-
홀로그래피 이용한 빛 산란 제어기술 개발
- 산란 제어를 통해 감추어진 물체를 볼 수 있는 기술 -
- 네이처 사이언티픽 리포트 5월 29일자 온라인판 게재 -
최근 ‘투명테이프의 재발견’이라는 게시물이 인터넷을 뜨겁게 달궜다. 불투명한 유리창에 투명테이프를 부착하자 흐릿하게 보이던 유리가 투명해지는 현상이었다. 투명테이프로 불투명한 유리의 요철이 메워져 빛 산란이 줄여진 간단한 과학의 원리다.
이처럼 우리 실생활에서 쉽게 접할 수 있는 빛의 산란을 홀로그래피를 이용해 손쉽게 제어할 수 있는 기술이 KAIST와 MIT 공동연구팀에 의해 개발됐다.
KAIST(총장 강성모)는 물리학과 박용근 교수가 미국 MIT 분광학 연구소와 공동으로 홀로그래피를 활용해 빛 산란을 제어하는 기술에 개발에 성공했다고 29일 밝혔다.
연구 결과는 세계적인 과학저널 네이처(Nature)가 발행하는 ‘사이언티픽 리포트(Scientific Report)’ 5월 29일자 온라인판에 게재됐다.
이 기술을 이용하면 구름, 연기와 같은 장애물 때문에 보이지 않던 건너편의 물체를 또렷하게 볼 수 있다. 게다가 사람의 피부와 같이 산란이 심한 물체 뒤에 숨어있는 대상까지도 선명하게 관찰할 수 있다.
연구팀은 관찰하고자 하는 물체 중간에 위치한 장애물의 빛 산란을 제어하기 위해 빛의 방향과 세기를 모두 기록하는 홀로그래피 기술을 활용했다.
연구팀은 이를 통해 산란된 빛의 정보를 기록한 후 각각의 빛을 정확하게 반대편으로 다시 빛을 반사해 원래의 이미지를 얻어내는데 성공했다.
예를 들어, 복잡한 궤적으로 당구공이 당구대에서 굴러갈 때 공을 멈추고 반대 방향으로 공을 굴리면 다시 이전의 궤적으로 가는 것과 같은 원리다.
이러한 현상은 물리학에서 위상 공액(phase conjugation)으로 알려져 있는데, 박 교수팀은 세계 최초로 위상 공액과 디지털 홀로그래피 기술을 이용해 산란이 심한 벽 뒤에 있는 물체의 2차원 이미지를 관찰하는데 성공했다.
박용근 교수는 “빛의 산란을 제어해 불투명해 보이는 벽 뒤를 볼 수 있는 이 기술은 앞으로 물리학, 광학, 나노기술, 의학은 물론 군사적인 용도 등 다양한 분야에 응용될 수 있을 것”이라고 말했다.
또 “이번 기술은 일반적으로 알려진 투시카메라 또는 투명망토 기술과는 다르다”며 “현재로선 빛의 산란을 정밀하게 제어한 원천기술 개발에 의미를 두고 있다”며 개발된 기술에 대한 확대 해석을 경계했다.
그림1. 관찰영상
그림2. 빛 산란 제어의 원리
2013.05.29
조회수 11578
-
어떻게 트위터가 급성장 할 수 있었나?
- 트위터 네트워크의 성장은 오프라인 사회관계망에서 점차적으로 시작 - 전통적인 미디어의 영향력으로 네트워크가 폭발적으로 성장함을 관찰
트위터가 세계적으로 유명세를 타는 데는 전통적인 사회관계망의 역할뿐만 아니라 미디어의 주목이 커다란 기여를 했다는 사실이 국내연구진에 의해 규명됐다.
우리 학교 문화기술대학원 차미영 교수가 최근 MIT 마르타 곤잘레즈(Marta Gonzalez) 연구팀과 함께 오프라인에서 인간관계에 절대적인 영향을 미치는 지역, 사회, 경제적 요인과 더불어 미디어의 주목이 초기 트위터의 성장에 커다란 영향을 미쳤음을 분석해냈다.
대다수 신기술처럼 트위터는 가장 먼저 젊고, 과학기술을 잘 이용하는 샌프란시스코와 보스톤의 사용자들에게 먼저 도입됐다. 그다음 단계에서는 인접도시로 점진적으로 확산되기 시작해 오프라인 사회관계망이 정보전파에 주된 역할을 했음이 연구결과 조사됐다.
예를 들어 처음 도입한 두 도시와 지역적으로 근거리에 있는 캘리포니아의 버클리와 매사추세츠 주의 소머빌의 사용자들이 트위터를 도입했고, 이후에는 산타페, LA 등을 통해 최종적으로 팜비치, 뉴왁 등 전국으로 확산됨을 보여줬다.
이번 연구에서 사회관계망과 더불어 주목한 것은 텔레비전이나 신문과 같은 전통미디어의 역할이다.
차 교수 연구팀은 매주 구글 뉴스를 검색해 기사에 트위터가 몇 번이나 언급되었는지 데이터를 모으고 또 같은 시점의 트위터 사용자 수를 조사했다. 그리고 나서 뉴스기사에서의 트위터 언급 횟수와 사용자 수의 상관관계를 분석한 결과 이 둘은 같은 추이를 보인 것으로 나타나 미디어가 트위터의 성장에 커다란 영향을 준 것으로 결론을 내렸다.
차 교수팀은 이와 함께 트위터의 성장에 대한 미디어의 영향을 알아보기 위해 또 다른 흥미로운 사례에 주목했다.
2009년 4월 할리우드 영화배우 애쉬튼 커쳐는 CNN에 출연해 누가 먼저 백만명의 팔로어를 갖게 될 것인지에 대한 내기를 제안했고, 약 이틀 만에 백만명의 팔로어를 보유하게 됐다. 또한 오프라 윈프리가 첫 번째 트윗을 하는 것이 미디어에서 다뤄지는데 이는 또 다시 트위터 사용자수의 급격한 증가를 불러일으킨 계기가 됐다.
KAIST 차미영 교수가 MIT연구팀과 공동으로 실시한 이번 연구는 2006년부터 2009년까지의 트위터 데이터를 바탕으로 미국 내 408개 도시에서의 트위터 성장세를 분석해, 이를 토대로 전염병의 확산모델과 유사한 사회관계망 기반의 확산모델을 수립해 밝혀냈다.
한편, 이번 연구결과는 미국의 온라인 과학전문지 ‘공중과학도서관 원(Public Library of Science ONE)’ 저널에 곧 게재될 예정이며 MIT news, 미국 과학전문 소셜미디어 Mashable.com, 그리고 MSNBC.com등에도 소개됐다.
[그림.1] 해당 시간대에 각 지역별로 최종 가입자의 13.5%에 해당하는 ‘크리티컬 매스’에 해당하는 사용자들이 가입을 한 지역이 검은 원으로 표기된다. 작은 회색원은 이미 크리티컬 매스에 이른 지역을 표기한다. 트위터의 첫 도입은 샌프란시스코에서 시작되었으며 다음으로 주변 도시들에서 도입되는 것을 통해, 오프라인 사회관계망이 확산에 중요함을 시사한다. 반면 보스톤과 같은 지역에서도 초기 도입이 되었으며 이는 사회관계망 뿐만 아니라 인터넷과 같은 매체의 영향을 시사한다.
[그림.2] a. 그래프에서 검은 실선은 주별 최대가입자수를 1.0으로 보았을 때 매주별 트위터 가입자수의 변화를 나타낸다. 빨간실선은 같은 해당주에 대해 구글 뉴스에서 트위터가 언급된 비율을 나타낸다. 트위터 서비스가 시작된지 140주 이후에 각종 미디어를 통해 트위터가 많이 언급됨을 볼 수 있고, 따라서 트위터의 주별 가입자수 역시 급격히 상승하는 트렌드를 볼 수 있다.
b. 그래프는 매주 트위터에 가입한 총사용자수를 나타내는 검은 선과 이를 예측하는 다양한 모델의 결과를 보여주는 점선을 보여준다. 전통적인 확산모델의 경우 (파란점선) 초기 트위터의 성장세는 잘 예측하지만, 추후 미디어의 영향력 이후의 급성장을 보여주지 못한다. 구글 검색 결과를 반영하여 확산모델을 변형하면 (검은점선 및 노란점선) 실제 데이터와 유사한 트렌드를 예측할 수 있다.
[동영상링크]http://www.youtube.com/watch?feature=player_embedded&v=Ncon_z67VQs
지도상의 각 원은 트위터 사용자들이 있는 미국 내 도시를 의미한다. 시간에 따라 더욱 많은 사용자가 트위터에 가입할수록 원의 크기가 커진다. 각 지역별로 최종 가입자의 13.5%에 해당하는 ‘크리티컬 매스’에 해당하는 사용자들이 가입을 하면 원은 빨간색으로 표기된다. 화면 중앙에 하얀선으로 표기되는 그래프는 시간에 따른 트위터의 주별 가입자수를 의미한다.
2012.01.04
조회수 13770
-
김봉수 교수팀, 초탄성 무결점 금속나노선 개발
화학과 김봉수 교수팀은 차세대 3차원 메모리 소자의 대량생산이 가능한 새로운 초탄성․무결점 금속 나노선(nanowire)을 개발했다. 이는 촉매없이 금속 나노선을 기판위에 손쉽게, 원하는 형태로 성장(epitaxial growth)시킬 수 있는 원천기술이다.
교육과학기술부(장관 안병만)는「21세기 프론티어연구개발사업」나노소재기술개발사업단(단장 서상희 박사)의 지원을 받은 KAIST 김봉수 교수 연구팀이 초탄성․무결점의 단결정 금속 나노선을 개발 하는데 성공했다고 18일 밝혔다.
지난 2004년 MIT 선정 10대 유망기술에 선정된 바 있는 나노선(nanowire)은 단면 지름이 수십에서 수 나노미터(1nm = 10억분의 1m) 정도인 극미세선으로, 트랜지스터, 메모리, 센서 등 첨단 전기전자 소자를 개발하는데 핵심적인 미래기술이다.
기존의 반도체 나노선은 정렬된 성장(epitaxial growth)이 가능했으나 금, 팔라듐 등 금속 나노선의 경우에는 적절한 촉매가 없어서 이러한 정렬된 성장을 실현하기 어려웠다.
KAIST 김봉수 교수 연구팀은 증기의 양, 온도, 압력 등을 최적으로 조절함으로써, 촉매 없이 금, 팔라듐, 및 금팔라듐 합금 나노선을 원하는 대로 방향성 있게 성장시키는 데 세계 최초로 성공하였다. 또한, 어떠한 물질이라도 기판 위에 씨앗 결정을 형성하기만 하면 잘 정렬된 나노선으로 성장시킬 수 있다는 사실을 밝혔다.
※ 질병을 일으키는 병원균의 DNA 농도에 따라 금나노선에 부착되는 금입자의 갯수가 달라짐(이 금입자의 갯수로 부터 병원균의 갯수를 검출) (스케일바 : 20 nm)
KAIST 화학과 김봉수 교수는 “이 기술을 한 단계 더 발전시켜 기판 위에 씨앗을 원하는 위치에 놓을 수 있다면, 나노선의 위치 및 방향을 마음대로 제어할 수 있게 되기 때문에, 차세대 3차원 메모리 소자의 대량생산이 가능해져 세계 메모리 산업에서 선도적 위치를 차지할 수 있을 것으로 기대된다.”고 밝혔다.
한편 이번 연구결과는 나노 분야의 세계적 권위지인 나노레터스(Nano Letters)지 1월 6일자 온라인 속보판에 소개되었으며, 현재 미국 및 독일 등에 특허 출원중이다.
[그림 1] 사파이어 기판 위에 수직으로 성장한 완전 단결정 금 나노선
이번에 개발된 기술을 통해 성장된 나노선은 초탄성(超彈性)․무결점 뿐만 아니라 완벽히 깨끗한 표면을 가지고 있다는 특징이 있어, 나노크기의 탄성에너지 저장장치, 나노안테나, 질병진단용 메디컬 센서 등 새로운 기술분야에 다양하게 응용가능하다.
[그림 2] 금 나노선을 이용한 질병진단 센서 (예)
2010.01.18
조회수 21566
-
김봉수 교수 연구팀, 그래핀을 이용한 플렉서블 전계방출 디스플레이(FED)용 이미터 전극 개발
-『Advanced Materials』온라인판 11월 5일자 게재 -
우리대학 화학과 김봉수 교수 연구팀이 新소재 그래핀 위에 코발트 게르마늄 나노선을 성장시켜 ‘차세대 플렉서블 전계방출 디스플레이’용 이미터 전극을 개발했다. ‘차세대 플렉서블 전계방출 디스플레이(FED)"용 고효율 · 고내구성 이미터(Emitter) 전극 기술이 개발되어, 향후 초박형(超薄形) 두루마리 컴퓨터 · TV, 3차원 디스플레이 등 다양한 분야에 응용될 것으로 기대된다.
‘꿈의 디스플레이로’로 불리는 전계방출 디스플레이(Field Emission display, FED)는 LCD보다 얇게, 브라운관 화질보다 선명하게 화면을 구현할 수 있고, 전력소모가 LCD의 1/4, PDP의 1/6밖에 안 들며 내부에 수은 등 공해 물질이 전혀 없는 친환경 디스플레이다. 특히 휘도가 아주 높아서 차세대 3차원 디스플레이를 구현할 수 있다.
FED는 상하 기판 사이에 진공으로 채워진 구조로 되어있으며, 상판(양극판)에는 형광체가 도포되어 있고, 하판(음극판)에는 미세한 마이크론 크기의 전자발사체(Emitter) 들이 무수히 형성되어 있다.
우수한 FED를 만들기 위해서는 고효율․안정한 구조의 이미터가 무엇보다 중요한 데, 지금까지 이미터 재료로서 주로 연구되던 탄소나노튜브(CNT)는 깜빡거림 및 내구성 등의 문제점을 가지고 있었다.
김봉수 교수 연구팀은 새로운 이미터 재료로 최근 新소재로 각광받고 있는 그래핀과 단결정 코발트 게르마늄 합금을 활용하여, ‘플렉서블’하면서 ‘효율적인’ 전계 방출 디스플레이 개발의 새로운 전기(轉機)를 마련했다.
그래핀은 흑연에서 얇은 한 층을 떼어낸 것으로 투명하고 수 nm이하의 초박형 제작이 가능하며, 뛰어난 전기전도성과 열전도성을 지니고 있어 고성능 투명전극으로 적합하다. 금번 연구팀은 큰 종횡비를 가지고 화학적 및 열적 내구성이 매우 우수한 단결정 코발트 게르마늄 합금 나노선을 최초로 개발했고, 이를 다층 그래핀 위에 수직으로 성장시키는 데 성공했다. 이 구조는 탄소나노튜브(CNT)에 필적하는 뛰어난 전계방출 특성을 보이면서 보다 우수한 내구성을 가지는 것으로 나타났다.
김봉수 교수는 "투명하고 구부릴 수 있는 그래핀 전극 위에 코발트 게르마늄 합금 나노선을 결합시켜 개발된 고효율 전계 방출 이미터는, 초박형 두루마리 컴퓨터·TV 및 3차원 디스플레이 등의 다양한 응용이 가능하여 차세대 디스플레이 시장을 선도할 수 있는 핵심 원천기술이 될 것이다.“라고 밝혔다.
한편, 이번 연구결과는 신소재 분야의 세계적 학술지인 "어드밴스드 머티리얼즈 (Advanced Materials)"지 온라인판 11월 5일자에 게재되었고, 현재 국·내외 특허 출원 중이다.
2009.11.13
조회수 18430
-
장성주 교수 휴머노이드형 플라워봇 개발
장성주 교수 휴머노이드형 플라워봇 개발
KAIST 건설 및 환경 공학과의 장성주 교수가 개발한 세계 최초의 휴머노이드형 플라워봇 ‘로히니’가 파주 신도시 유비파크(http://www.ubi-park.co.kr/index_0.asp) 체험관에 설치되어 큰 관심을 불러 일으키고 있다. 로히니는 고개를 들거나 떨구는 동작, 꽃잎이 피고 지는 동작, 두 개의 가지를 이용해서 제스처를 구사하는 일이 가능하고 꽃잎과 줄기의 색깔을 바꾸어 감정을 표현할 수 있으며 RFID 태그를 통해 식별된 대화상대의 정보를 토대로 상황인지형 대화를 구사할 수 있다. 로히니는 유비쿼터스 홈 환경에서 지능형 디바이스들과 거주자를 연결하여 주거 내 상황의 모니터링과 제어를 매개하는 직관적이고 새로운 유형의 로봇형 이용자 인터페이스이다. 개발을 주도한 장성주 교수는 MIT 미디어랩에서 객원 연구원으로 근무하던 중 ‘지능형 건축 벽체(Smart Architectural Surface)’ 라는 다기능 첨단 디지털 벽체를 MIT와 공동 개발한 바 있고 현재 지능형 환경 디자인 연구실을 운영하면서 KAIST 미래도시 연구소(KIUSS) 유-스페이스 연구센터 디렉터를 겸하고 있다.
ROHINI를 개발한 건설 및 환경공학과 장성주 교수
파주 Ubi-Park 체험관 u-House에 전시된 ‘ROHINI’ 로봇
2007.11.14
조회수 18687