본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
%ED%83%9C%EC%96%91%EA%B4%91
최신순
조회순
페로브스카이트 태양전지의 한계를 극복하다
전체 태양 에너지의 약 52%를 활용하지 못하는 문제점을 가진 기존 페로브스카이트 태양전지가 한국 연구진에 의해 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상하는 혁신기술로 개발되었다. 이는 차세대 태양전지의 상용화 가능성을 크게 높이며, 글로벌 태양전지 시장에서 중요한 기술적 진전에 기여할 것으로 보인다. 우리 대학 전기및전자공학부 이정용 교수 연구팀과 연세대학교 화학과 김우재 교수 공동 연구팀이 기존 가시광선 영역을 뛰어넘어 근적외선 광 포집을 극대화한 고효율·고안정성 유무기 하이브리드 태양전지 제작 기술을 개발했다고 31일 밝혔다. 연구팀은 가시광선 흡수에 한정된 페로브스카이트 소재를 보완하고, 근적외선까지 흡수 범위를 확장하는 유기 광반도체와의 하이브리드 차세대 소자 구조를 제시하고 고도화했다. 또한, 해당 구조에서 주로 발생하는 전자구조 문제를 밝히고 다이폴 층*을 도입해 이를 획기적으로 해결한 고성능 태양전지 소자를 발표했다. *다이폴(쌍극자) 층: 소자 내 에너지 준위를 조절해 전하 수송을 원활하게 하고, 계면의 전위차를 형성해 소자 성능을 향상하는 역할을 하는 얇은 물질 층임 기존 납 기반 페로브스카이트 태양전지는 850나노미터(nm) 이하 파장의 가시광선 영역에만 흡수 스펙트럼이 제한돼 전체 태양 에너지의 약 52%를 활용하지 못하는 문제가 있다. 이를 해결하기 위해 연구팀은 유기 벌크 이종접합(BHJ)을 페로브스카이트와 결합한 하이브리드 소자를 설계, 근적외선 영역까지 흡수할 수 있는 태양전지를 구현했다. 특히, 나노미터 이하 다이폴 계면 층을 도입해 페로브스카이트와 유기 벌크 이종접합(BHJ) 간의 에너지 장벽을 완화하고 전하 축적을 억제, 근적외선 기여도를 극대화하고 전류 밀도(JSC)를 4.9 mA/cm²향상하는 데 성공했다. 이번 연구의 핵심 성과는 하이브리드 소자의 전력 변환 효율(PCE)을 기존 20.4%에서 24.0%로 대폭 높인 것이다. 특히, 이번 연구는 기존 연구들과 비교했을 때, 높은 내부 양자 효율(IQE)을 달성하며 근적외선 영역에서 78%에 달하는 성과를 기록했다. 또한, 이 소자는 높은 안정성을 보여, 극한의 습도 조건에서도 800시간 이상의 최대 출력 추적에서 초기 효율의 80% 이상을 유지하는 우수한 결과를 보였다. 이정용 교수는 “이번 연구를 통해 기존 페로브스카이트/유기 하이브리드 태양전지가 직면한 전하 축적 및 에너지 밴드 불일치 문제를 효과적으로 해결하였고 근적외선 광 포집 성능을 극대화하면서도 전력 변환 효율을 크게 향상시켜 기존 페로브스카이트가 가진 기계적-화학적 안정성 문제를 해결하고 광학적 한계를 뛰어넘을 수 있는 새로운 돌파구가 될 것”이라고 말했다. 전기및전자공학부 이민호 박사과정과 김민석 석사과정이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `어드밴스트 머티리얼스(Advanced Materials)' 9월 30일 자 온라인판에 게재됐다. (논문명 : Suppressing Hole Accumulation Through Sub-Nanometer Dipole Interfaces in Hybrid Perovskite/Organic Solar Cells for Boosting Near-Infrared Photon Harvesting). 한편 이번 연구는 한국연구재단의 지원을 받아 수행됐다.
2024.10.31
조회수 1488
발걸음만으로 태양광 패널의 먼지를 제거하는 기술 개발
우리 대학 기계공학과 경기욱 교수 연구팀이 발걸음에서 얻어지는 충격 에너지를 전기 에너지로 변환해 태양광 패널의 먼지를 제거하는 기술을 개발했다고 4일 밝혔다. 탄소 중립 실현을 위해 태양광 발전의 중요성이 커지고 있다. 태양광 패널은 표면의 먼지로 효율이 점점 낮아지는 문제가 있기 때문에 주기적인 세척이 필요하다. 하지만 손이 닿지 않거나 도심에 분산되어있는 태양광 패널을 일일이 청소하는 것은 어려운 실정이다. 연구팀은 문제 해결을 위해, 마찰전기 발전기(triboelectric nanogenerator)와 전기력 기반 먼지 제거 방식(elelctrodynamic dust shield)을 사용하여 보행자의 걸음에서 생기는 충격만으로 태양광 패널을 청소하는 방법을 개발했다. 먼지 제거 태양광 패널은 표면에 깍지 형태의 전극이 배치된 구조로, 교류 고전압을 가했을 시 진동하는 강한 전기력으로 먼지를 털어낸다. 강한 전기장을 만들어야 하는 특성상, 작동에 수 kV의 교류 고전압이 필요하다. 마찰전기 발전기는 친환경 에너지 하베스터 중 하나로, 두 물체를 마찰시켜 생기는 정전기를 이용해 고전압 출력이 나오는 특징이 있다. 하지만 마찰전기 발전기 작동 원리상 마찰이 필수적이기 때문에 발걸음과 같은 충격에 대해서 에너지 전환 효율이 낮으며, 오래 지속되는 고압의 전류 얻을 수 없다는 단점이 있다. 연구팀은 외팔보 구조와 전하 충전구조를 적용해 충격을 가했을 때 에너지의 손실 없이 진동하며 교류 고전압을 장시간(약 10초/회) 동안 발생시키는 마찰전기 발전기를 개발하였다. 개발된 마찰전기 발전기는 약 50.8%의 높은 에너지변환 효율을 보여주었으며, 최대 전압 2.6kVpp (약 17Hz)로 먼지 제거 패널을 충분히 작동시킬 수준의 높은 출력을 발생시킬 수 있음을 확인하였다. 연구팀은 12번의 발걸음을 걷는 동안 태양광 패널의 표면 먼지의 약 79.2%를 제거하였으며, 이 결과 태양광 패널의 출력이 증가함도 확인했다. 연구팀이 개발한 마찰전기 발전기를 이용한 태양광 패널 먼지 제거 방법은 사람들이 태양광 패널 주변을 걸어 다니는 것만으로도 세척이 힘든 도심 속 태양광 패널을 청소하는 친환경적인 방법이 될 수 있다. 이번 연구는 정부의 재원으로 한국 연구재단과 정보통신기획평가원의 지원을 받아 수행된 연구이며 우수 국제학술지인 나노 에너지 (Nano Energy)에 2022년 9월 22일 온라인 게재되었다. (논문명 : Highly efficient long-lasting triboelectric nanogenerator upon impact and its application to daily-life self-cleaning solar panel, 제1 저자 박사과정 마지형) 본 연구는 우리 대학 기계공학과 졸업생인 한국기술교육대학의 박진형 교수팀과 공동으로 수행됐다. 연구 내용 영상 : https://www.youtube.com/watch?v=wvaltw15iVI
2022.10.04
조회수 6269
강정구, 김용훈 교수, 태양광 이용 이산화탄소로 메탄올 변환 성공
우리 대학 EEWS 대학원 강정구 교수, 김용훈 교수 공동 연구팀이 태양광을 이용해 이산화탄소를 메탄올로 변환시킬 수 있는 광촉매를 개발했다. 이 기술은 값싼 물질에 간단한 공정으로 이산화탄소를 고부가가치의 화학물질로 변환시킬 수 있다. 향후 탄소배출규제 시행에 따른 이산화탄소 처리 및 저감 문제를 해결할 수 있는 대안 기술이 될 것으로 기대된다. 이동기, 최지일 박사가 참여한 이번 연구는 에너지 분야 학술지 ‘어드밴스드 에너지 머터리얼스(Advanced Energy Materials)’ 5월 9일자 온라인 판에 게재됐다. 매년 우리나라에서는 6억 톤의 이산화탄소가 발생하고 세계적으로는 250억 톤에 이른다. 이산화탄소를 메탄올로 변환할 수 있다면 1톤 당 약 40만원에 판매가 가능해지고, 운반의 문제를 해결할 수 있다. 경제 및 환경문제에서도 효과가 클 것으로 예상되기 때문에 과학계 및 관련 산업계는 이산화탄소를 메탄올로 변환하기 위한 노력을 하고 있다. 식물의 광합성 효과를 모방한 인공광합성 기술은 태양에너지만으로 메탄올과 같은 고에너지 밀도의 화학물질을 제조할 수 있다. 이 반응을 이끌어내기 위해서는 백금, 금, 루테늄과 같은 금속 광물이 필요하다. 하지만 낮은 에너지 변환 효율 문제가 개선되지 않아 광촉매 물질의 보호막 정도로만 사용되고 있다. 에너지 효율이 낮은 이유는 태양 에너지의 극히 일부만 활용 가능해 전자 전달 능력이 낮기 때문이다. 연구팀은 문제 해결을 위해 콜드 플라즈마(cold Plasma) 반응을 기반으로 한 기술을 이용했다. 기존 산화물 공정은 한 물질에 질소와 수소 처리를 동시에 구현하는 것이 불가능했지만, 기체 콜드 플라즈마 기술을 이용하면 상온에서도 고 반응성의 수소 및 질소 라디칼을 형성할 수 있다. 이를 통해 순간적 반응만으로 금속 산화물 내부에 질소 및 수소를 주입하는 데 성공했다. 이 기술로 자외선(UV)영역에 국한되는 이산화티타늄의 빛 감지 범위를 가시광선 영역까지 확대시켰고, 전자 전달 능력을 1만 배 증가시킴으로써 귀금속 광물 없이도 이산화탄소를 메탄올로 변환시킬 수 있었다. 또한 인공광합성 반응이 잘 일어나도록 도와주는 별도 화학첨가제나 전기적 에너지 없이도 반응을 가시광 범위까지 이끌어냈다. 이산화티타늄 광촉매는 해당 물질이 갖는 이론한계치의 74%에 달하는 광전류를 발생시켰고, 이산화탄소를 이용한 메탄올 발생량이 25배 이상 향상됐다. 연구팀은 슈퍼컴퓨터를 이용한 원자 수준 모델링을 통해 수많은 변수를 측정함으로써 촉매 반응 향상의 원리를 이론적으로 규명했다. 강 교수는“이 기술을 기반으로 향후 산업체에서 대량 생산할 수 있도록 기술을 발전시키는 것이 목표다”고 말했다. 이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사이번 연구는 미래창조과학부의 글로벌프론티어사업, 인공광합성 사업과 KISTI의 슈퍼컴퓨터 사업의 지원을 받아 수행됐다. □ 그림 설명 그림1. 태양광을 이용한 이산화탄소의 메탄올로의 변환 과정 그림2. 가시광에서 연료변환이 가능하도록 만든 코어-쉘 촉매
2016.05.26
조회수 15057
옷처럼 입을 수 있는 신 개념 배터리 개발
- 구부리고, 접히고 구겨져도 작동이 가능한 이차전지 원천기술 개발 - - 휘어지는 유기 태양전지 접목한 새로운 개념의 충전 기술 기반 - 최근 국내 대기업간 휘어지는 스마트 폰 경쟁이 치열하다. 특히, 국내 기업인 S사와 L사는 휘어지는 배터리를 탑재해 눈길을 끌었다. 그러나 앞으로는 배터리를 옷처럼 입고 다니는 것은 물론 태양광으로 충전도 가능할 전망이다. 우리 학교 EEWS 대학원 최장욱(39) 교수는 같은 과 이정용(40) 교수, 기계공학과 김택수(36) 교수와 공동으로 휘는 것은 물론 접어도 안전하게 작동하면서 태양열로 충전하는 신 개념 배터리를 개발했다. 연구 결과는 나노과학분야 세계적 권위지 ‘나노 레터스(Nano Letters)’지 5일자 온라인판에 게재됐다. 이번에 개발된 배터리를 이용하면 웨어러블 컴퓨터 기술개발이 탄력을 받을 것으로 기대된다. 또 아웃도어 의류에 적용할 경우 한겨울에도 입으면 땀나는 옷이 나올 것으로 예상된다. 휘어지는 전자기기는 미래 고부가가치 시장으로 여겨지고 있다. 삼성전자의 갤럭시 기어(Galaxy Gear), 애플(Apple)의 아이와치(i-Watch), 구글(Google) 글래스 등 다양한 입는 전자제품이 출시됐거나 시제품으로 소개됐으며 시장선점을 위한 기술경쟁은 더욱 치열해질 전망이다. 그러나 기존의 딱딱한 배터리는 입는 전자기기에 큰 장애물로써, 자유롭게 휘어지는 배터리를 개발하기 위해 많은 국내외 연구팀에서 노력하고 있다. 최 교수 연구팀은 옷으로 사용되는 섬유가 반복적인 움직임에도 변형되지 않는 점에 착안해 배터리에 유연한 특성을 부여했다. 연구팀은 폴리에스터 섬유에 전통적인 기술인 니켈 무전해 도금을 한 후, 전극 활물질로 양극에는 리튬인산철산화물을, 음극에는 리튬티타늄산화물을 얇게 도포해 유연한 집전체를 개발했다. 이처럼 섬유를 기반으로 개발된 배터리는 섬유의 유연함을 유지할 수 있어 구부림·접힘·구겨짐이 모두 가능하다. 기존 배터리의 집전체가 알루미늄과 구리를 사용해 몇 번만 접어도 부러지는 단점을 간단한 방법을 통해 획기적으로 개선한 것이다. 특히, 집전체 골격으로 쓰인 3차원 섬유구조는 반복적인 움직임에도 힘을 분산시켜 전극물질의 유실을 최소화하면서도 전지의 구동을 원활하게 해 5,000회 이상 접어도 정상적으로 작동했다. 현재는 2V의 전압과 85mAh의 용량을 나타냈으며, 이는 추가적인 최적화 과정을 통해 맞춤형 디자인을 할 수 있어 다양한 웨어러블 응용 분야에 적용될 수 있다고 연구팀은 설명했다. 게다가 이번에 개발한 배터리의 제조기술은 현재 양산 제조공정을 그대로 활용할 수 있어 생산라인의 재투자 없이 바로 적용될 수 있을 것으로 기대된다. 이와 함께 연구팀은 휘어지면서도 가벼운 특징을 갖는 유기태양전지 기술을 적용, 옷처럼 입고 구김이 가는 상태에서 태양광으로 충전하는 기능도 추가했다. 최장욱 교수는 “지금까지 입는 전자제품 개발에 있어 가장 큰 난관이었던 입는 배터리의 실마리를 풀어 미래 이차전지 분야 핵심원천기술로 활용될 것”이라며 “기존 이차전지 기업들과의 협력해 상용화되면 다양한 소형 모바일 전자기기를 입고 다니는 새로운 IT 시대를 가능하게 할 것”이라고 밝혔다.
2013.11.14
조회수 16617
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1