본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%EA%B4%91%EC%9C%A0%EC%A0%84%ED%95%99+%EA%B8%B0%EC%88%A0
최신순
조회순
세계 최고 속도 입체적 조명 기술 개발
디스플레이(조명) 기술에서는 고속화가 아주 중요한 성능 중 하나로 꼽힌다. 최근 주요 스마트폰 제조사들은 화면 전환 속도가 기존의 초당 60회보다 크게 향상된 초당 120회의 고속 디스플레이를 선보였다. 이런 고속 디스플레이를 탑재한 모델의 이용자들 사이에 ‘한번 경험하면 예전으로 돌아갈 수 없다’는 말이 회자될 정도로, 고속화는 상업적인 가치도 크다고 볼 수 있다. 우리 대학 바이오및뇌공학과 장무석 교수 연구팀이 북해도대학 전자과학연구소의 시부카와 아츠시 부교수, 미카미 히데하루 교수, 오카야마대학 의·치·약과학과의 스도 유키 교수 연구팀과 공동연구를 통해 세계 최고속의 3차원 광 패턴 조명 기술*을 개발하는 데 성공했다고 15일 밝혔다. *광 패턴 조명 기술: 빛을 특정 패턴이나 형태로 조절하여 원하는 조명 효과를 얻는 기술 광 패턴 조명 기술은 우리에게 친숙한 디스플레이나 빔프로젝터에서 찾아볼 수 있다. 디스플레이나 빔 프로젝터 내부에는 원하는 이미지나 모양 등을 화소 단위로 만들어낼 수 있는 광 패턴 조명 장치인 공간 광 변조기*가 사용되고 있다. 이외에도 광 패턴 조명 기술은 최근 주목받는 가상 현실 기술 분야의 핵심 요소 기술인 3차원 디스플레이 기술에도 사용되며, 산업 분야에서는 금속 가공, 연구 분야에서는 뇌 심부 이미징을 위한 레이저 스캐닝 현미경 등에 사용되고 있다. *공간 광 변조기: 빛을 화소 단위로 조작하여 원하는 이미지나 모양을 만들어내는 장치로, 빔 프로젝터나 3차원 디스플레이 기술 등에 사용되는 장치 하지만 공간 광 변조기는 조명 패턴의 전환을 고속으로 수행하는 데 큰 한계를 겪고 있었다. 현재 시판되는 공간 광 변조기는 액정형 디스플레이 장치나 디지털 미러 장치가 있지만, 통상적인 전환 속도는 50마이크로초에서 10밀리초 수준으로 제한되며, 원리적으로 이보다 더 빠르게 만드는 데에는 기술적 어려움이 있었다. 연구팀은 공간 자유도-시간 자유도 사이의 치환 개념을 개발하고, 이를 독자 개발한 초고속 1차원 광 변조기와 산란 매질*을 결합하여 구현하는 방식으로, 시판되는 공간 광 변조기보다 약 1,500배 빠른 30나노초의 전환 속도를 갖는 세계 최고 속도의 3차원의 조명(디스플레이) 기술을 개발했다. *산란 매질: 안개나 물방울 맺힌 유리창처럼 빛을 무질서하게 굴절시키는 물질 연구팀은 빛의 전파를 교란하는 산란 매질의 특성을 역이용해 1차원의 광 패턴을 사용자가 원하는 3차원의 패턴으로 변환하기 위해 복잡 광 파면 조작 기술을 핵심 기술로 활용했다. 연구팀이 개발한 세계 최고 속도의 광 패턴 조명 기술은 특정 각도에서만 볼 수 있는 기존의 2차원 유사 홀로그램과 달리 실제로 3차원 공간상에 광 정보를 재구성해 입체 영상을 만드는 기술로 활용될 수 있다. 그뿐만 아니라 광유전학 기술에 기반한 뇌 신경 조절 기술과 같은 생체 조절 기술의 고속화·대규모화나 금속 3D 프린터 등의 광 가공 생산 효율 향상 등, 다양한 분야에서 응용될 전망이다. *광유전학 기술: 빛을 이용해 살아있는 생물 조직의 세포를 제어하는 기술 해당 연구 결과는 바이오및뇌공학과 송국호 박사과정이 공저자, 장무석 교수가 교신저자로 참여했으며 국제 학술지 `네이처 커뮤니케이션즈(Nature Communications)' 2024년 4월 8일 온라인판에 게재되었다. (논문명 : Large-volume focus control at 10 MHz refresh rate via fast line-scanning amplitude-encoded scattering-assisted holography) 이번 연구는 과학기술정보통신부 한국연구재단이 주관하는 선도연구센터사업(컬러변조 초감각 인지기술 선도연구센터), 우수신진연구자 사업, 삼성미래기술육성사업, 국토교통부 국토교통과학기술진흥원이 주관하는 차세대 대인 보안검색 기술 개발 사업의 지원을 받아 수행됐다.
2024.04.15
조회수 3962
허원도 교수, 세포의 이동 방향 결정하는 방향타 단백질 발견
〈 허 원 도 교수 〉 우리 몸의 세포는 가만히 멈춰있는 것이 아니라 이동한다. 세포가 특정 방향으로 이동하는 과정은 배아 발달, 상처 치유, 면역 반응 등에 필수적이다. 우리 몸 여러 기관에 암이 전이되는 현상도 암 세포의 이동 때문에 발생한다고 볼 수 있는데 이처럼 세포의 이동은 다양한 생리 및 병리적 조건에서 중요한 역할을 담당한다. 세포 이동에는 여러 종류의 소형 GTP 결합 단백질과 이 단백질의 활성을 조절하는 GEF 단백질들이 관여한다. 세포는 진행 방향 부위의 소형 GTP 결합 단백질(Rac1, Cdc42)이 활성화되면서, 동력을 내는 액틴 섬유를 중합(polymerization)해 지느러미 같은 돌출부를 만들어 앞으로 나아갈 수 있다. 그러나 기존 연구에서는 세포 이동을 관장하는 여러 종류의 GEF 단백질을 세포에 발현시켜도 세포의 이동이 크게 증가하지 않는 한계가 있었고, 세포 이동의 구체적인 작동원리를 밝히지 못했다. 우리 대학 생명과학과 허원도 교수 연구진은 GEF 단백질 중 하나인 ‘PLEKHG3’ 단백질이 세포의 이동 방향을 결정하는 ‘방향타’ 역할을 담당한다는 사실을 처음으로 발견했다. 또한, 독자적으로 개발한 광유전학 기술(광유도 분자 올가미, LARIAT)을 접목, 빛으로 ‘방향타 단백질(PLEKHG3)’ 의 활성을 조절해 세포의 이동을 실시간으로 제어하는 데 성공했다. 연구진은 바이오이미징 기술로 세포 내 63개 GEF 단백질들의 분포양상을 분석해, 세포가 이동하는 동안 세포이동을 조절할 가능성이 높은 GEF 단백질들을 선별했다. 그 중 PLEKHG3가 세포의 진행 방향 부위로 빠르게 이동하는 현상을 확인했다. 방향타 역할을 하는 이 단백질은 해당 부위에서 소형 GTP 결합 단백질을 활성화해 세포 골격을 이루는 액틴 섬유를 형성한다. 액틴 섬유는 그물망을 이루며 지느러미 같은 돌출부를 형성,해 세포를 앞으로 나아가게 한다. 이 과정에서 방향타 단백질은 액틴 섬유 자체와도 매우 강하게 결합하는데, 이 결합이 소형 GTP결합 단백질의 활성을 더욱 촉진시킴으로써 세포의 이동 속도를 더 빠르게 한다는 사실을 발견했다. 또한 연구진은 광유전학 기술로 방향타 단백질의 활성을 조절해 세포가 움직이는 방향을 인위적으로 제어하는 데 성공했다. 청색광 수용체를 이용해 만든 융합 단백질이 발현된 세포에 청색광을 비추면 융합단백질이 PLEKHG3를 올가미처럼 붙잡아 PLEKHG3의 움직임을 방해하는 원리를 활용했다. 이에 따라 빛을 비추면 세포는 이동을 멈추고, 빛을 끄면 PLEKHG3의 활성이 다시 정상화돼, 세포는 움직인다. 빛을 비추는 부위를 조정해서, 세포의 이동방향도 제어할 수 있음을 확인했다. 본 연구는 방향타 단백질인 PLEKHG3가 세포를 움직이게 하는 핵심 단백질임을 밝히고, 광유전학 기술로 빛을 통해 세포의 이동을 자유롭게 제어한 데 의의가 있다. 허원도 교수는 “세포 이동을 극대화하는 새로운 메커니즘을 밝혀 암세포 전이 및 면역 세포 이동을 연구할 수 있을 것으로 기대된다”고 말했다. 이번 연구결과는 국제 학술지 미국국립과학원회보(PNAS) 8월 23일자 온라인 판에 게재됐다. □ 그림 설명 그림1. 세포내 PLEKHG3의 위치분석 그림2. 세포이동시 PLEKHG3의 세포내 위치추적 그림3. PLEKHG3에 의한 새로운 세포이동 메커니즘
2016.08.24
조회수 11001
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1