑(Rapid prototyping)을 장점으로 가져갈 수 있는 3D 프린팅 기술의 모든 장점을 이용할 수 없었다”며, “이번 연구에서는 이러한 단점을 해결해 향후 환자 맞춤형 바이오 전자소자 및 다양한 3D 회로 응용 분야에 활용될 수 있을 것으로 기대된다ˮ라고 말했다. 신소재공학과 오병국 박사과정과 백승혁 석사, 바이오및뇌공학과 남금석 석박사통합과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)'에 7월 11일 게재됐다. (논문명 : 3D printable and biocompatible PEDOT:PSS-ionic liquid colloids with high conductivity for rapid on-demand fabrication of 3D bioelectronics) 이번 연구는 한국연구재단 나노 및 소재기술개발사업, 중견 사업 및 ETRI의 지원을 받아 수행됐다.
2024.08.07
조회수 2452
폐플라스틱 재활용 높이는 해중합 기술 개발
기존 폐플라스틱을 화학적으로 분해해 재융합하는 해중합의 중요성이 증대하고 있다. 해중합 과정에서 환경 유해 물질을 걸러내 친환경 용기 등을 생산할 수 있기 때문이다. 폐플라스틱의 재활용을 더 가속화할 수 있도록 KAIST 연구진이 해중합 온도를 낮출 수 있는 원리를 발견했다. 우리 대학 화학과 서명은 교수 연구팀이 고분자 자기조립을 활용하여 고분자의 해중합 온도를 낮추는 방법을 개발했다고 24일 밝혔다. *중합은 간단한 분자 수준의 단량체들이 화학적 반응으로 연결되어 거대한 고분자 사슬을 형성하는 것을 말하며, 해중합은 고분자 사슬을 단량체 수준으로 분해하는 것을 말함. 기존에 고분자를 해중합하여 화학적으로 분해하는 방법은 높은 온도가 필요하여 효율성이 낮았다. 연구팀은 고분자 합성과정에서 자기조립이 일어날 때 해중합 온도가 낮아지는 것을 발견했다. 고분자가 잘 섞이지 않는 용매에서 일어나는 자기조립은 엔트로피*에 반해서 질서를 만들어내는 과정이다. 조그만한 분자 단량체들을 서로 이어 거대한 고분자 사슬을 만드는 합성 과정 또한 질서를 증대하는 반면, 고분자 사슬을 조각내어 원래 단량체로 돌리는 해중합은 무질서해지는 방향을 향한 변화이다. 따라서 연구진은 자기조립이 일어나는 상황에서는 질서와 무질서의 균형을 이루기 위해 중합보다 해중합이 우세해지는 결과를 확인했다. 이를 이용해, 천정온도** 186℃로 알려진 고분자가, 자기조립이 일어나는 선택적 용매에서는 천정온도가 90℃로 감소돼, 보다 낮은 온도에서 해중합을 유도할 수 있었다. *엔트로피: 무질서해지는 방향으로 변화하는 경향 **천정온도: 중합과 해중합 속도가 균형을 이루는 온도를 말함. 연구팀은 고분자를 합성한 후 온도를 올려 고분자 나노구조체를 구성하는 사슬을 재사용이 가능한 단량체로 분해했다. 다시 온도를 내리면 분해된 단량체는 다시 중합돼 나노구조체를 형성하는 지속가능한 자기조립 체계를 구현했다. 나노구조체의 형상은 사슬의 길이에 따라 달라지기 때문에, 연구팀은 온도를 올리고 내리면 그에 따라 구조체의 모양이 바뀌는 것을 관찰했다. 또한 점도와 같은 물성은 단량체 중에 고분자로 존재하는 비율에 의존하므로, 중합/해중합을 반복하면서 점도를 조절할 수 있는 결과 또한 확인하였다. 연구를 주도한 서명은 교수는 “기존에 고분자를 화학적으로 분해하기 위해서는 높은 온도가 필요하여 어려움이 있었지만 고분자 자기조립을 활용하여 해중합 온도를 낮출 수 있었고 이 원리를 활용하여 폐플라스틱의 재활용을 더 효율적으로 할 수 있을 것으로 기대한다”며 "자연이 단백질들을 붙이고 떼는 중합/해중합 과정을 통해 능동적으로 세포의 모양과 움직임을 조절하는 것처럼, 필요에 따라 물성과 형상을 바꿀 뿐만 아니라 움직임도 가능한 스마트 고분자 소재로 향후 발전시킬 가능성을 탐구하고 싶다ˮ고 소감을 밝혔다. 우리 대학 화학과 남지윤 박사가 제1 저자로, 유창수 석박사통합과정 학생이 공동 저자로 참여해 수행한 연구 결과는 국제학술지 ‘저널 오브 더 아메리칸 케미컬 소사이어티 (Journal of the American Chemical Society)'에 5월 8일 字로 온라인 게재됐다. (논문명 : Polymerization/Depolymerization-Induced Self-Assembly Under Coupled Equilibria of Polymerization with Self-Assembly) 한편 이번 연구는 한국연구재단(NRF)의 지원을 받아 진행됐다.
2024.05.24
조회수 3549
간단 공정으로 이산화탄소 분리 성공하다
한국 연구진이 고분자 구조를 체계적으로 튜닝해 기체 혼합물에서 이산화탄소를 선택적으로 투과시키는 고효율 멤브레인(분리막) 제조 기술을 개발했다. 이를 통해 수많은 화학 산업 및 환경 분야에서도 넓게 적용이 가능하여 탄소중립 구현에 크게 기여할 것으로 기대된다. 우리 대학 생명화학공학과 배태현 교수 연구팀이 고분자 분리막의 구조와 화학적 특성을 전략적으로 제어해 높은 효율로 이산화탄소를 분리 제거할 수 있는 기술을 개발했다고 22일 밝혔다. 멤브레인(분리막)은 목표 물질을 선택적으로 투과시키는 박막으로 정의되며, 저에너지 분리 기술로 주목을 받아 왔다. 하지만 기존의 고분자 분리막은 치밀한 구조를 가져 활용이 제한되는 단점이 있어 이를 대체하기 위해, 일정한 미세 기공을 갖는 소재를 분리막으로 활용해 기체의 투과 선택성을 높이려는 연구가 많이 수행됐다. 하지만 기존의 분자체 분리막들은 양산에 어려움이 있고 제조 과정이 복잡하며 강도가 부족해 실제 공정에 사용하기에 적합하지 못하다는 단점을 극복하지 못했다. 연구팀은 가공성 높은 고분자를 소재로 하고, 제어가 쉬운 화학반응을 이용하여 미세 기공을 형성함으로써 저비용으로 양산이 가능한 분자체 분리막을 구현했다. 사전에 전략적으로 디자인된 고분자에는 다양한 화학 작용기를 도입할 수 있는데, 이번 연구에서는 고분자 분자체 분리막에 이산화탄소의 선택투과성을 높이기 위해서 아미노 그룹*을 도입시켰다. *아미노그룹: 질소원자에 수소가 결합된 화학작용기 (-NH2) 새로 개발된 분리막은 고성능이지만 쉽게 부서지는 탄소 분자체 분리막과 달리 고분자 분리막에 준하는 기계·화학적 안정성이 높고 유연성을 지녔다. 또한 대량생산에도 유리한 공정을 적용해 상업화에도 유리한 조건을 갖추고 있다. 현재까지 개발된 탄소 분자체 분리막 중 성능이 우수한 분리막들에 버금가는 이산화탄소 분리 성능을 보이며 이번에 개발된 기술은 적용되는 분리 공정에 따라서 맞춤형으로 튜닝이 가능해, 차후 여러 산업 분야로 확대 적용이 가능한 범용성 기술이다. 생명화학공학과 이홍주 박사과정이 제1 저자로 참여한 이번 연구는 국제 학술지 `사이언스 어드밴시스(Science Advances)' 4월 12일 자 온라인 게재됐다. (논문명 : Mechanically stable polymer molecular sieve membranes with switchable functionality designed for high CO2 separation performance). 제1 저자인 이홍주 연구원은 "이번 연구에서 개발한 이산화탄소 분리막은 분자체 분리막 개념에 혁신적인 패러다임 발전을 이끌었을 뿐만 아니라 비교적 간단한 공정 과정으로도 고분자 소재에서는 달성하기 어려웠던 이산화탄소 분리 성능을 확보하는 데 성공했다ˮ 라며 "고분자 분리막이나 탄소 분자체 분리막을 적용하고자 했던 여러 화학 산업에 적용가능한 훌륭한 대안을 제시한 연구ˮ 라고 말했다. 한편 이번 연구는 한국연구재단 중견 연구자 지원사업 및 선도 연구센터의 분산형 저탄소 수소생산 사업과 사우디아람코-KAIST CO2 매니지먼트 센터의 지원을 받아 수행됐다.
2024.04.22
조회수 7297
화합물 생성AI 기술로 신약 개발 앞당긴다
신약 개발이나 재료과학과 같은 분야에서는 원하는 화학 특성 조건을 갖춘 물질을 발굴하는 것이 중요한 도전으로 부상하고 있다. 우리 대학 연구팀은 화학반응 예측이나 독성 예측, 그리고 화합물 구조 설계 등 다양한 문제를 동시에 풀면서 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 기술을 개발했다. 김재철AI대학원 예종철 교수 연구팀이 분자 데이터에 다중 모달리티 학습(multi-modal learning) 기술을 도입해, 분자 구조와 그 생화학적 특성을 동시에 생성하고 예측이 가능해 다양한 화학적 과제에 광범위하게 활용가능한 인공지능 기술을 개발했다고 25일 밝혔다. 심층신경망 기술을 통한 인공지능의 발달 이래 이러한 분자와 그 특성값 사이의 관계를 파악하려는 시도는 꾸준히 이루어져 왔다. 최근 비 지도 학습(unsupervised training)을 통한 사전학습 기법이 떠오르면서 분자 구조 자체로부터 화합물의 성질을 예측하는 인공지능 연구들이 제시되었으나 새로운 화합물의 생성하면서도 기존 화합물의 특성 예측이 동시에 가능한 기술은 개발되지 못했다. 연구팀은 화학 특성값의 집합 자체를, 분자를 표현하는 데이터 형식으로 간주해 분자 구조의 표현식과 함께 둘 사이의 상관관계를 아울러 학습하는 AI학습 모델을 제안했다. 유용한 분자 표현식 학습을 위해 컴퓨터 비전 분야에서 주로 연구된 다중 모달리티 학습 기법을 도입해, 두 다른 형식의 데이터를 통합하는 방식으로, 바라는 화합물의 성질을 만족하는 새로운 화합물의 구조를 생성하거나 주어진 화합물의 성질을 예측하는 생성 및 성질 특성이 동시에 가능한 모델을 개발했다. 연구팀이 제안한 모델은 50가지 이상의 동시에 주어지는 특성값 입력을 따르는 분자 구조를 예측하는 등 분자의 구조와 특성 모두의 이해를 요구하는 과제를 해결하는 능력을 보였으며, 이러한 두 데이터 정보 공유를 통해 화학반응 예측 및 독성 예측과 같은 다양한 문제에도 기존의 인공지능 기술을 뛰어넘는 성능을 보이는 것으로 확인됐다. 이 연구는 독성 예측, 후보물질 탐색과 같이 많은 산업계에서 중요하게 다뤄지는 과제를 포함해, 더 광범위하고 풍부한 분자 양식과 고분자, 단백질과 같은 다양한 생화학적 영역에 적용될 수 있을 것으로 기대된다. 예종철 교수는 “새로운 화합물의 생성과 화합물의 특성 예측 기술을 통합하는 화학분야의 새로운 생성 AI기술의 개척을 통해 생성 AI 기술의 저변을 넓힌 것에 자부심을 갖는다”고 말했다. 예종철 교수 연구팀의 장진호 석박통합과정이 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션즈(Nature Communications)’지난 3월 14일 자 온라인판에 게재됐다. (논문명 : Bidirectional Generation of Structure and Properties Through a Single Molecular Foundation Model) 한편 이번 연구는 한국연구재단의 AI데이터바이오선도기술개발사업으로 지원됐다.
2024.03.25
조회수 4527
쭉쭉 늘어나는 최고 성능의 태양전지 개발
웨어러블 전자소자의 시장 규모가 급격히 커지며 에너지 공급원으로서 잡아당겨 늘려도 작동할 수 있는 스트레쳐블 태양전지가 각광 받고 있다. 이러한 태양전지를 구현하기 위해서는 빛을 전기로 전환하는 광활성층의 높은 전기적 성능과 기계적 신축성 확보가 필수적인데, 이 두 가지 특성은 서로 상충관계를 가지고 있어서 스트레쳐블 태양전지의 구현은 매우 어려운 문제였다. 우리 대학 생명화학공학과 김범준 교수 연구팀이 높은 전기적 성능과 신축성을 동시에 갖는 새로운 형태의 전도성 고분자 물질을 개발해 세계 최고 성능의 스트레처블 유기태양전지를 구현했다고 26일 밝혔다. 유기 태양전지(organic solar cells)는 빛을 받아 전기를 생산하는 광 활성층이 유기물로 구성되는 전자소자로, 기존 무기 재료 기반 태양전지에 비해 가볍고 유연하다는 장점이 있어 몸에 착용할 수 있는 웨어러블 전자소자에 사용 가능하다. 특히, 태양전지는 이러한 전자소자의 전력을 공급하는 필수적인 소자이지만, 기존 고효율 태양전지는 신축성을 가지기 어려워서 웨어러블 소자로 거의 구현된 바가 없다. 김범준 교수 연구팀은 높은 전기적 성질을 가지는 전도성 고분자에 고무처럼 늘어나는 고신축성 고분자를 화학 결합을 통해 연결하여, 높은 전기적 성능과 기계적 신축성을 동시에 가지는 새로운 형태의 전도성 고분자를 개발하였다. 개발된 고분자는 현재 세계 최고 수준의 광전변환효율 (19%)을 가지는 유기태양전지를 구현하면서도, 기존 소자들에 비해 10배 이상 높은 신축성을 달성하였다. 이를 통해 40% 이상 잡아당겨도 작동하는 세계 최고성능의 스트레처블 태양전지를 구현하였으며, 이를 통해 사람이 착용가능한 태양전지의 응용 가능성을 증명했다. 김범준 교수는 "이번 연구를 통해 세계 최고성능의 스트레쳐블 유기 태양전지를 개발했을 뿐만 아니라 새로운 개념의 고분자 소재 개발을 통해 자유형상 및 신축성을 요구로 하는 다양한 전자소자에 응용가능한 소재 원천 기술을 개발했다는 것에 큰 의의가 있다ˮ라고 밝혔다. 이진우, 이흥구 연구원이 공동 제1 저자로 참여하고, 기계공학과 김택수 교수, 생명화학공학과 리섕 교수팀이 공동으로 진행한 이번 연구는 국제 학술지 `줄(Joule)'에 12월 1일 출판됐다. (논문명: Rigid and Soft Block-Copolymerized Conjugated Polymers Enable High-Performance Intrinsically-Stretchable Organic Solar Cells). 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2023.12.26
조회수 3633
액정 고분자를 통해 ‘올인원 솔루션’ 기술 개발
액정 고분자는 녹아있는 상태에서 액정성을 나타낸 고분자로 높은 내열성과 강도를 가지고 있어서 기존에는 광학 필름이나 코팅 소재로 응용되었지만, 최근에는 가스 및 액체 흡착, 약물 전달, 센서 기술 등의 분야에서 광범위하게 효율적 활용이 가능하다는 연구가 보고되고 있다. 우리 대학 화학과 윤동기 교수 연구팀이 연성 소재(soft material)중 하나인 액정 고분자의 자기조립(self-assembly)을 활용해 다공성 액정 고분자 구조체를 제작하고, 다양한 기능성 나노 입자를 도입해 복합체를 형성할 수 있는 원천기술을 개발했다고 20일 밝혔다. 이번 연구에서 윤 교수팀은 다양한 모양에 조립을 유도할 수 있는 분자 형태로 이루어져 있어 표면 개질, 공간적 한정, 빛, 전기장에 의해 배향이 쉽게 조절되는 특성을 가진 액정의 배향 제어를 기반으로 액정 고분자 기반의 다공성 구조체를 제작했고, 이를 매트릭스로 하여 페로브스카이트(perovksite), 금속유기골격체 (metal-organic framework), 퀀텀닷(quantum dot) 등과 같은 다양한 기능성 나노 입자 도입을 통해 유-무기 복합체(organic-inorganic composite)를 제작하는 것에 집중했다. 연구팀은 매트릭스의 기공에서 나노 입자들을 직접 성장시키거나 이미 제작된 나노 입자들을 도입하는 서로 다른 전략을 개발했다. 이를 통해 도입하고자 하는 기능성 나노 입자의 선택성을 넓혀 범용적인 복합체 제작이 가능하다는 것을 보였다. (그림 1) 연구팀은 또한 두 가지 이상의 나노 입자들을 도입하는 전략을 제시해 다기능성 복합체 제작이 가능하다는 것을 보였다. 기존의 다공성 고분자 기반의 복합체 제작 연구의 경우 하나의 기능성 입자를 도입하고자 하는 것에 초점이 맞추어져 있고, 두 가지 이상의 기능성 도입을 위한 자세한 연구는 부족하다. 연구팀이 이번 연구에서 제안한 다기능성 복합체의 경우 서로 다른 나노 입자들의 기능성을 동시에 가질 수 있어, 기존 기능성 입자들의 활용 범위를 더욱 넓힐 수 있다는 것을 보였다. 화학과 윤동기 교수는 “이 기술은 기존에 알려진 대표적인 무기 입자들을 액정 고분자를 통해 한 번에 제조, 포함할 수 있는 `올인원 솔루션'으로 오염물질 제거, 안정된 디스플레이 소자 개발, 차세대 통신용 인쇄 회로 기판 제조 등에 다기능성을 부여할 수 있다는 점에서 획기적인 기술이라고 할 수 있다”고 언급했다. 이번 연구는 국제 학술지 어드밴스드 머터리얼즈(Advanced Materials)에 “Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles”의 이름으로 지난 11월 22일 자에 게재됐다. 이근중†, 박건형†, 박계현, 박영서, 이창재, 윤동기* : 공동 제1 저자, * 교신저자. 한편 이번 연구는 과학기술정보통신부-한국연구재단의 지원을 받은 중견연구자 지원사업, 함께달리기사업의 지원을 받아 수행됐다.
2023.12.20
조회수 4070
반도체 기술로 75배 향상된 초고효율 수소 생산 성공
반도체 공정기술을 활용하여 세계 최고 수준의 높은 수소 생산 효율을 장기간 유지하는 기술이 개발되어 화제다. 우리 대학 신소재공학과 정연식 교수·KIST(원장 윤석진) 김진영 박사·김동훈 박사 공동 연구팀이 수소 생산 촉매가 반응 중 잃어버리는 전자를 신개념 산화물 반도체로부터 보충받는 새로운 원리를 활용해 고효율 및 고내구성 수소 생산 기술을 개발했다고 25일 밝혔다. 고순도 그린 수소를 생산하기 위해 신재생에너지로 물을 전기분해하는 친환경적인 고분자 전해질막 수전해(PEMWE) 장치를 활용하게 된다. 이때 주로 사용되는 이리듐(Ir) 촉매의 경우 전자를 많이 가지고 있는 상태를 지속적으로 유지해야 고효율과 고내구성을 동시에 달성할 수 있게 된다. 하지만 일반적으로 쉽게 전자를 잃어버리고 산화되는 촉매 반응의 특성 때문에 효율과 수명이 현저히 저하되는 고질적인 문제가 있었다. KAIST-KIST 공동 연구팀은 초미세 패턴을 적층하여 3차원 네트워크 구조를 구현할 수 있는 반도체 기술을 활용하였다. 이때 사용한 물질은 안티모니(Sb)가 도핑된 주석 산화물이며, 이 산화물 표면에는 ‘전자 저장소’역할을 하는 산소 이온이 고농도로 분포하도록 반도체 증착 기술을 적용하였다. 이 독특한 산화물 반도체를 촉매 지지체로 사용하게 되면 표면에 위치한 산소 이온이 이리듐(Ir) 촉매로 충분한 양의 전자를 지속적으로 보충해 줌으로써 촉매의 높은 수소 생산 효율을 장기간 유지해 주게 된다. 연구팀은 이를 고분자 전해질막 수전해(PEMWE) 장치에 적용한 결과, 기존 이리듐(Ir) 상용 나노입자 촉매에 비해 최대 75배 개선된 세계 최고 수준의 성능 향상을 달성함과 동시에 높은 전류 밀도에서 장시간 구동하는 우수한 내구성 또한 확보했다. 우리 대학 정연식 교수는 “일반적으로 반도체 기술과 수소 생산은 크게 다른 분야로 여겨지지만, 기존 합성 기술로는 얻기 어려운 독특한 조성의 소재를 정밀 반도체 공정 기술로 구현함으로써 높은 효율을 달성할 수 있었고, 이는 기술 분야 간 융합의 중요성을 잘 보여주는 연구 사례”라고 덧붙였다. KIST 김진영 박사는“기존 귀금속 촉매량의 1/10 이하만 사용하고도 동등 이상의 성능을 달성해, 앞으로 추가 연구를 통해 그린 수소 생산의 경제성을 확보할 수 있을 것으로 기대된다”고 언급했다. 신소재공학과 이규락 학생, KIST 김준 박사, 홍두선 박사가 공동 제1 저자로 참여한 이번 연구는 국제학술지 `네이처 커뮤니케이션스(Nature Communications)' 9월 5일 字 온라인판에 게재됐다. (논문명: Efficient and sustainable water electrolysis achieved by excess electron reservoir enabling charge replenishment to catalysts) 이번 연구는 산업자원통상부 에너지혁신인재양성사업, 과학기술정보통신부 미래수소원천기술개발사업, 그리고 과학기술정보통신부 나노소재기술개발 사업 등의 지원을 받아 수행됐다.
2023.09.25
조회수 5460
쭉쭉 늘어나는 웨어러블 디바이스 핵심기술 개발
웨어러블 전자 소자, 소프트 로보틱스 등 차세대 전자 디바이스에는 오랜 시간 손상되지 않으며 구동하기 위해서는 단단하고 잘 늘어나면서도 스스로 치유되는 성질을 가지는 탄성 고분자 소재의 개발이 필요하다. 우리 대학 신소재공학과 강지형 교수 연구팀이 탄성 고분자 소재의 기계적 물성과 자가 치유 효율성을 동시에 높이는 새로운 고분자 설계법을 개발하였다고 28일 밝혔다. 자가 치유 고분자는 고분자 사슬의 움직임이 많고 에너지 분산에 효율적인 결합이 사용될 경우에 자가 치유 특성을 가지게 된다. 하지만 이러한 성질은 고분자 소재를 기계적으로 약하게 만들게 되어 강하며 스스로 치유되는 특성을 동시에 가지는 재료의 개발에는 어려움이 있었다. 강지형 교수 연구팀은 금속 이온과 유기 리간드를 포함한 고분자 사이의 결합에 음이온이 미치는 영향에 대해 다양한 분석법을 통해 심도 있게 분석하여 고분자 소재가 외부 힘에 얼마나 견디는지에 대한 응력 완화 메커니즘을 규명했다. 이를 바탕으로 각기 다른 기능을 가지는 두 음이온을 의도적으로 섞어 기존 소재 대비 강성이 세 배 이상 향상하는 동시에 자가 치유 효율성도 동반 향상하는 결과를 얻어냈다. 단백질에서 많이 볼 수 있는 배위 결합을 기반으로 한 자가 치유 고분자는 금속 양이온과 고분자내 유기 리간드가 가교 결합을 형성하고 전하 균형을 위해 음이온이 근처에 존재하는 형태를 가지고 있다. 하지만 기존의 연구들은 음이온이 배위 결합 형성에 미치는 영향을 심도 있게 분석하지 않았다. 연구팀은 다른 성질을 나타내는 다섯 가지 음이온을 선별하여 배위에 참여하는 음이온, 배위에 참여하지 않는 음이온, 둘 이상의 배위 방식을 가지는 음이온, 총 세 카테고리로 분류했으며 이들이 거시적 고분자 물성에 미치는 영향을 분석했다. 배위에 참여하는 음이온은 고분자의 탄성율을 높이지만 소재가 끊어지지 않고 늘어나게 하는 연신율을 감소시키는 반면 배위에 참여하지 않는 음이온은 낮은 탄성율과 높은 연신율을 부여한다. 둘 이상의 배위 방식을 가지는 음이온은 응력 완화 메커니즘의 다양화를 이끌어 높은 탄성률과 상대적으로 높은 연신율을 부여한다. 이에 따라 연구팀은 다중 배위 방식을 가지는 음이온과 배위에 참여하지 않는 음이온을 혼합했을 때 두 음이온이 가지는 시너지로 인해 단독 음이온 시스템에 비해 더 높은 탄성률, 높은 연신율, 높은 자가 치유 효율성이 나타나는 것을 밝혔다. 이번 연구를 주도한 강지형 교수는 “이번 연구는 양날의 검과 같은 관계를 갖는 탄성 고분자 소재의 기계적 성질과 자가 치유 효율성을 동시에 높이는 새로운 전략을 개발했다는 것에서 큰 의의가 있으며, 잘 찢어지지 않는 자가 치유 연성 고분자의 설계 및 합성에 새로운 방향성을 제시, 차세대 소재 개발에 크게 기여할 것”이라고 말했다. 우리 대학 신소재공학과 박현창 박사가 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 8월 19일 게재됐다. (논문명: Toughening self-healing elastomer crosslinked by metal–ligand coordination through mixed counter anion dynamics) 한편 이번 연구는 한국연구재단의 나노소재기술개발사업 미래기술연구실 전략형, ERC 웨어러블 플랫폼 소재기술 센터의 지원을 받아 수행됐다.
2023.08.28
조회수 4707
염증없이 체내·외 측정 가능한 전자 신소재 개발
생체전자 의료기기는 체내에서 발생하는 신호를 읽어 생물학적 활동을 감지하거나, 조직을 자극해 질병 등을 치료하는 데 사용된다. 하지만 의료기기에 사용되는 전극 물질은 딱딱한 물성을 가지고 있어 체내에 염증반응을 일으키고 조직에 다량의 손상으로 이어질 수 있다. 따라서 조직과 같이 부드러운 성질을 가지면서도 전도성을 띠는 하이드로겔과 같은 연성 물질에 생체적합성이 높은 전도성 고분자를 체내 전극으로 사용하는 연구들이 활발하게 진행되고 있다. 우리 대학 신소재공학과 강지형 교수와 바이오및뇌공학과 박성준 교수 공동연구팀이 기존에 없었던 고전도성, 유사 조직 접착성 하이드로겔이란 신소재를 개발해 고성능 생체전자 기기를 구현했다고 4일 밝혔다. 대부분 전기 전도도가 높을수록 전도성 도메인들의 결정성이 높아지는 원리에 의해, 전도성이 높은 하이드로겔은 딱딱해지고, 부드러운 하이드로겔은 전도성이 낮을 수밖에 없다는 한계를 가진다. 이에 따라 전도성 고분자를 사용하는 하이드로겔 중, 전기 전도도가 높으면서도(10 S/cm 이상) 부드러운 물성(100 kPa 이하)을 가진 하이드로겔은 지금까지 보고된 바 없었다. 강지형 교수 연구팀은 기존에 없었던 고전도성, 유사 조직 물성 하이드로겔을 개발했다. 이 하이드로겔은 보고된 전도성 고분자 하이드로겔 중 가장 높은 전기 전도도(247 S/cm)를 띄며, 조직과 비슷한 물성(탄성율 = 60 kPa, 파괴변형률 = 410%)을 갖는다. 또한, 본 재료는 지속적인 움직임과 팽창, 수축이 있는 심장, 위와 같은 조직에서 안정적으로 기기가 작동하기 위해 필수조건인 조직에 쉽게 접착되는 장점을 가지고 있다. 공동연구팀은 원하는 생체 조직에 맞게 조정하고 그 형태에 맞추는 주형의 그물 구조에 따라 높은 질서도를 가지는 고분자 주형 네트워크를 도입했다. 따라서 주형에 맞추어 형성된 그물 네트워크는 기존 네트워크 대비 100배 이상 높은 전기 전도도를 보이며, 동시에 주형 고분자의 부드러운 특성 때문에 조직과 비슷한 물성을 지니게 된다. 변형에도 저항이 바뀌지 않아 생체전극으로서 최적의 성능을 갖는다. 또한 연구팀은 개발한 하이드로겔을 전극을 기반으로 한 높은 전기 전도도를 가진 다양한 고성능 생체전자 기기를 제작, 그 기능성을 검증했다. 높은 전기 전도도를 가진 특성으로 좌골신경 자극을 대상으로 하는 디바이스의 경우, 매우 낮은 전압(40 mV)에서 다리 근육의 움직임을 성공적으로 유도할 수 있었다. 또한 심전도 측정(ECG)을 위한 디바이스의 경우에도 매우 높은 신호 대 잡음 비(61 dB)로 신호를 측정하는 데 성공함으로써, 초고품질 생체 신호 측정을 위한 연성 기기 개발 가능성을 입증하였다. 이번 연구를 주도한 강지형 교수는 "이번 연구는 고전도성을 갖고 생체조직과 유사한 기계적 물성을 갖는 하이드로겔 개발을 위한 합성 방향을 새롭게 제시했다는 점에서 의미가 있다고 하면서, "이번에 개발된 전도성 하이드로겔은 급속도로 성장하고 있는 전자약 시장에 게임 체인저가 될 것으로 기대된다고 말했다. 우리 대학 신소재공학과 정주은 박사과정과 바이오및뇌공학과 성창훈 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 국제 학술지 ‘네이처 커뮤니케이션스 (Nature Communications)’에 4월 18일 게재됐다. (논문명: Highly conductive tissue-like hydrogel interface through template-directed assembly) 한편 이번 연구는 한국연구재단의 나노소재기술개발 미래기술연구실 사업을 받아 수행됐다.
2023.05.04
조회수 6324
리튬 금속 이차전지 수명 세계 최고 수준으로 구현
리튬이차전지의 이상적인 음극 소재로 주목받는 리튬 금속은 현재 상용 배터리인 그라파이트(graphite, 372 mAh/g)보다 10배 높은 용량을 가지고 있지만, 충·방전 과정 중 리튬 덴드라이트(dendrite)라 불리는 바늘 구조의 침전물이 쉽게 형성되는 근본적인 문제로 인해 상용화되지 못하고 있다. 우리 대학 신소재공학과 김일두 교수와 생명화학공학과 임성갑 교수 공동 연구팀이 리튬이온전지의 전해액 속에서 팽윤(고분자 화합물이 용매를 흡수해 부피가 늘어남)되는 초박형 공중합체 고분자 보호막을 적용해 리튬 금속 전지의 수명을 획기적으로 늘리는 데 성공했다고 28일 밝혔다. 리튬 금속의 낮은 쿨룽 효율, 짧은 전지 수명, 폭발 위험 등을 막기 위해 인공으로 고체-전해질 계면 (artificial solid-electrolyte interphase, 이하 SEI) 층을 보호막처럼 만들어 리튬 이온의 원활한 전달과 덴드라이트의 성장을 억제하기 위한 다양한 연구들이 진행되었다. 그러나, 기존의 인공 SEI 층들은 두께가 두꺼워 전지 내부의 높은 저항을 발생시키거나, 수백 사이클 이상의 구동 시 리튬 금속으로부터 떨어져 리튬 금속 음극의 장시간 안정성 유지에 어려움이 있었다. 무엇보다도, SEI 층의 형성 과정에서 반응성이 매우 큰 리튬의 손상이 발생하는 경우가 많아 원하는 형태의 SEI 층을 형성하는 데에 제약이 컸다. 공동 연구팀은 리튬 금속의 높은 반응성을 제어하고 덴트라이트 성장 및 전해액 고갈 문제를 해결하기 위해 `개시제를 이용한 화학 기상 증착법(initiated chemical vapor deposition, iCVD)'이라는 공정을 이용했다. 이 공정 기술은 리튬금속 표면에 손상없이 보호막으로 적용되도록 용매를 사용하지 않는 온화한 조건에서 공정을 진행하며 기능성 고분자 박막을 얇게 균일하게 적용할 수 있다는 장점이 있다. 공동 연구팀은 iCVD 공정으로 제조된 고분자 박막을 활용해 리튬 전극의 계면을 안정화하였다. 전해액과 만나 3배 팽윤되어 부드러운 SEI 구조체를 형성하는 고분자 보호막이 적용된 리튬 음극은 세계 최고 수준의 리튬 이온 운반율(0.95)과 이온 전도도(6.54 mS cm-1) 특성을 보였다. 특히 100 nm의 얇은 두께에서도 리튬 덴드라이트 성장을 효과적으로 막는 효과가 있음을 연구팀은 증명했다. 연구팀은 피디멤스가 코팅된 리튬 음극과 상용화된 양극(LiNi0.6Co0.2Mn0.2O2)을 배터리 셀(battery cell)로 제조해, 무려 600 사이클 이상 안정적으로 구동되는 세계 최고 수준의 성능을 구현했다. 생명화학공학과 임성갑 교수는 "전해액에서 팽윤되는 초박형 고분자 보호막을 iCVD 공정을 적용해 리튬 금속 대비 6배 이상 수명 특성이 개선된 리튬 금속 전지 개발에 성공했다ˮ고 밝혔으며, 신소재공학과 김일두 교수는 "고용량 리튬 이차전지뿐만 아니라 리튬-황 전지, 리튬-공기 전지와 같은 차세대 이차전지에도 필수적으로 사용되는 리튬 음극의 상용화를 앞당기는데 기여할 수 있을 것으로 기대된다ˮ 고 말했다. 이번 연구 결과는 우리 대학 졸업생 배재형 박사(現 경희대학교 화학공학과 교수), 우리 대학 최건우 박사과정, 우리 대학 송현섭 박사과정이 공동 제1 저자로 참여했으며, 국제 학술지 `어드밴스드 에너지 머티리얼즈(Advanced Energy Materials)' 온라인 호에 3월 8일자 출판되었으며, 표지논문 (Front Cover)으로도 선정됐다. (논문명 : Reinforcing native solid-electrolyte interphase layers via electrolyte-swellable soft-scaffold for lithium metal anode). 이번 연구는 KAIST-LG에너지솔루션 프론티어 리서치 랩 (Frontier Research Lab, FRL)과 과학기술정보통신부 선도연구센터 지원사업 (웨어러블 플랫폼 기술센터)의 지원을 받아 수행됐다.
2023.03.28
조회수 6121
<<
첫번째페이지
<
이전 페이지
1
2
3
4
5
>
다음 페이지
>>
마지막 페이지 5