-
머리카락 1,000분의 1 나노섬유 혁신, 세계 최고 CO₂ 전해전지 개발
지구 온난화의 주범인 이산화탄소를 시장 가치가 높은 화학물질로 전환할 수만 있다면, 환경 문제를 해결함과 동시에 높은 경제적 가치를 창출할 수 있다. 국내 연구진이 이산화탄소(CO2)를 일산화탄소(CO)로 전환하는 고성능 ‘세라믹 전해전지’를 개발하여 탄소중립 실현을 위한 핵심 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수 연구팀이 신소재 세라믹 나노 복합섬유를 개발해 현존 최고 성능의 이산화탄소 분해 성능을 갖는 세라믹 전해전지를 개발하는 데 성공했다고 1일 밝혔다.
세라믹 전해전지(SOEC)는 이산화탄소를 가치 있는 화학물질로 전환할 수 있는 유망한 에너지 변환 기술로 낮은 배출량과 높은 효율성이라는 추가적인 이점이 있다. 하지만 기존 세라믹 전해전지는 작동 온도가 800℃ 이상으로, 유지 비용이 크고 안정성이 낮아 상용화에 한계가 있었다.
이에 연구팀은 전기가 잘 통하는 ‘초이온전도체’ 소재를 기존 전극에 함께 섞어 만든 ‘복합 나노섬유 전극’을 개발해 전기화학 반응이 더 활발하게 일어나도록 설계하고, 이를 통해 세라믹 전해전지가 더 낮은 온도에서도 효율적으로 작동할 수 있는 기반을 마련했다.
나아가, 이러한 소재 복합을 통해 나노섬유의 두께를 약 45% 감소시키고, 전극을 머리카락보다 1,000배 가는 두께(100나노미터)로 제작하여 전기분해 반응이 일어나는 면적을 극대화하여, 세라믹 전해전지의 작동 온도를 낮추는 동시에 이산화탄소 분해 성능을 약 50% 향상시키는데 성공했다.
복합 나노섬유가 적용된 세라믹 전해전지는 기존에 보고된 소자 중 가장 높은 세계 최고 수준의 이산화탄소 분해 성능(700℃에서 1.25 A/cm2)을 기록했으며, 300시간의 장기 구동에도 안정적인 전압을 유지해 소재의 탁월함을 입증했다.
이강택 교수는 “이번 연구에서 제안된 나노섬유 전극의 제작 및 설계 기법은 이산화탄소 저감뿐만 아니라 그린수소 및 친환경 전력 생산과 같은 다양한 차세대 에너지 변환 소자의 개발에 있어 선도적인 기술이 될 것”이라고 말했다.
우리 대학 기계공학과 김민정 석사, 김형근 박사과정, 아크롬존 석사가 공동 제 1 저자로 참여하고, 한국지질지원연구원 정인철 박사, 기계공학과 오세은 박사과정, 윤가영 석사과정이 공동저자로 참여한 이번 연구는 촉매·재료 분야의 세계적 권위지인 ‘어플라이드 카탈리시스 B: 환경과 에너지, Applied Catalysis B: Environment and Energy (IF:20.3)’에 3월 3일 온라인 게재됐다. (논문명: Exceptional CO2 Reduction Performance in Symmetric Solid Oxide Electrolysis Cells Enabled via Nanofiber Heterointerface Engineering, https://doi.org/10.1016/j.apcatb.2025.125222)
한편, 이번 연구는 과학기술정보통신부 나노 및 소재 기술개발사업, 개인기초연구사업 지원으로 수행됐다.
2025.04.01
조회수 400
-
AI 기반 화재 걱정없는 고효율 아연-공기 배터리 개발
‘제2의 반도체’로 불리는 리튬이온 전지(LIB)는 가장 높은 시장 점유율로 에너지 저장 장치 시장을 주도하고 있지만, 화재에 취약하는 약점을 가지고 있다. 한국 연구진이 화재로부터 안전하고 값이 저렴한 아연 금속과 공기중의 산소로 구동되는 고에너지 밀도를 가진 고출력 차세대 전지를 개발했다.
우리 대학 신소재공학과 강정구 교수 연구팀이 연세대 한병찬 교수 연구팀, 경북대 최상일 교수 연구팀 및 성균관대 정형모 교수 연구팀과의 공동연구를 통해, 인공지능 기반 이종기능* 전기화학 촉매를 개발 및 촉매 활성 메커니즘을 규명하고, 고효율 아연-공기 전지를 개발했다고 4일 밝혔다.
*이종기능: 충전(Charging) 동안에서의 산소 발생(OER) 기능과 방전(Discharging) 동안의 산소 환원 (ORR) 기능
최근 활발하게 연구가 진행되고 있는 아연-공기 전지 배터리의 음극에 사용되는 아연 금속과 공기극*에 필요한 공기는 자연에 풍부하다는 특성 때문에 소재 비용이 적다는 장점이 있다.
*공기극: 공기 중의 산소를 전극 반응에 활용하는 양극(+)
하지만 고효율 아연-공기 전지를 구현하기 위해서는 충·방전 시에 공기극에서 일어나는 산소 환원 및 산소 발생 반응이 잘 일어나게 하는 이종기능 촉매의 설계가 필수적이다. 하지만 기존에 알려진 상용 촉매는 백금, 이리듐 등 귀금속을 기반으로 하고 있어 가격 경쟁력이 있으면서도 높은 활성도를 지닌 촉매 물질의 개발이 필요하다.
강정구 교수 공동연구팀은 아연 금속-공기 전지에 쓰일 값이 저렴한 전이금속산화물 이종접합 촉매 물질을 개발했다. 해당 촉매 물질은 아연-공기 전지에 사용 시에 귀금속 기반 촉매보다 높은 활성도 및 안정성을 나타냈다. 이와 더불어 해당 연구팀은 인공지능을 활용하여, 기계학습 힘장*을 개발하여 계면에서의 원자구조와 촉매 활성 메커니즘을 정확히 규명하였다.
* 기계학습 힘장(Machine learning force field): 촉매의 성능을 높이려면 계면에서 반응이 원활하게 일어나야 함. 계면에 존재하는 수천만개의 원자들간의 상호 힘을 정확히 이해하기는 기존 방법으로 불가능함. 본 연구에서는 인공지능을 활용하여 양자역학 기반 기계학습 힘장을 개발하여 수천만개의 원자로 구성된 계면구조와 계면에서의 반응 메커니즘을 규명하는데 활용하였음.
연구팀은 개발된 이종기능 촉매를 활용해 아연-공기 완전셀을 구성해 고성능 에너지 저장 소자를 구현했다. 구현된 아연-공기 전지는 기존 상용화된 리튬이온 배터리를 뛰어넘는 에너지 밀도를 가짐을 확인했으며, 저렴한 원료 소재 및 안전성으로 인해 향후 전기 자동차, 웨어러블 전자기기 등에 적용할 수 있을 것으로 예상된다.
강 교수는 "이번 연구로 개발된 전이금속 산화물 기반의 차세대 촉매 소재는 가격 경쟁력과 더불어 높은 촉매 활성도로 인해 아연-금속 공기 전지의 상용화에 기여할 수 있다ˮ라며 "중·소형 전력원뿐만 아니라 향후 전기 자동차까지 활용 범위를 확대해 적용될 수 있을 것이다ˮ고 말했다.
신소재공학과 최종휘 박사과정이 주도한 이번 연구 결과는 에너지 저장 소재 분야의 국제 학술지 `에너지 스토리지 머터리얼스(Energy Storage Materials)'에 지난 1월 14일 字 게재됐다. (논문명: Zeolitic imidazolate framework-derived bifunctional CoO-Mn3O4 heterostructure cathode enhancing oxygen reduction/evolution via dynamic O-vacancy formation and healing for high-performance Zn-air batteries, https://doi.org/10.1016/j.ensm.2025.104040)
한편 이번 연구는 과학기술정보통신부와 한국연구재단의 나노 및 소재기술개발사업 미래기술연구실의 지원을 받아 수행됐다.
2025.03.04
조회수 1119
-
백금 1/10 줄인 촉매로 수전해 셀 생산 성공
수전해 셀은 물을 전기화학적으로 분해해 수소를 생산하는 기술로, 탄소 중립 시대를 위한 필수적인 에너지 변환 기술이지만 산업적 활용을 위해서는 고가의 백금 사용량이 크게 요구되는 한계가 있었다. 한국 연구진이 백금 사용량을 1/10로 줄여 수전해 셀의 경제성을 높이는데 성공했다. 이번 연구에서 측정한 수전해 셀 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 유일하게 충족시켰다고 평가받았다.
우리 대학 생명화학공학과 이진우 교수 연구팀이 화학과 김형준 교수 연구팀과 공동연구를 통해 음이온 교환막 기반 수전해 셀의 성능과 안정성을 획기적으로 높이는 고성능 고안정성 귀금속 단일 원자 촉매를 개발했다고 31일 밝혔다.
연구팀은 귀금속 촉매의 열화 메커니즘을 역이용하는 ‘자가조립원조 귀금속 동적배치’전략을 개발했다. 이 방법은 1,000℃ 이상의 고온에서 귀금속이 자발적이고 선택적으로 탄화물 지지체에 단일원자로 분해돼 안정적으로 담지되는 합성 기술이다. 이를 통해, 상용 백금 촉매 대비 1/10 수준의 백금 사용량으로도 더 높은 성능과 안정성을 구현했다.
단일 원자 촉매는 금속 원자가 지지체 표면에 고립된 형태로 담지돼 높은 귀금속당 촉매 효율을 나타내지만, 기존 저온 환원법에서는 촉매 성능 및 안정성 확보에 한계가 있었다.
연구팀은 귀금속 전구체와 고분자 사이의 분자적 상호작용 및 귀금속-지지체 사이의 상호작용을 응용해 자가조립원조 귀금속 동적배치라는 새로운 단일 원자 촉매합성 메커니즘을 제시했다. 또한, 연구팀은 이 합성 기술을 통해 백금뿐만 아니라 이리듐, 팔라듐, 로듐 등 다양한 귀금속 단일 원자 촉매에도 적용 가능성을 입증했다.
개발된 백금 단일 원자 촉매의 경우, 염기 조건 수소 생성반응에서 높은 안정성을 가지며 높은 밀도의 귀금속 활성점을 통해 우수한 수소 생산 성능을 보였다. 이 결과 상용 백금 촉매 대비 5배 높은 귀금속당 수소 생산 성능을 구현할 수 있었다.
연구팀은 개발 촉매의 상용성 평가를 위해 음이온 교환막 기반 수전해 셀에 적용했다. 개발된 백금 단일 원자 촉매는 상용 백금 촉매 대비 1/10 백금 사용량에도 불구하고 그를 능가하는 3.38A/cm2 (@ 1.8 V)의 높은 성능을 기록했으며, 1A/cm2의 산업용 전류밀도에서도 우수한 안정성을 나타냈다. 특히 이 성능은 미국 에너지부(Department of Energy, DOE)가 제시한 수전해 셀 성능 및 귀금속 사용량의 2026년 목표치를 충족시키는 유일한 음이온 교환막 기반 수전해 셀 성능으로 평가받는다.
제1 저자인 김성빈 연구교수는 "이번 기술은 수전해 셀의 원가를 크게 절감시키며 이번 연구에서 제시된 자가조립원조 귀금속 동적배치 전략은 수전해 셀뿐만 아니라 다양한 귀금속 기반 촉매 공정에도 응용할 수 있어 산업적 파급력이 클 것으로 보인다“고 말했다.
생명화학공학과 김성빈 연구교수가 주도하고, UNIST 에너지화학공학과 신승재 교수, KIST 수소연료전지센터 김호영 박사가 공동 제1 저자로 참여한 이번 연구는 국제 학술지 `에너지 인바이론멘탈 사이언스 (Energy & Environmental Science)' 1월 18권에 출판됐으며, 후면 표지논문(inside back cover)으로 선정됐다.
(논문명 : Self-assembly-assisted dynamic placement of noble metals selectively on multifunctional carbide supports for alkaline hydrogen electrocatalysis) DOI: 10.1039/D4EE04660A
한편 이번 연구는 한국연구재단의 나노미래소재원천기술개발사업, 중견연구자지원사업, 미래소재디스커버리사업 및 한국슈퍼컴퓨팅센터의 지원을 받아 수행됐다.
2025.02.03
조회수 1219
-
버려지는 이산화탄소를 되살릴 수 있다면
세계적으로 기후 변화와 탄소 배출 문제의 심각성이 대두되면서 이산화탄소(CO2)를 화학 연료와 화합물 등의 자원으로 전환해서 활용하는 기술이 절실한 상황이다. 우리 대학 화학과 박정영 교수 연구팀이 한국재료연구원 나노재료연구본부 박다희 박사 연구팀과 공동연구를 통해 이산화탄소(CO2) 전환 효율을 크게 향상하는 촉매 기술을 개발했다.
기존의 이산화탄소(CO2) 전환 기술은 높은 에너지를 소비하는 것에 비해 효율은 낮아 상용화가 어렵다. 특히, 단원자 촉매(SACs)는 촉매 합성이 복잡하고, 금속 산화물 지지체(촉매 입자를 안정적으로 유지하거나 내구성을 높이는 역할)와 결합 안정성을 유지하기 어려워 촉매 성능이 떨어졌다.
이러한 한계를 극복하기 위해 연구팀은 단일 및 이중 단원자 촉매 기술을 개발하고 간단한 공정으로 촉매 효율을 높이는 기술을 선보였다. 본 성과는 이중 단원자 촉매(DSACs)로 금속 간 전자 상호작용을 적극 활용해 기존보다 50% 이상 높은 전환율과 우수한 선택성(촉매가 원하는 생성물을 많이 생성할 수 있도록 유도하는 능력)을 구현했다.
본 기술은 금속 산화물 지지체 내 산소 공공(Oxygen Vacancy)과 결함 구조를 정밀하게 제어해 이산화탄소(CO2) 전환 반응의 효율과 선택성을 획기적으로 높이는 촉매 설계 기술이다. 산소 공공이 촉매 표면에 이산화탄소가 잘 흡착되도록 돕고, 단원자 및 이중 단원자는 수소(H2)가 흡착되도록 돕는다. 산소 공공과 단원자 및 이중 단원자가 함께 작용하면서 이산화탄소(CO2)가 수소(H2)와 만나 원하는 화합물로 쉽게 전환되는 것이다. 특히, 이중 단원자 촉매(DSACs)는 두 금속 원자 간의 전자 상호작용을 적극 활용해 반응 경로를 조절하고 효율을 극대화했다.
연구팀은 에어로졸 분무 열분해법(Aerosol-Assisted Spray Pyrolysis)을 적용해 간단한 공정으로 촉매를 합성하고 대량 생산 가능성도 확보했다. 이는 복잡한 중간 과정 없이 액체 상태의 재료를 에어로졸(안개 같은 작은 입자)로 만든 후 뜨거운 챔버에 보내면 촉매가 완성되는 간단한 공정 방식이다. 해당 방식은 금속 산화물 지지체 내부에 금속 원자를 균일하게 분산시키고, 결함 구조를 정밀하게 조절할 수 있도록 돕는다. 이처럼 금속 산화물 지지체의 결함 구조를 정밀하게 제어함으로써 단일 및 이중 단원자 촉매를 안정적으로 형성하고 이중 단원자 촉매(DSACs)를 활용해 기존 단일 원자 촉매 사용량을 약 50% 줄이면서도 이산화탄소(CO2) 전환 효율을 기존 대비 약 두 배 이상 향상시키고, 99% 이상의 높은 선택성을 구현했다.
본 기술은 화학 연료 합성, 수소 생산, 청정에너지 산업 등 다양한 분야에 활용할 수 있다. 또한, 촉매 합성법(에어로졸 분무 열분해법)이 간단하고 생산 효율도 높아서 상용화될 가능성이 매우 크다.
연구책임자인 박다희 선임연구원은 "본 기술은 이산화탄소(CO2) 전환 촉매의 성능을 획기적으로 향상하는 동시에 간단한 공정을 통해 상용화를 가능하게 한 중요한 성과”라며, "탄소중립 실현을 위한 핵심 기술로 활용될 수 있을 것으로 기대된다.”라고 밝혔다. 또한 박정영 교수는 “본 연구는 새로운 종류의 단원자 촉매를 상대적으로 쉽게 합성할 수 있어 다양한 화학 반응에 쓰일 수 있고, 온실가스로 인한 지구온난화 문제 해결에 가장 시급한 연구 분야인 이산화탄소 분해/활용 촉매개발에 중요한 단초를 제공한다.”라고 언급했다.
본 연구는 한국재료연구원의 주요사업과 과학기술정보통신부, 산업통상자원부, 국가과학기술연구회의 지원을 받아 수행되었다. 연구 결과는 촉매 및 에너지 분야에서 권위 있는 저널인 어플라이드 카탈러시스 비: 인바이런멘탈 앤 에너지(Applied Catalysis B: Environmental and Energy(JCR 상위 1%, IF 20.3))에 온라인 게재됐다.
*논문(Applied Catalysis B: Environmental and Energy)
DOI 주소 https://doi.org/10.1016/j.apcatb.2024.124987
2025.01.23
조회수 1671
-
도심 항공 모빌리티는 리튬황전지로 세대교체 가능
전기자동차 시장의 성장에 이어, 항공 교통을 연결하는 도심 항공 모빌리티(Urban Air Mobility, UAM) 시장이 배터리 산업의 새로운 전환점으로 주목받고 있다. 항공 모빌리티를 위한 에너지원으로는 쓰이는 기존 상용 리튬이온전지는 무게당 에너지밀도가 낮은 한계점이 있어 대학과 기업 공동연구진이 이를 극복할 차세대 기술로 활용될 혁신적인 리튬황전지를 개발해서 화제다.
우리 대학 생명화학공학과 김희탁 교수팀이 LG에너지솔루션 공동연구팀과 협력 연구를 통해 배터리의 안정적 사용을 위해 전해액 사용량이 줄어든 환경에서 리튬황전지 성능 저하 원인을 규명하고, 이를 바탕으로 성능을 혁신적으로 개선할 수 있는 기술을 개발했다고 23일 밝혔다.
중국 CATL社는 2023년 ‘응축 배터리(Condensed battery)’기술을 발표하며 항공용 배터리 시장을 준비하고 있음을 밝힌 바 있다. 이와 같은 흐름 속에서, 기존 리튬이온전지를 뛰어넘는 차세대 기술로 리튬황전지가 주목받고 있다. 리튬황전지는 기존 리튬이온전지 대비 2배 이상의 무게당 에너지밀도를 제공할 수 있어 UAM 시장의 게임 체인저로 평가받는다.
그러나 기존 리튬황전지 기술은 배터리의 안정적 구동을 위해 많은 양의 전해액이 필요해 전지 무게가 증가하고, 결과적으로 에너지밀도가 감소하는 문제가 있었다. 더불어 전해액 사용량을 줄이는 희박 전해액 환경에서는 성능 열화가 가속화되는 한편, 퇴화 메커니즘조차 명확히 밝혀지지 않아 UAM용 리튬황전지 개발이 난항을 겪어 왔다.
연구팀은 전해액 사용량을 기존 대비 60% 이상 줄이고도 400Wh/kg 이상의 에너지밀도를 구현하는 리튬황전지를 개발했다. 이는 상용 리튬이온전지보다 60% 이상 높은 에너지밀도를 가지며, 안정적인 수명 특성을 확보해 UAM용 배터리의 가장 큰 장애물을 극복한 것으로 평가된다.
연구팀은 다양한 전해액 환경을 실험하며, 성능 저하의 주요 원인이 전극 부식으로 인한 전해액 고갈임을 밝혀냈다. 이를 해결하기 위해 불소화 에테르 용매를 도입해 리튬 금속 음극의 안정성과 가역성을 높이고 전해액 분해를 줄이는 데 성공했다.
생명화학공학과 김일주 박사과정 학생이 제 1저자로 참여한 이번 연구는 에너지 분야 최고 권위 학술지인 어드밴스드 에너지 머터리얼즈(Advanced Energy Materials)’에 게재되며 그 혁신성을 인정받았다.
(논문 제목: Moderately Solvating Electrolyte with Fluorinated Cosolvents for Lean-Electrolyte Li-S Batteries,
DOI: https://onlinelibrary.wiley.com/doi/10.1002/aenm.202403828)
연구 책임자인 우리 대학 김희탁 교수는 “이번 연구는 리튬황전지에서 전해액 설계를 통한 전극 계면 제어의 중요성을 밝힌 의미 있는 연구로 대학과 기업의 협력을 통해 이루어진 대표적인 성공 사례로 UAM과 같은 차세대 모빌리티 배터리 상용화를 앞당기는 데 큰 진전을 이룰 것”이라고 말했다.
KAIST와 LG에너지솔루션은 앞으로도 차세대 모빌리티를 위한 배터리 기술 협력을 강화해, 새로운 배터리 시장을 선도할 계획이다.
이번 연구는 2021년 KAIST와 LG에너지솔루션이 공동 설립한 ‘프론티어 리서치 랩(Frontier Research Laboratory)’에서 수행됐으며, 또한, 한국연구재단의 지원을 받아 수행됐다.
2024.12.23
조회수 2855
-
메타버스 시대 이끌 초고해상도 화면 구현 패터닝 기술 개발
생동감 있는 색상, 높은 효율과 긴 수명을 자랑하는 양자점(Quantum Dot) 기반 디스플레이가 주목받고 있다. 특히, 친환경 인듐 포스파이드(InP) 양자점은 현재 TV와 스마트폰을 비롯한 다양한 디스플레이에 폭넓게 활용되고 있다. 그러나 다가오는 메타버스 시대를 현실감 있게 구현하기 위한 디스플레이 구현을 위해서는 초고해상도 양자점 패턴 제작 기술의 개발이 필수적이다.
우리 대학 신소재공학과 조힘찬 교수 연구팀이 신규 양자점 리간드*를 개발하여 InP 양자점의 초고해상도 패턴을 형성하는 동시에 소자 효율을 향상시키는 신기술을 개발했다고 13일 밝혔다.
*리간드: 양자점 표면에 결합하여 양자점을 보호하고 계면활성제 역할을 하는 물질.
InP 양자점은 외부 환경에 민감하여 패턴 형성 공정 중 광학적 특성이 크게 저하되는 한계가 있었다. 또한, 디스플레이 효율에 직결되는 리간드를 조절하는 과정에서도 광학적 특성이 손상되는 문제가 있었다. 따라서, 소재 고유의 특성을 유지하면서 초고해상도 패턴을 구현하고, 소자의 효율까지 높일 수 있는 기술 개발은 큰 도전 과제로 남아 있다.
이에, 조힘찬 교수 연구팀은 양자점의 광학적 특성을 보존하는 동시에 초고해상도 패턴 구현을 가능하게 하는 리간드를 개발하였다. 개발된 리간드는 빛에 의해 절단되어 길이가 짧아지는 특성을 보이는 물질로, 양자점 표면이 변화하면서 용해도 차이가 생겨 패턴 형성이 가능해지는 원리이다. 더불어 짧아진 리간드는 소자에서의 전기 전도도를 증가시켜 향상된 효율의 디스플레이를 구현할 수 있었다.
조힘찬 교수는 “이번에 개발한 광민감성 양자점 소재와 패터닝 기술은 기존 기술과 달리 초고해상도 패턴 제작과 양자점 박막의 전기 전도도 향상을 동시에 달성하여 차세대 양자점 LED 기반 디스플레이, 양자점 이미지 센서 등 다양한 미래 산업 분야에 실질적으로 적용될 수 있을 것으로 기대된다”라고 언급했다.
연구팀의 이재환 박사과정, 연성범 석박사통합과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 ‘에이씨에스 에너지 레터스 (ACS Energy Letters)’에 12월 13일 온라인 게재됐으며, 1월 호 부록 표지(Supplementary Cover)로 출판될 예정이다.(논문명: Photocleavable Ligand-Induced Direct Photolithography of InP-Based Quantum Dots).
한편 이번 연구는 한국연구재단 및 중소벤처기업부의 지원을 받아 수행됐다.
2024.12.18
조회수 2386
-
AI가 그린수소와 배터리 미래 신소재 찾아낸다
그린수소 또는 배터리 분야 등 청정 에너지의 성능을 높이는데 가장 큰 영향을 미치는 소재 중 하나는 전극이다. 한국 연구진이 차세대 전극 및 촉매로 활용될 수 있는 신소재를 효율적으로 설계하는 인공지능 기술을 개발했다. 이 기술을 통해 친환경 에너지 사회를 촉진하는데 중요한 역할을 할 것으로 기대된다.
우리 대학 기계공학과 이강택 교수 연구팀의 주도로 한국에너지기술연구원 (원장 이창근), 한국지질자원연구원 (원장 이평구), KAIST 신소재공학과 공동 연구팀들과 함께, 인공지능(AI)과 계산화학을 결합해 그린수소 및 배터리에 활용될 수 있는 스피넬 산화물 신소재를 설계하고, 성능과 안정성을 예측할 수 있는 새로운 지표를 개발하는 데 성공했다고 21일 밝혔다.
스피넬 산화물(AB2O4)은 그린수소 또는 배터리 분야의 차세대 촉매 및 전극 물질로 활용되어 산소 환원 반응(ORR)과 산소 발생 반응(OER)의 속도를 향상시킬 수 있는 잠재력이 높은 물질이다. 하지만, 수천 개 이상의 후보군을 일일이 실험으로 성능을 확인하기 위해서는 많은 시간과 노력이 소요된다.
연구팀은 이를 해결하기 위해 AI와 계산화학을 동시에 사용해 1,240개의 스피넬 산화물 후보 물질을 체계적으로 선별하고, 그중 기존 촉매보다 뛰어난 성능을 보일 촉매 물질들을 찾는 데 성공했다.
그뿐만 아니라, 연구팀은 이번 연구를 통해서 전공 서적에서 손쉽게 찾아볼 수 있는 원자들의 전기음성도를 바탕으로 스피넬 촉매의 안정성과 성능을 예측할 수 있는 지표를 개발했다.
이로써 기존의 실험 방식에 비해 촉매 설계 과정을 훨씬 더 빠르고 효율적으로 진행할 수 있게 되었다. 또한, 연구팀은 스피넬 산화물에서 산소 이온이 움직일 수 있는 3차원 확산 경로를 발견해, 촉매의 성능을 더욱 향상할 수 있는 메커니즘을 처음으로 규명했다.
이강택 교수는 “이번 연구는 인공지능을 통해 신소재의 성능을 빠르고 정확하게 예측할 수 있는 새로운 방법을 제시했다”며, “특히, 이를 통해 그린수소와 배터리 분야에 활용될 수 있는 촉매 및 전극의 개발을 가속화해, 고성능의 친환경 에너지 기술의 발전에 기여할 것”이라고 전했다.
연구팀이 제시한 예측 방법은 기존 실험 방식에 비해 신소재 개발의 효율성을 70배 이상 크게 높였으며, 이러한 성과가 차세대 에너지 변환 및 저장 장치를 위한 소재 개발 연구에 핵심 기술로 자리 잡을 가능성을 높게 보고 있다.
한국에너지기술연구원 이찬우 박사가 공동 교신 저자로 참여하였으며, 한국지질자원연구원 정인철 박사, KAIST 신소재공학과 심윤수 박사가 공동 제1 저자로 참여하고, KAIST 신소재공학과 육종민 교수, 한국지질자원연구원 노기민 박사가 공동 저자로 참여한 이번 연구 결과는 세계적인 학술지‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:24.4)’에 중요한 연구 결과임을 인정받아 표지(Inside Front cover) 에 선정됐으며, 24년 10월 21일에 게재됐다. (논문명: A Machine Learning-Enhanced Framework for the Accelerated Development of Spinel Oxide Electrocatalysts)
한편, 이번 연구는 과학기술정보통신부의 개인기초 연구사업, 집단기초연구사업, 그리고 국가과학기술연구회 창의형 융합연구사업의 지원을 받아 수행됐다.
2024.11.21
조회수 3216
-
1700% 뛰어난 신축성, 고성능 웨어러블 열전소자 개발
열 에너지를 전기로 전환시키는 열전 소자는 버려지는 폐열을 활용할 수 있어 지속 가능하고 친환경적인 에너지 플랫폼으로 주목받고 있다. 한국 연구진이 우수한 신축성과 최고 수준 성능을 보이는 열전소자를 개발하여 웨어러블 소자를 위한 체온을 이용한 차세대 에너지 공급원으로의 가능성을 한층 더 앞당겼다.
우리 대학 생명화학공학과 문홍철 교수팀이 POSTECH 화학공학과 박태호 교수팀과 공동연구를 통해 열역학적 평형 조절을 통한 기존 N형 열전갈바닉 소자*성능 한계 극복 기술을 구현했다고 14일 밝혔다.
*열전갈바닉 소자: 생성되는 전자 흐름의 방향에 따라 N형과 P형으로 구분 가능 네거티브(negative)를 의미하는 N형은 전자가 저온에서 고온 쪽으로, 포지티브(positive)를 의미하는 P형은 고온에서 저온 쪽으로 전자가 이동
열전 소자의 성능을 최대한 끌어올리기 위해 P형과 N형 소자의 통합이 필수적이다. 최근 우수한 성능을 지닌 P형 열전 소자에 대한 연구는 많이 진행되었지만 N형 열전 소자는 상대적으로 연구가 부족했다. 그마저도 N형 열전 소자는 P형에 비해 성능이 떨어져 통합형 소자 구현 시 성능 밸런스가 맞지 않아 성능 극대화에 걸림돌이 되었다.
이번 연구에서 연구팀은 스스로 산도(pH) 조절이 가능한 젤 소재를 개발하여 이온을 주요 전하운반체로 사용한 이온성 열전 소자 중 한 종류인 열전갈바닉 소자를 구현하였다. 연구팀이 개발한 젤 소재를 활용하여 하이드로퀴논* 레독스 반응**의 열역학적 평형을 효과적으로 제어할 수 있었고, 이를 통하여 고성능의 N형 열전 소자 특성을 구현하였다.
*하이드로퀴논: 열 에너지를 전기 에너지로 전환하는데 사용된 전기화학 반응물
**레독스 반응: 산화-환원 반응
또한 개발된 젤 소재는 가역적 가교 결합을 기반으로 약 1700%의 우수한 신축성과 함께, 상온에서도 20분 이내에 99% 이상의 높은 자가회복 성능을 구현할 수 있게 설계되었다.
본 연구에서 개발된 N형 이온성 열전 소자는 4.29 mV K-1의 높은 열전력 (thermopower)을 달성하였으며, 1.05% 의 매우 높은 카르노 상대 효율* (Carnot relative efficiency) 또한 나타내었다. 이러한 우수한 성능을 바탕으로 손목에 부착된 소자는 몸에서 지속적으로 유지되는 체온과 주변 환경의 온도 차이를 이용하여 효과적인 에너지 생산에 성공하였다.
*카르노 상대 효율: 이상적인 카르노 기관의 효율 대비 열전갈바닉 소자의 실제 열전환 효율
문홍철 교수는 “이번 연구 성과는 기존 N형 이온성 열전 시스템이 갖고 있던 한계를 극복할 수 있는 기술 개발에 해당한다”며 “이는 체온을 활용한 전원 시스템 실용화를 앞당기고, 웨어러블 소자 구동을 위한 핵심 요소 기술이 될 것이라 기대”한다고 밝혔다.
이번 연구는 에너지 분야 국제 학술지인 ‘Energy & Environmental Science’ 2024년 11월7일 표지논문(Outside Front Cover)으로 발표되었다.
※ 논문명: Realizing a high-performance n-type thermogalvanic cell by tailoring thermodynamic equilibrium
한편 이번 연구는 한국연구재단의 나노 및 소재기술개발사업 (나노커넥트) 및 중견연구자지원사업 지원을 받아 수행됐다.
2024.11.14
조회수 3113
-
전기차 차세대 무음극 배터리 퇴화 막을수 있다
전기자동차에 사용되는 무음극 배터리는 1회 충전에 800㎞ 주행, 1,000회 이상 배터리 재충전이 가능할 것을 전망하는 꿈의 기술로 알려져 있다. 일반적으로 배터리는 양극과 음극으로 구성되는데, 무음극 배터리는 음극이 없어 부피가 감소하여 높은 에너지 밀도를 가지지만 리튬금속 배터리에 비해 성능이 현저하게 낮다는 문제점이 있다. 우리 연구진이 무음극 배터리를 고성능화시킬 방안을 제시했다.
우리 대학 생명화학공학과 최남순 교수 연구팀이 전극 계면에서 일어나는 반응의 비가역성과 계면피막 구조의 변화를 체계적으로 분석해 무음극 배터리의 퇴화 원인을 규명했다고 5일 밝혔다.
최남순 교수 연구팀은 무음극 배터리의 첫 충전 과정에서 구리 집전체 표면과 전착된 리튬 표면에서 바람직하지 않은 전해질 분해반응이 일어나 계면피막 성분이 불안정하게 변한다는 것을 밝혀냈다.
배터리 제조 직후에는 용매가 구리 집전체 표면에 흡착해 초기 계면 피막을 형성하고, 충전시 양극으로부터 구리 집전체로 이동된 리튬 이온이 구리 집전체 표면에서 전자를 받아 리튬금속으로 전착되면 전착된 리튬금속 표면에서 전해질 음이온(bis(fluorosulfonyl)imide (FSI-))이 분해하여 리튬금속표면에 계면 피막을 형성함을 규명했다.
연구에 따르면, 배터리 제조 직후에 집전체 표면에서 용매가 분해하여 계면 피막을 만들고 그 후 전해질의 갈바닉* 및 화학적 부식**에 의해 계면 피막성분이 불안정한 성분으로 변하게 되고 이로 인해 리튬금속 전착 및 탈리 반응의 가역성이 크게 감소했다.
* 갈바닉 부식: 서로 다른 두 금속을 전기적으로 직접 접촉시켜 전해질에 담그면 고유의 전위차이로 인하여 어느 한쪽이 부식되는 과정.
** 화학적 부식: 전착 리튬금속 표면층까지 전달된 전자가 접촉하고 있는 전해질 성분들에 전달되어 전해질의 환원 분해가 발생함.
특히, 리튬금속에 대한 높은 반응성을 가진 FSI- 음이온은 충·방전 동안 계속해서 분해되어 리튬금속 계면피막을 두껍게 하고 리튬염 농도를 감소시킨다. 이로 인해 리튬이온과 상호작용하지 않는 자유 용매(free solvent)가 많아지게 된다. 이 자유 용매는 분해가 잘되기 때문에 분해산물이 양극 표면에 쌓여 저항이 증가하고 양극 구조 열화*를 연쇄적으로 발생시켜 무음극 배터리 성능을 퇴화시키게 된다.
*자유 용매: 이온성 화합물의 이온 결합을 끊고 이온화시키는 용해(dissolution) 과정에 참여하지 않는 용매.
**구조 열화: 니켈리치 삼원계 양극의 충전과정에서 생성되는 니켈 4가 양이온은 자유용매로부터 전자를 빼앗아 니켈 2가 양이온으로 환원되는데 리튬이 들어가야하는 자리에 대신 들어가 양극의 층상구조(layered)를 암염구조(rock-salt)로 상전이를 발생시킴.
본 연구에서는 무음극 배터리 선행 연구에도 불구하고 리튬금속 배터리에 비해 성능이 열세인 이유를 다각도로 접근한 결과, 무음극 배터리의 열화를 막기 위해서는 안정한 초기 전극 계면 피막을 만들어서 전해질의 갈바닉 및 화학적 부식을 감소시키는 것이 필수적임을 밝혔다.
최남순 교수는 “이번 연구는 무음극 배터리의 성능 감소는 집전체에 전착되는 리튬금속표면에서 전해질이 바람직하지 않은 분해반응을 하고 형성된 계면피막의 성분이 안정적으로 유지되지 못하기 때문에 일어나는 것임을 확인했다”며 “이번 성과는 향후 무음극 기술에 기반한 고에너지 차세대 배터리 시스템 개발에 중요한 실마리를 제공할 것이다”라고 연구의 의미를 강조했다.
생명화학공학과 최남순 교수, 이정아, 강하늘, 김세훈 연구원이 공동 1 저자로 진행한 이번 연구는 국제 학술지 ‘에너지 스토리지 머티리얼즈(Energy Storage Materials)’에 10월 6일 字로 온라인 공개되었으며, 연구의 우수성을 인정받아 표지 논문으로 선정되었다. (논문명 : Unveiling degradation mechanisms of anode-free Li-metal batteries)
한편 이번 연구는 현대자동차의 지원을 받아 수행됐다.
2024.11.05
조회수 3490
-
원전폐수의 삼중수소 제거 촉매 선보이다
후쿠시마 오염수가 2023년부터 해양에 방류되면서 중수로 원전 운영 시 발생하는 대표적인 방사성 물질인 삼중수소에 대한 대중적 관심이 크게 늘어났다. 삼중수소는 주로 물 분자에 포함돼 존재하기 때문에 해양 생태계와 환경에 위험을 초래할 수 있어 삼중수소 제거 설비가 필요한데, 한국 연구진이 촉매를 이용해 획기적으로 제거할 수 있는 기술을 개발해 화제다.
우리 대학 생명화학공학과 고동연 교수 연구팀이 한국원자력연구원(원장 주한규) 박찬우 박사 연구팀과의 공동연구를 통해 원전 폐수에 함유된 삼중수소 제거 공정을 위한 새로운 구조의 이중기능* 소수성 촉매를 개발했다고 27일 밝혔다. 연구팀의 촉매는 특정 반응 조건에서 최대 76.3%의 반응 효율을 보였으며, 특히 현재까지 밝혀진 바가 거의 없는 수백 ppm 수준의 저농도 동위원소에 대한 촉매의 작용을 구체적으로 확인했다.
*이중기능: 액체 상태의 물은 차단하고 기체 상태의 수증기는 통과하는 성질을 말함
현재 삼중수소 제거에는 주로 액상 촉매 교환(Liquid-phase catalytic exchange) 공정이 이용되며 해당 공정 중 수소-물 동위원소 교환 반응이 일어난다. 촉매에 주로 이용되는 백금은 반응성이 높지만, 비용이 많이 들고 물에 의해 반응 자리가 쉽게 비활성화되는 문제가 있다. 따라서 적은 양의 백금을 고르게 분산하고, 물을 밀어내는 성질인 소수성 물질을 도입해 수분에 의한 촉매가 활성화되도록 하는 것이 핵심이다.
고동연 교수 연구팀은 금속-유기 골격체(Metal-organic framework, MOF)와 다공성 고분자의 복합체 형태의 새로운 구조의 삼중수소 제거 촉매를 개발했다. 평균 약 2.5나노미터(nm) 지름의 백금 입자를 금속-유기 골격체에 고르게 분포시키고, 이후 화학적인 변형을 통해 소수성을 부여하는 구조다. 분자 수준에서 소수성을 조절해 촉매가 물에 의해 활성을 잃는 것을 방지하면서도 동시에 반응에 필요한 양의 물 분자는 촉매에 쉽게 접근할 수 있도록 한다.
연구팀이 개발한 촉매는 기존 촉매 연구에서 구현하지 못한 원전 운전조건과 비슷한 매우 낮은 농도의 동위원소 함량에서도 삼중수소 제거 반응에 탁월한 활성을 나타냈다. 또한 4주 연속 가동 시에도 일정 수준 이상의 성능을 유지해 내구성을 입증했다.
연구팀은 나아가 현장 난반사 적외선 분광법(in-situ DRIFTS, in-situ Diffuse Reflection Infrared Fourier Transform Spectroscopy)* 분석을 통해 아주 작은 분자 수준에서의 물 분자의 실시간 움직임을 확인했다. 이를 통해 해당 촉매가 수분에 의한 촉매 비활성화를 억제하면서도 물 분자가 촉매 활성 자리에 지속적으로 접근해 반응이 일어날 수 있음을 입증했다.
*현장 난반사 적외선 분광법: 실시간으로 빛이 물질에 반사되어 돌아오는 정보를 분석함으로써 그 물질의 성분 변화를 알아내는 기술을 말함
이번 연구는 비교적 간단한 금속-유기 골격체 소재의 소수성 조절을 통해 촉매 비활성화의 주요 원인인 수분 저항성을 높이고, 삼중수소 제거 반응에 이용될 수 있는 새로운 구조의 촉매를 제안했다는 데에 의의가 있다.
생명화학공학과 고동연 교수는 “삼중수소 폐액 처리뿐 아니라 반도체에 사용되는 중수소 원료 생산과 핵융합 연료 주기 기술 등 다양한 기술에 필수적인 수소 동위원소 분리 핵심 소재로의 응용이 기대된다”고 해당 연구의 의의를 설명했다.
생명화학공학과 허희령 박사과정이 제1 저자로 참여한 이번 연구 성과는 환경 분야 국제 학술지 ‘에너지 앤 인바이런멘탈 머티리얼스 (Energy & Environmental Materials)’에 7월 31일 자로 게재됐다. (논문명 : Bifunctionally hydrophobic MOF-supported platinum catalyst for the removal of ultralow concentration hydrogen isotope)
한편 이번 연구는 한국연구재단의 원전해체 안정성강화 융복합 핵심 기술개발사업의 지원을 받아 수행됐다.
2024.08.27
조회수 4778
-
현존 최고 성능 세라믹 전기화학전지 개발
온실가스 배출량을 '0'으로 만드는 글로벌 약속 '탄소중립(Net-zero)' 달성을 위해 탄소 배출을 줄이는 수소 에너지의 활용 및 생산은 선택이 아닌 필수적인 요소로 부상하고 있다. 이를 위한 에너지 변환 기술 중 고효율 전력 변환 및 그린수소 생산이 가능한 프로토닉 세라믹 전기화학전지(PCEC)가 미래 수소 에너지 사회를 촉진할 차세대 기술로 주목받고 있다.
우리 대학 기계공학과 이강택 교수, 신소재공학과 정우철 교수, 한국에너지기술연구원 이찬우 박사, 전남대학교 송선주 교수 공동 연구팀이 프로토닉 세라믹 전기화학전지의 산화물 전극 결정구조 제어를 통해 양성자 확산경로를 2차원에서 3차원으로 확장하는 데 성공해 전극의 촉매활성을 크게 향상시켰다고 14일 밝혔다.
비대칭 구조를 갖는 페로브스카이트 산화물계 전극은 구조적인 한계로 인해 양성자의 격자 내 이동이 제한으로 촉매 활성이 낮아 연료전지의 성능이 낮아진다는 문제점이 있었다. 연구팀은 이를 해결하기 위해, 이종 금속원소 후보군을 선정 및 도핑해 격자내에서 양성자가 이동하기 어려운 비대칭 구조를 성공적으로 대칭 구조화하여 양성자 수송 특성을 극대화 하였고, 이를 통해 고성능 전극 설계에 대한 단초를 마련했다. 또한 연구팀은 계산화학*을 통해 전극의 결정구조가 양성자 수송 특성에 미치는 영향에 대한 상관관계를 규명했다.
*계산화학: 컴퓨터를 이용해 화학 시스템의 구조와 반응성을 이론적으로 모델링하고 예측하는 학문
연구팀이 개발한 전극 소재는 프로토닉 세라믹 전기화학전지에 적용돼 현재까지 보고된 소자 중 가장 뛰어난 전력 변환 성능(650도에서 3.15 W/cm2)을 보이며 생산 과정 중 이산화탄소가 배출되지 않는 그린수소 또한 높은 생산 성능(650도에서 시간당 약 770 ml/cm2)을 보였다. 500시간의 장시간 구동 후에 가역 구동(전력 및 그린수소를 교대로 생산)에서도 안정적인 성능을 보여, 제시한 전극 설계 방법의 우수성이 입증됐다.
이강택 교수는 “이번 연구에서 제안한 전극 설계 기법이 프로토닉 세라믹 전기화학전지의 고성능 전력/그린수소 생산에 대한 새로운 방향성을 제시할 것으로 기대되며, 이 기술이 글로벌 넷제로 달성을 위한 수소 생산 및 친환경 에너지 기술 상용화에 촉매제가 될 수 있을 것”이라고 말했다.
우리 대학 기계공학과 김동연 박사과정, 정인철 박사, 신소재공학과 안세종 박사과정이 공동 제1 저자로 참여한 이번 연구 결과는 에너지·재료 분야의 세계적 권위지인 ‘어드밴스드 에너지 머터리얼즈, Advanced Energy Materials (IF:27.8)’에 지난 4월 12일 字 후면표지(Back cover) 논문으로 게재됐다. (논문명: On the Role of Bimetal-Doped BaCoO3-���� Perovskites as Highly Active Oxygen Electrodes of Protonic Ceramic Electrochemical Cells)
한편 이번 연구는 과학기술정보통신부 수소에너지혁신기술개발사업, 이공분야기초연구사업 그리고 나노 및 소재 기술개발사업의 지원으로 수행됐다.
2024.05.14
조회수 5898
-
값싸고 40% 향상된 리튬이온전지 만든다
전기자동차, 스마트폰 등에 사용되는 리튬이온전지 원가 중 가장 높은 비율을 차지하는 가장 비싼 재료는 니켈, 코발트와 같은 고가 희귀금속이 다량 포함된 양극재다. 국제공동연구진이 리튬이온전지의 에너지 밀도와 가격 경쟁력을 모두 높이는 새로운 전략을 제시했다.
우리 대학 신소재공학과 서동화 교수 연구팀이 UNIST, 캐나다 맥길대(McGill University)와 공동연구를 통해 리튬이온전지 양극의 핵심 광물인 값비싼 니켈, 코발트 없이도 에너지밀도가 40% 향상된 고성능 차세대 리튬이온전지 양극을 개발했다고 1일 밝혔다.
국제공동연구팀은 망간 기반의 양이온-무질서 암염(Disordered rock-salt, 이하 DRX) 양극재에 주목했다. DRX 양극재는 값싸고 매장량이 풍부한 망간, 철 등을 사용할 수 있으면서 양극재 무게 기준 기존 상용화된 삼원계양극재(약 770Wh/kg)보다 높은 에너지밀도(약 1,000Wh/kg)를 가질 수 있기 때문이다. 무엇보다, 값비싼 니켈과 코발트 없이도 소재를 설계할 수 있다는 장점이 있어 차세대 리튬이온전지 양극재로 주목받고 있다.
그러나 망간 기반 DRX 양극재의 경우 양극재 비율이 90% 이상인 전극으로 전지를 만들면 전지 성능이 매우 낮고 급격하게 열화되는 문제가 있었다. 따라서 DRX 양극재 연구자들은 양극재 비율을 70%로 낮춰 전극을 만들어야 했는데, 이 경우 전극 수준에서 삼원계(약 740Wh/kg)보다 오히려 낮은 에너지밀도(약 700Wh/kg)를 가지게 되는 문제가 있었다.
공동연구팀은 전극 내 망간 기반 DRX 양극재 비율이 높을수록 전자 전달 네트워크가 잘 형성되지 않고, 충·방전 간 부피 변화율이 높을수록 충·방전 동안 네트워크 붕괴가 잘 일어나 전지의 저항이 크게 증가한다는 것을 밝혔다. 고성능 차세대 양극재를 사용하더라도 저항이 크게 걸려 전지가 제 성능을 낼 수 없었던 것이다.
공동연구팀의 연구에 따르면, 망간 기반 DRX 전극 제조 시 다중벽 탄소나노튜브*를 사용하여 DRX 양극재의 낮은 전자전도도를 보완하고 충·방전 간 부피 변화를 견딜 수 있게 되어 전극 내 양극재의 비율을 96%까지 끌어올리더라도 전자 전달 네트워크와 전지 성능이 열화되지 않았다. 이를 통해 니켈, 코발트 없이 전극 무게 기준 약 1,050Wh/kg의 높은 에너지밀도를 보이는 차세대 리튬이온전지 양극을 개발했다. 이는 리튬이온전지 양극 중 세계 최고 수준이며, 상용 삼원계 양극 대비 에너지밀도가 40% 향상된 수준이다.
*다중벽 탄소나노튜브: 여러 개의 농축된 원통형 그래핀 층으로 구성된 나노 스케일의 튜브
또한, DRX 양극재 내 망간 함량이 높을수록 전자전도도는 높지만, 동시에 부피 변화율도 높다는 상관관계를 발견했다. 이러한 이해를 기반으로 망간 함량을 낮춰 부피 변화를 억제하고, 다중벽 탄소 나노튜브를 사용해 낮은 전자전도도를 극복한다는 차세대 리튬이온전지 양극 설계 전략을 연구팀은 제시했다.
서동화 교수는 “상용화를 위해 풀어야 할 문제들이 아직 남아있지만 대 중국 의존도가 높은 니켈, 코발트 광물이 필요 없는 차세대 양극 개발 시 자원 무기화에 대비할 수 있고 리튬 인산철 양극 주도의 저가 이차전지 시장에서 우리 기업의 글로벌 경쟁력이 강화될 것으로 기대된다”라고 말했다.
이번 연구에는 이진혁 맥길대 교수가 공동교신저자로, 이은렬 UC버클리 박사후연구원(연구 당시 UNIST 에너지화학공학과 박사과정), 이대형 KAIST 신소재공학과 박사과정이 공동 제1 저자로 참여했다. 또, KAIST 신소재공학과 박상욱 박사과정, 김호준 석사과정이 공저자로 참여했다. 연구 수행은 한국연구재단의 과학기술분야 기초연구사업, 나노 및 소재 기술개발사업, 원천기술 개발사업 및 산업통상자원부의 에너지인력 양성사업의 지원을 받아 이뤄졌고, 한국과학기술정보연구원의 슈퍼컴퓨터를 지원받아 수행됐다.
연구 결과는 에너지 분야 국제학술지 ‘에너지 및 환경과학(Energy & Environmental Science)’ 지난 3월 27일자로 온라인 공개되었고, 6월호 표지 논문으로 출판될 예정이다. (논문명 : Nearly all-active-material cathodes free of nickel and cobalt for Li-ion batteries).
2024.05.02
조회수 6306