본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
AI%EB%B0%98%EB%8F%84%EC%B2%B4
최신순
조회순
2.4배 가격 효율적인 챗GPT 핵심 AI반도체 개발
오픈AI가 출시한 챗GPT는 전 세계적으로 화두이며 이 기술이 가져올 변화에 모두 주목하고 있다. 이 기술은 거대 언어 모델을 기반으로 하고 있다. 거대 언어 모델은 기존 인공지능과는 달리 전례 없는 큰 규모의 인공지능 모델이다. 이를 운영하기 위해서는 수많은 고성능 GPU가 필요해, 천문학적인 컴퓨팅 비용이 든다는 문제점이 있다. 우리 대학 전기및전자공학부 김주영 교수 연구팀이 챗GPT에 핵심으로 사용되는 거대 언어 모델의 추론 연산을 효율적으로 가속하는 AI 반도체를 개발했다고 4일 밝혔다. 연구팀이 개발한 AI 반도체 ‘LPU(Latency Processing Unit)’는 거대 언어 모델의 추론 연산을 효율적으로 가속한다. 메모리 대역폭 사용을 극대화하고 추론에 필요한 모든 연산을 고속으로 수행 가능한 연산 엔진을 갖춘 AI 반도체이며, 자체 네트워킹을 내장하여 다수개 가속기로 확장이 용이하다. 이 LPU 기반의 가속 어플라이언스 서버는 업계 최고의 고성능 GPU인 엔비디아 A100 기반 슈퍼컴퓨터보다 성능은 최대 50%, 가격 대비 성능은 2.4배가량 높였다. 이는 최근 급격하게 생성형 AI 서비스 수요가 증가하고 있는 데이터센터의에서 고성능 GPU를 대체할 수 있을 것으로 기대한다. 이번 연구는 김주영 교수의 창업기업인 ㈜하이퍼엑셀에서 수행했으며 미국시간 7월 12일 샌프란시스코에서 진행된 국제 반도체 설계 자동화 학회(Design Automation Conference, 이하 DAC)에서 공학 부문 최고 발표상(Engineering Best Presentation Award)을 수상하는 쾌거를 이뤘다. DAC은 국제 반도체 설계 분야의 대표 학회이며, 특히 전자 설계 자동화(Electronic Design Automation, EDA)와 반도체 설계자산(Semiconductor Intellectual Property, IP) 기술 관련하여 세계적인 반도체 설계 기술을 선보이는 학회다. DAC에는 인텔, 엔비디아, AMD, 구글, 마이크로소프트, 삼성, TSMC 등 세계적인 반도체 설계 기업이 참가하며, 하버드대학교, MIT, 스탠퍼드대학교 등 세계 최고의 대학도 많이 참가한다. 세계적인 반도체 기술들 사이에서 김 교수팀이 거대 언어 모델을 위한 AI 반도체 기술로 유일하게 수상한 것은 매우 의미가 크다. 이번 수상으로 거대 언어 모델의 추론에 필요한 막대한 비용을 획기적으로 절감할 수 있는 AI 반도체 솔루션으로 세계 무대에서 인정받은 것이다. 우리 대학 김주영 교수는 “미래 거대 인공지능 연산을 위한 새로운 프로세서 ‘LPU’로 글로벌 시장을 개척하고, 빅테크 기업들의 기술력보다 우위를 선점하겠다”라며 큰 포부를 밝혔다.
2023.08.04
조회수 5664
111배 빠른 검색엔진용 CXL 3.0 기반 AI반도체 세계 최초 개발
최근 각광받고 있는 이미지 검색, 데이터베이스, 추천 시스템, 광고 등의 서비스들은 마이크로소프트, 메타, 알리바바 등의 글로벌 IT 기업들에서 활발히 제공되고 있다. 하지만 실제 서비스에서 사용되는 데이터 셋은 크기가 매우 커, 많은 양의 메모리를 요구하여 기존 시스템에서는 추가할 수 있는 메모리 용량에 제한이 있어 이러한 요구사항을 만족할 수 없었다. 우리 대학 전기및전자공학부 정명수 교수 연구팀(컴퓨터 아키텍처 및 메모리 시스템 연구실)에서 대용량으로 메모리 확장이 가능한 컴퓨트 익스프레스 링크 3.0 기술(Compute eXpress Link, 이하 CXL)을 활용해 검색 엔진을 위한 AI 반도체를 세계 최초로 개발했다고 25일 밝혔다. 최근 검색 서비스에서 사용되는 알고리즘은 근사 근접 이웃 탐색(Approximate Nearest Neighbor Search, ANNS)으로 어떤 데이터든지 특징 벡터로 표현할 수 있다. 특징 벡터란 데이터가 가지는 특징들 각각을 숫자로 표현해 나열한 것으로, 이들 사이의 거리를 통해 우리는 데이터 간의 유사도를 구할 수 있다. 하지만 벡터 데이터 용량이 매우 커서 이를 압축해 메모리에 적재하는 압축 방식과 메모리보다 큰 용량과 느린 속도를 가지는 저장 장치를 사용하는 스토리지 방식(마이크로소프트에서 사용 중)이 사용되어 왔다. 하지만 이들 각각은 낮은 정확도와 성능을 가지는 문제가 있었다. 이에 정명수 교수 연구팀은 메모리 확장의 제한이라는 근본적인 문제를 해결하기 위해 CXL이라는 기술에 주목했다. CXL은 CPU-장치 간 연결을 위한 프로토콜로, 가속기 및 메모리 확장기의 고속 연결을 제공한다. 또한 CXL 스위치를 통해 여러 대의 메모리 확장기를 하나의 포트에 연결할 수 있는 확장성을 제공한다. 하지만 CXL을 통한 메모리 확장은 로컬 메모리와 비교해 메모리 접근 시간이 증가하는 단점을 가지고 있다. 데이터를 책으로 비유하자면 기존 시스템은 집에 해당하는 CPU 크기의 제한으로 서재(메모리 용량)를 무한정 늘릴 수 없어, 보관할 수 있는 책 개수에 제한이 있는 것이다. 이에 압축 방식은 책의 내용을 압축하여 더 많은 책을 보관하는 방법이고, 스토리지 방식은 필요한 책들을 거리가 먼 도서관에서 구해오는 것과 비슷하다. CXL을 통한 메모리 확장은 집 옆에 창고를 지어 책을 보관하는 것으로 이해될 수 있다. 연구진이 개발한 AI 반도체(CXL-ANNS)는 CXL 스위치와 CXL 메모리 확장기를 사용해 근사 근접 이웃 탐색에서 필요한 모든 데이터를 메모리에 적재할 수 있어 정확도를 높이고 성능 감소를 없앴다. 또한 근사 근접 이웃 탐색의 특징을 활용해 데이터 근처 처리 기법과 지역성을 활용한 데이터 배치 기법으로 CXL-ANNS의 성능을 한 단계 향상했다. 이는 마치 창고 스스로가 필요한 책들의 내용을 요약하고 정리해 전달하고, 자주 보는 책들은 서재에 배치해 집과 창고를 오가는 시간을 줄이는 것과 유사하다. 연구진은 CXL-ANNS의 프로토타입을 자체 제작해 실효성을 확인하고, CXL-ANNS 성능을 기존 연구들과 비교했다. 마이크로소프트, 메타, 얀덱스 등의 글로벌 IT 기업에서 공개한 검색 데이터 셋을 사용한 근사 근접 이웃 탐색의 성능 비교에서 CXL-ANNS는 기존 연구들 대비 평균 111배 성능 향상이 있었다. 특히, 마이크로소프트의 상용화된 서비스에서 사용되는 방식과 비교하였을 때 92배의 성능 향상을 보여줬다. 정명수 교수는 "이번에 개발한 CXL-ANNS는 기존 검색 엔진의 문제였던 메모리 용량 제한 문제를 해결하고, CXL 기반의 메모리 확장이 실제 적용될 때 발생하는 메모리 접근 시간 지연 문제를 해결했다ˮ며, “제안하는 CXL 기반 메모리 확장과 데이터 근처 처리 가속의 패러다임은 검색 엔진뿐만 아니라 빅 데이터가 필요한 고성능 컴퓨팅, 유전자 탐색, 영상 처리 등의 다양한 분야에도 적용할 수 있다ˮ라고 말했다. 이번 연구는 미국 보스턴에서 오는 7월에 열릴 시스템 분야 최우수 학술대회인 유즈닉스 연례 회의 `USENIX Annual Technical Conference, 2023'에 ‘CXL-ANNS’이라는 이름으로 발표된 예정이다. (논문명: CXL-ANNS: Software-Hardware Collaborative Memory Disaggregation and Computation for Billion-Scale Approximate Nearest Neighbor Search) 한편 해당 연구는 파네시아(http://panmnesia.com)의 지원을 받아 진행됐다.
2023.05.25
조회수 5215
생생한 3차원 실사 이미지 구현하는 ‘메타브레인’ 개발
우리 대학 전기및전자공학부 유회준 교수 연구팀이 실사에 가까운 이미지를 렌더링할 수 있는 인공지능 기반 3D 렌더링을 모바일 기기에서 구현, 고속, 저전력 인공지능(AI: Artificial Intelligent) 반도체*인 메타브레인(MetaVRain)’을 세계 최초로 개발했다고 7일 밝혔다. * 인공지능 반도체 : 인식·추론·학습·판단 등 인공지능 처리 기능을 탑재하고, 초지능·초저전력·초신뢰 기반의 최적화된 기술로 구현한 반도체 연구팀이 개발한 인공지능 반도체는 GPU로 구동되는 기존 레이 트레이싱 (ray-tracing)* 기반 3D 렌더링을 새로 제작된 AI 반도체 상에서 인공지능 기반 3차원으로 만들어, 기존의 막대한 비용이 들어가는 3차원 영상 캡쳐 스튜디오가 필요없게 되므로 3D 모델 제작에 드는 비용을 크게 줄이고, 사용되는 메모리를 180배 이상 줄일 수 있다. 특히 블렌더(Blender) 등의 복잡한 소프트웨어를 사용하던 기존 3D 그래픽 편집과 디자인을 간단한 인공지능 학습만으로 대체하여, 일반인도 손쉽게 원하는 스타일을 입히고 편집할 수 있다는 장점이 있다. *레이 트레이싱 (ray-tracing): 광원, 물체의 형태, 질감에 따라 바뀌는 모든 광선의 궤적을 추적함으로써 실사에 가까운 이미지를 얻도록 하는 기술 한동현 박사과정이 제1 저자로 참여한 이번 연구는 지난 2월 18일부터 22일까지 전 세계 반도체 연구자들이 미국 샌프란시스코에 모여 개최한 국제고체회로설계학회(ISSCC)에서 발표됐다. (논문번호 2.7, 논문명: 메타브레인: A 133mW Real-time Hyper-realistic 3D NeRF Processor with 1D-2D Hybrid Neural Engines for Metaverse on Mobile Devices (저자: 한동현, 류준하, 김상엽, 김상진, 유회준)) 유 교수팀은 인공지능을 통해 3D 렌더링을 구현할 때 발생하는 비효율적인 연산들을 발견하고 이를 줄이기 위해 사람의 시각적 인식 방식을 결합한 새로운 컨셉의 반도체를 개발했다. 사람은 사물을 기억할 때, 대략적인 윤곽에서 시작하여, 점점 그 형태를 구체화하는 과정과 바로 직전에 보았던 물체라면 이를 토대로 현재의 물체가 어떻게 생겼는지 바로 추측하는 인지능을 가지고 있다. 이러한 사람의 인지 과정을 모방하여, 새롭게 개발한 반도체는 저해상도 복셀을 통해 미리 사물의 대략적인 형태를 파악하고, 과거 렌더링했던 결과를 토대로, 현재 렌더링할 때 필요한 연산량을 최소화하는 연산 방식을 채택하였다. 유 교수팀이 개발한 메타브레인은 사람의 시각적 인식 과정을 모방한 하드웨어 아키텍처뿐만 아니라 최첨단 CMOS 칩을 함께 개발하여, 세계 최고의 성능을 달성하였다. 메타브레인은 인공지능 기반 3D 렌더링 기술에 최적화되어, 최대 100 FPS 이상의 렌더링 속도를 달성하였으며, 이는 기존 GPU보다 911배 빠른 속도다. 뿐만아니라, 1개 영상화면 처리 당 소모에너지를 나타내는 에너지효율 역시 GPU 대비 26,400배 높인 연구 결과로 VR/AR 헤드셋, 모바일 기기에서도 인공지능 기반 실시간 렌더링의 가능성을 열었다. 연구팀은 메타브레인의 활용 예시를 보여주고자, 스마트 3D 렌더링 응용시스템을 함께 개발하였으며, 사용자가 선호하는 스타일에 맞춰, 3D 모델의 스타일을 바꾸는 예제를 보여주었다. 인공지능에게 원하는 스타일의 이미지를 주고 재학습만 수행하면 되기 때문에, 복잡한 소프트웨어의 도움 없이도 손쉽게 3D 모델의 스타일을 손쉽게 바꿀 수 있다. 유 교수팀이 구현한 응용시스템의 예시 이외에도, 사용자의 얼굴을 본떠 만든 실제에 가까운 3D 아바타를 만들거나, 각종 구조물들의 3D 모델을 만들고 영화 제작 환경에 맞춰 날씨를 바꾸는 등 다양한 응용 예시가 가능할 것으로 기대된다. 연구팀은 메타브레인을 시작으로, 앞으로의 3D 그래픽스 분야 역시 인공지능으로 대체되기 시작할 것으로 기대한다며, 인공지능과 3D 그래픽스의 결합은 메타버스 실현을 위한 큰 기술적 혁신이라는 점을 밝혔다. 연구를 주도한 KAIST 전기및전자공학부 유회준 교수는 “현재 3D 그래픽스는 사람이 사물을 어떻게 보고 있는지가 아니라, 사물이 어떻게 생겼는지를 묘사하는데 집중하고 있다”라며 “이번 연구는 인공지능이 사람의 공간 인지 능력을 모방하여 사람이 사물을 인식하고 표현하는 방법을 차용함으로써 효율적인 3D 그래픽스를 가능케 한 연구”라고 본 연구의 의의를 밝혔다. 또한 “메타버스의 실현은 본 연구에서 보인 것처럼 인공지능 기술의 혁신과 인공지능 반도체의 혁신이 함께 이루어질 것”이라 미래를 전망하였다. 데모 동영상 유튜브 주소: https://www.youtube.com/watch?v=m-aqnZhALv0
2023.03.07
조회수 6080
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1