-
기존보다 26배 효과적인 폐질환 흡입치료 가능
코로나19의 전 세계적 유행 이후, 폐 등 호흡기 질병에 대비하기 위한 mRNA 백신 및 치료제는 차세대 치료제로 주목받고 있다. 하지만 기존 mRNA 백신용 전달체가 가지고 있는 한계점을 극복하고 우리 대학 연구진이 호흡기 바이러스 및 난치성 폐질환의 mRNA 흡입 치료를 가능케 하며 유전자 폐 치료 연구의 근간이 될 연구에 성공했다.
우리 대학 바이오및뇌공학과 박지호 교수 연구팀이 유전자 폐 치료에 최적화된 나노 전달체를 개발했다고 7일 밝혔다.
연구팀은 기존 mRNA 전달을 위해 활용되던 지질나노입자(이하 lipid nanoparticle, LNP)의 에어로졸화 과정에서의 불안정성과 폐 미세환경에서의 낮은 전달 효율을 해결하기 위해 이온화성 지질나노복합체(ionizable lipocomplex, iLPX)를 개발했다.
iLPX는 이온화성 리포좀의 외부에 mRNA를 결합한 형태로, 에어로졸화 과정에서 입자의 구조를 유지하기 때문에 흡입 전달에 용이하다. 또한, 폐 미세환경 내에서 폐계면활성제와의 상호작용을 유도해 호흡 운동을 활용, mRNA를 높은 효율로 폐 세포 내로 전달할 수 있다.
흡입 전달 및 폐 미세환경을 고려한 모방 환경 및 마우스 폐에서의 단백질 발현을 토대로 한 다차원 선별 과정을 통해 iLPX의 구성 요소들을 최적화시킴으로써 흡입용 mRNA 전달체(Inhalation optimized-iLPX, 이하 IH-iLPX)를 완성했다.
연구팀은 에어로졸화 전후의 입자 크기, 균일도, mRNA 탑재율을 비교함으로써 IH-iLPX의 월등한 에어로졸화 안정성을 증명했다. 나아가, IH-iLPX를 전달한 마우스에서 LNP 전달 마우스보다 26배 높은 단백질 발현이 유도됨을 확인했다.
연구팀은 동물 모델에서 흡입 전달된 IH-iLPX가 폐 특이적으로 단백질을 발현시키며, 폐포 상피세포와 기관지 상피세포에서 mRNA를 효과적으로 전달함을 확인했다. 또한 혈액 생화학 분석과 조직 검사를 토대로 IH-iLPX가 폐와 혈액 환경에서 독성이 없음을 확인했기 때문에 효과적인 폐내 mRNA 발현뿐만 아니라 생체 안전성 측면에서 큰 의의를 갖는다고 밝혔다.
박 교수는 “mRNA를 반드시 내부에 탑재해야 한다는 고정 관념을 깨고 새로운 구성의 입자를 제시함으로써 기존에 불가능했던 흡입형 유전자 치료의 길을 열었다”며 “본 연구실에서 개발한 흡입형 유전자 전달체는 치료 단백질을 암호화하는 mRNA를 탑재해 폐질환에 적용되어 유전자 폐 치료의 적용 범위를 넓힐 것으로 기대된다”이라고 말했다.
바이오및뇌공학과 장민철 박사과정이 제1 저자로 참여한 이번 연구 결과는 나노기술 분야 국제학술지 ‘ACS 나노(Nano)’ 9월 3일 자 18권 35호에 게재됐다. (논문명: Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infilration)
이번 연구는 한국연구재단의 중견연구자지원사업의 지원을 받아 수행됐다.
2024.10.10
조회수 1230
-
미토콘드리아로 퇴행성 질환까지 제어 가능하다
우리 대학 생명화학공학과 김유식 교수 연구팀이 비정상적 면역 활성을 유발해 염증반응이 동반된 세포 사멸을 일으키는 미토콘드리아 이중나선 RNA의 새로운 조절 기전을 찾아냈다고 22일 밝혔다.
최근 미토콘드리아 이중나선 RNA가 스트레스 환경에서 세포질로 빠져나가 비정상적 면역 활성 및 세포 사멸을 유발한다는 것이 밝혀졌다. 또한 이러한 미토콘드리아 이중나선 RNA로 촉발되는 면역 활성은 관절염 및 헌팅턴 무도병을 비롯한 염증반응이 동반된 퇴행성 질환과 자가면역질환 중 하나인 쇼그렌 증후군의 발병 및 진행에 핵심적인 역할을 한다는 것이 보고됐다.
아직 미토콘드리아 이중나선 RNA의 분자적 조절 기전에 대해서는 보고된 바 없다는 점을 착안해서 연구팀은 미토콘드리아 내에 존재하며 RNA와 결합할 수 있는 단백질에 대해 유전자 가위를 이용해 각 단백질의 발현을 억제한 후 미토콘드리아 이중나선 RNA의 발현량을 조사했다.
이 과정에서 RNA의 구성 물질 중 하나인 시토신의 화학적 변형을 유발하는 엔썬4(NSUN4)*이라는 단백질의 발현을 줄였을 때 미토콘드리아 이중나선 RNA의 발현이 유의미하게 증가하는 것을 확인했다.
*엔썬4 (NSUN4): NOP2/Sun RNA 메틸트랜스퍼라제 4
나아가, 연구팀은 단백질을 생산하지 않는 미토콘드리아 비암호화 RNA의 변형을 가속시키는 것이 동 단백질 엔썬4에 의해서라고 최초로 제시했다.
연구팀은 추가 연구를 통해 미토콘드리아 RNA 단백질들의 발현 감소로 축적된 미토콘드리아 이중나선 RNA의 양이 증가했으며 세포질로 누출된 미토콘드리아 이중나선 RNA는 면역반응을 활성화시켰다. 이를 통해 연구팀은 새로운 세포 내 면역 유발인자로 최근 주목받기 시작한 미토콘드리아 이중나선 RNA의 변형에 의한 발현 조절 기전을 제시했다.
생명화학공학과 김유식 교수는 “이번 연구를 통해 비정상적 면역 활성 유발 인자로 최근 주목받고 있는 미토콘드리아 이중나선 RNA의 형성 및 조절 기전을 밝혔다”면서 “이번 연구의 결과를 바탕으로 면역 계통 질환을 비롯해 다양한 퇴행성 질환의 발병 및 진행 과정을 효과적으로 제어할 수 있는 전략을 제시할 수 있을 것”이라고 말했다.
생명화학공학과 김수진 박사(現 보스턴 아동병원 (Boston Children’s Hospital) 및 하버드 의과대학(Harvard Medical School) 박사후연구원)와 탄 스테파니(Tan Stephanie) 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 셀(Cell) 자매지인 ‘몰레큘러 셀(Molecular Cell)’ 7월 16일 字에 온라인 게재됐다. (논문명 : RNA 5-methylcytosine marks mitochondrial double-stranded RNAs for degradation and cytosolic release).
한편 이번 연구는 한국연구재단 우수신진연구지원사업과 미국 국립보건원의 지원으로 수행됐다.
2024.07.22
조회수 2085
-
바이러스와 세균의 진화를 규명하다
바이러스는 특정 세포 안에 침투했을 때만 증식의 생명력을 띠고 그 외에는 무생물 같으며, 사람 세포를 감염시키는 코로나19 바이러스, 세균을 잡아먹으며 증식하는 세균바이러스 등이 있다. 국내 연구진이 세균바이러스가 RNA 합성을 마무리 짓는 방식에 해체종결(1)만 있고 재생종결(2)은 없다는 사실을 밝히고 RNA 의약품 개발에 응용될 가능성을 높였다.
(1)해체종결: 합성 복합체가 중합효소, DNA, RNA로 해체
(2)재생종결: RNA만 분리되고 중합효소는 DNA에 남아 재생
우리 대학 생명과학과 강창원 명예교수(줄기세포연구센터 고문)와 서울대학교 물리천문학부 홍성철 교수의 공동연구팀이 세균의 리보핵산(RNA) 합성방식 두 가지 중 하나가 바이러스에는 없다는 것을 발견해, 세균이 바이러스로부터 진화하면서 획득한 방식을 처음 밝힌 연구 논문을 핵산 분야 최상급 국제학술지에 게재했다고 19일 밝혔다.
유전자 DNA의 유전정보에 따라 RNA를 합성하는 효소가 RNA 중합효소다. 이는 유전정보가 DNA에서 RNA로 옮겨 적히기에 전사(轉寫)라고 부르는 유전자 발현 첫 단계를 수행하며, RNA 백신 등 첨단 RNA 의약품을 개발 생산하는 데에 쓰인다. 연구팀은 세균바이러스의 RNA 중합효소를 연구해서 생물로 진화하기 이전 태초의 RNA 합성(전사) 방식을 밝힌 것이다.
유전자에 따라 다른 게 아니라 어느 유전자든 전사 마무리 방식에 두 가지가 있다는 것을 수년 전 세균에서 발견했었다. 그리고 세균보다 진화한 진핵생물 효모의 유전자 전사에서도 두 방식이 모두 쓰인다는 것이 지난달에 보고됐다. 사람도 진핵생물이어서, 세균과 효모뿐 아니라 사람까지 온갖 생물의 유전자 전사에 두 방식 모두 쓰일 개연성이 커졌다.
그런데 이번 연구에서 세균바이러스의 방식은 세균이나 효모와 사뭇 다르다는 것이 밝혀졌다. 바이러스의 경우 재생종결 없이 해체종결만 일어나는 것이다. 이를 토대로, 연구팀은 RNA 중합효소가 세균에서 바이러스와 달리 적응하면서 해체종결에 재생종결이 추가돼 두 방식이 공존하게 되었고, 최소한 효모로의 진화에서 그대로 보존됐다는 해석을 내놓았다.
이번 연구에서 거푸집 DNA와 전사물 RNA에 각기 다른 형광물질을 부착해 전사 복합체 하나하나의 형광을 실시간으로 측정하는 단일분자 형광기술 연구기법이 사용됐다. 전사 종결로 RNA가 방출될 때 DNA가 효소에 붙어있는지 떨어지는지를 낱낱이 구별할 수 있게 설계한 것이 특장점이다. 특히 형광물질이 전사 반응에 지장을 주지 않도록 하는 게 관건이었다.
송은호 박사후연구원과 한선 박사과정 대학원생이 공동 제1 저자로 참여한 논문(제목: Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations)이 학술지 핵산연구(Nucleic Acids Research)에 7월 16일 게재됐다. 이로써 강창원 교수와 홍성철 교수는 2017년부터 총 8편의 논문을 공동으로 발표했다.
강창원 교수는 "이번 연구를 통해 수 초 동안의 분자 반응에서 유구한 진화과정을 밝혀냈고, 앞으로 더 광범위한 진화를 연구할 계획이다”라고 했다. 홍성철 교수는 "분자 하나하나를 관찰하여 복잡한 생물체의 진화를 파악했고, 이런 단일분자 연구기법을 차세대 RNA 의약품과 진단 시약의 개발에 응용하는 연구로 이어가고자 한다”라고 했다.
2024.07.19
조회수 2054
-
단백질 ‘생산 설계도’ 보호하는 RNA 조절 기전 찾았다
생명체는 DNA, RNA, 단백질과 같은 바이오분자들의 조절 작용으로 다양한 생물학적 기능을 수행한다. 바이오분자들의 조절로 유전 정보가 전달되고, 잘못 전달된 정보는 유전자 변형이나 감염성 질병의 원인이 된다. 따라서 분자생물학적 조절 연구는 유전자 치료제와 첨단 백신 개발에 중요하다. 특히, 2023년 코로나 mRNA 백신 기술을 개발한 과학자들이 노벨 생리의학상을 수상하면서 RNA 조절 연구에 기반한 첨단신약, 바이오공학 기술이 크게 주목받고 있다.
우리 대학 바이오및뇌공학과 이영석 교수 연구팀이 기초과학연구원(IBS) RNA 연구단 김빛내리 단장(서울대 생명과학부 석좌교수), 미국 국립암연구소 유진 발코프(Eugene Valkov) 박사팀과 공동연구를 통해 자체 개발한 단일핵산 분석법을 적용해 전령 RNA(messenger RNA, 이하 mRNA) 분해의 새로운 조절 기전을 찾았다고 밝혔다.
mRNA는 긴 단일 가닥 RNA 분자로, DNA에 보관된 유전 정보를 단백질에 전달하는 매개체로서 마치 단백질의 ‘생산 설계도’와 같다. 예를 들어, 코로나 mRNA 백신은 약 4,000개의 RNA 분자로 이루어져 있으며, 코로나 스파이크 단백질의 유전 정보와 다양한 RNA 변형을 활용해 스파이크 단백질 생산을 조절하도록 설계되어 있다. 결국 RNA 기능과 조절에 따라 유전자 치료제 및 mRNA 백신의 효능이 결정된다.
연구진은 다양한 RNA 조절 인자 중 특히 mRNA 꼬리에 주목해 왔다. mRNA는 말단에 50-150개의 아데닌 염기로 구성된 긴 꼬리를 갖는데, mRNA를 보호하고 단백질 합성을 촉진하는 역할을 한다. 그동안 이 꼬리는 아데닌으로만 구성된 것으로 알려졌지만, 연구진은 지난 연구에서 비(非) 아데닌 염기가 추가된 ‘혼합 꼬리(Mixed tail)’가 존재한다는 사실을 보고하였고, 이 혼합 꼬리가 mRNA의 분해를 막는 역할을 하여 유전자 활성을 높이는 데 기여함을 밝힌 바 있다.
그러나 RNA 변형의 결과인 mRNA 꼬리는 그 변형의 특이적인 행태로 인해 생화학 실험과 정량적 분석에 어려움이 있었다. 또한, 50-150개 RNA 분자의 연속적인 변형에 대한 단일염기 분석이 필요하여 mRNA 혼합 꼬리 조절 기전 연구에 제한이 있었다.
이를 해결하기 위해 연구진은 미국 국립암연구소 유진 발코프 박사 연구팀과 함께 mRNA 꼬리 조절 연구를 위한 단일핵산 분석법을 개발했다. 이어 이 분석법을 활용하여 세계 최초로 mRNA 꼬리가 분해되는 속도를 단일핵산 단위로 측정하는데 성공, mRNA 꼬리의 새로운 분해 기전을 규명했다.
연구진은 mRNA 분해를 유도하는 탈아데닐 복합체(CCR4-NOT)를 이용한 탈아데닐화 시스템을 개발하고 단일 염기 단위의 분해 반응을 수학적으로 모델링하여 혼합 꼬리 분해 효과를 정량화했다. 그 결과, 탈아데닐 복합체의 진행이 지연되는 위치를 확인할 수 있었으며, 복합체의 구성 요소들이 비 아데닌 염기에 의해 특정 위치에서 막혀 분해 속도가 조절되는 것을 밝혔다. 즉, 비 아데닌 염기가 일종의 ‘과속 방지턱’ 역할을 한다는 것을 입증한 것이다.
김빛내리 단장은 “mRNA 혼합 꼬리 조절에 대한 이해를 확장해 mRNA 안정성 조절과 유전자 발현 메커니즘에 대한 새로운 통찰을 제공했다”라며, “혼합 꼬리에 기반한 다양한 유전자 치료법 연구와 RNA 첨단 신약 개발에 기여할 것”이라고 말했다.
우리 대학 바이오및뇌공학과 이영석 교수는 “이번 연구는 분자생물학, 생화학 및 수학 분야가 만나 이룬 융합 연구의 결실”이라며, “미래 바이오공학 및 첨단바이오 분야 발전을 위한 공동연구의 중요성을 시사한다”라고 연구의 의의를 밝혔다.
이번 연구결과는 국제 학술지 ‘네이처 구조 분자생물학(Nature Structural & Molecular Biology, IF=16.8)’에 지난 2월 19일 게재됐다.
2024.02.28
조회수 3461
-
RNA 유전자 가위 정밀제어기술로 유전자 치료 성큼
최근 유전자 치료제 개발에 있어 중요한 역할을 하는 유전자 가위(CRISPR/Cas) 기술은 DNA 편집을 통해 영구적인 치료 효과를 보일 수 있으나, 비표적 효과에 의한 생체 내 부작용에 의한 돌연변이가 발생하였을 때, 대체할 방안이 불명확하다. DNA 편집의 잠재적인 위험성을 극복하여 특이적으로 인식하고 조절할 수 있는 RNA 대상으로 하는 유전자 가위 시스템이 주목받고 있다.
우리 대학 생명과학과 허원도 교수 연구팀이 세계 최초로 RNA 유전자 가위 기술 (CRISPR/Cas13)의 활성을 화학 유전학 및 광유전학으로 조절해 시간 및 공간적으로 표적 RNA의 염기 편집을 수행하는 기술을 개발했고, 동물 모델에서의 RNA 염기 편집 효과를 입증했다고 7일 밝혔다.
허원도 교수 연구팀은 구조가 알려지지 않은 단백질의 구조를 재구조화해, 화학적 및 광유전학적으로 조절 가능한 Cas13 단백질 조각을 예측하고 개발하는 데 성공했다. 이를 통해 개발된 에디터 기술로 RNA 분해 및 RNA 염기 편집을 실시간으로 유도할 수 있으며, RNA 염기 편집의 활성을 가역적으로 조절할 수 있음을 확인했다. 또한, 기존 연구자들이 실험에 이용하던 세포모델에서 더 나아가 세계 최초로 실험 쥐 모델에 해당 시스템을 적용해 광유전학적으로 RNA 염기 편집이 효과적으로 일어나는 것을 입증했다.
이번 연구는 유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다. 특히 생체 내 전달 목적으로 주로 사용되는데 연구팀은 RNA 대상 편집 시스템에서 단백질의 상대적으로 큰 크기를 유전체 전달에 있어서 임상적 적용에 한계점을 가지고 있다는 점을 감안하여 DNA 크기 제한을 분할 시스템으로 극복하고, 실험 쥐의 기관 내에서 다양한 모델 시스템 구축을 통해 생체 내 RNA 연구의 적용 범위를 확장할 수 있다.
연구를 주도한 허원도 교수는 “재결합이 가능한 분할 단백질 Cas13 조각을 개발해, 화학적 및 광유전학적으로 특정 시공간에서 정밀하게 조절되는 RNA를 실험적으로 확인했다. 이 기술은 그동안 실험적 한계로 인해 어려웠던 복잡한 RNA 연구를 촉진할 것으로 기대된다.라고 말했다.” 아울러 “유전자 가위 시스템을 활용한 유도 가능한 RNA 조절 시스템 개발로, 질병과 관련된 돌연변이를 표적으로 하는 RNA 기반 치료법의 발전 및 세포 내 RNA 기반 연구의 적용에 기여할 것으로 기대된다”라고 전했다.
우리 대학 생명과학과 유정혜 박사과정이 제1 저자로 수행한 이번 연구는 저명 국제 학술지 ‘네이처 커뮤니케이션즈 (Nature Communications)’ 2024년 1월 22일 字 온라인판에 게재됐다. (논문명: Programmable RNA base editing with photoactivatable CRISPR-Cas13). (Impact Factor: 17.694). (DOI: https://doi.org/10.1038/s41467-024-44867-2)
한편, 이번 연구는 삼성미래기술육성재단과 정부의 재원으로 한국연구재단 바이오·의료기술개발사업의 지원을 받아 수행됐다.
2024.02.07
조회수 4594
-
암, 루게릭병 등 난치성 질환 발병 기전 밝혀
단백질 정보를 가진 mRNA 유전자 조절 기전에서 알루 요소(Alu)의 중요성을 제시하고, 나아가 종양 형성, 퇴행성 뇌질환 등 mRNA가 변화하는 다양한 질환에서 역방향 알루 반복구조(IRAlus)라는 새로운 발병 원인을 최초로 제시함으로써 질병 치료에 획기적인 방안을 제시하였다.
우리 대학 생명화학공학과 김유식 교수와 바이오및뇌공학과 이영석 교수 공동 연구팀이 종양 형성과 퇴행성 뇌질환을 유발하는 새로운 유전자 조절 기전을 찾아냈다고 6일 밝혔다.
인간 유전체의 약 10%를 차지하는 반복서열인 알루 요소(Alu element, Alu)는 단백질 정보를 가지는 전령 RNA(messenger RNA, mRNA)의 단백질 생산 효율을 조절할 수 있다. 특히, mRNA가 2개의 알루 요소로 형성된 역방향 알루 반복 구조(Inverted Alu repeats, IRAlus)를 가지게 되면 mRNA의 세포 내 이동이 방해되어 단백질 생산이 감소한다.
연구팀은 질환 특이적으로 mRNA가 변화하는 과정에서 주요 mRNA가 역방향 알루 반복 구조(IRAlus)에 의해 조절받게 하고 이는 mRNA가 가지고 있는 유전자 발현 억제로 이어져 질환을 일으킨다는 새로운 발병 기전을 밝혔다.
알루(Alu)는 유전체의 단백질 정보를 가지고 있지만 유전체 상에서 본인의 서열만을 복제하는 성질이 있어 ‘이기적 서열’로 알려져 있었다. 최근 연구에 의하면 mRNA 내의 존재하는 역방향 알루 반복 구조(IRAlus)는 숙주 mRNA의 세포질로의 이동을 방해하여 해당 유전자의 단백질 번역을 억제한다. 그러나, 해당 유전자 발현 조절 기전의 생물학적 중요성에 대해서는 보고된 바가 없었다.
연구팀은 역방향 알루 반복 구조(IRAlus)를 인지할 수 있는 항체를 활용한 차세대 염기서열 분석법을 사용해 특정 세포 내 활성화된, 기능적인 역방향 알루 반복 구조(IRAlus)를 가지고 있어 역방향 알루 반복 구조(IRAlus)에 의해 단백질 합성이 억제될 수 있는 mRNA 유전자 목록을 완성했다.
종양 형성 과정에서 역방향 알루 반복 구조(IRAlus)의 유전자 조절 기전의 영향을 분석했다. 연구팀은 대표적인 종양억제유전자를 억제하는 종양 유전자 조절을 하고 이는 단백질 발현 증가로 이어지며 결과적으로 종양억제유전자 활성이 억제됨으로써 암 발달을 촉진할 수 있다.
나아가, 특정 mRNA 서열과 상보적으로 결합해 mRNA의 기능을 억제해 다양한 질병 치료 및 조절 도구로 현재 연구되고 있는 혁신 RNA 치료제인 안티센스 올리고뉴클레오타이드(Antisense oligonucleotide, 이하 ASO)를 활용해 단백질 발현을 복구하는 암 치료 전략을 탐색했다.
연구팀은 신경계 세포에서 역방향 알루 반복 구조(IRAlus)로 인한 유전자 조절이 활발하다는 것을 확인했다. 또한, 해당 현상의 과도한 활성과 루게릭병으로 알려진 근위축성 측삭경화증을 비롯한 퇴행성 뇌질환 간의 연관성을 최초로 제시했다.
생명화학공학과 김유식 교수는 “이번 연구는 인간 유전체 내 반복서열인 역방향 알루 반복 구조(IRAlus)를 가지는 유전자를 목록화하는 것을 넘어서 해당 유전자 발현 조절이 인간 질환, 특히 종양 형성 및 퇴행성 뇌질환 발병과정에서 핵심적인 역할을 하는 것을 최초로 확인했다”면서 “이번 연구에서 제시한 역방향 알루 반복 구조(IRAlus)라는 새로운 타겟 물질을 활용하면 종양과 노화를 비롯해 다양한 퇴행성 질환의 발병 기전 분석에 근본적이고 효과적인 치료전략을 마련하는 데 유용할 것”이라고 말했다.
생명화학공학과 구자영 박사(현 보스턴 아동병원 (Boston Children’s Hospital) 및 하버드 의과대학 (Harvard Medical School) 박사후연구원)와 이건용 박사과정 학생이 공동 제1 저자로 참여한 이번 연구는 국제 학술지 셀(Cell) 자매지인 ‘몰레큘러 셀(Molecular Cell)’ 2월 2일 字에 온라인 게재됐다. (논문명 : Alternative Polyadenylation Determines the Functional Landscape of Inverted Alu Repeats).
우리 대학 생명과학과 임정훈 교수 연구팀과 의과학대학원 한진주 교수 연구팀이 참여한 이번 연구는 한국연구재단 기초연구실 지원사업과 KAIST 도약연구사업의 지원을 받아 수행됐다.
2024.02.06
조회수 3348
-
혹시 나도 수면 질환? AI로 간단히 검사해 보세요
각종 장비를 몸에 부착한 채 병원에서 하룻밤을 보내야 하는 번거로운 검사 없이 웹사이트를 통해 간단히 수면 질환 위험도를 파악할 방법이 나왔다. 우리 대학 수리과학과 김재경 교수 연구팀이 삼성서울병원 주은연‧최수정 교수팀, 이화여대 서울병원 김지현 교수팀과 공동 연구를 통해 개발한 세 가지 수면 질환을 예측할 수 있는 알고리즘 ‘슬립스(SLEEPS‧SimpLe quEstionnairE Predicting Sleep disorders)’를 12일 공개했다.
‘잠이 보약’이라는 말처럼 수면은 정신적‧신체적 건강에 주요한 영향을 미친다. 성인의 60%가량이 수면 질환을 앓고 있지만, 관련하여 전문 의료진에게 문의한 비율은 6% 수준에 불과하다. 병원 방문을 꺼리는 원인 중 하나로는 수면 질환 진단을 받기 위해 시행하는 수면다원검사가 번거롭다는 이유가 있다.
공동연구진은 약 5,000명의 수면다원검사 결과를 기계 학습을 통해 학습시켜 수면 질환 위험도를 예측하는 알고리즘 ‘슬립스’를 개발했다. 슬립스에서 나이, 성별, 키, 체중, 최근 2주간의 수면 시 어려움, 수면 유지 어려움, 기상 시 어려움, 수면 패턴에 대한 만족도, 수면이 일상 기능에 미치는 영향 등 간단한 9개의 질문에 답하는 것만으로 만성불면증, 수면호흡장애, 수면호흡장애를 동반한 불면증의 위험도를 90%의 정확도로 예측할 수 있다. 가령, 슬립스 검사 결과 수면호흡장애 위험도가 50%라는 결과가 나왔다면, 실제 수면다원검사를 시행했을 때 수면호흡장애가 발견될 확률이 50%임을 의미한다.
제1 저자인 하석민 미국 MIT 박사과정생(前 IBS 의생명 수학 그룹 연구원)은 “미국 하버드대 연구팀도 AI 기반 수면 질환 검사 알고리즘을 개발한 바 있으나, 이 시스템은 목둘레, 혈압 등 쉽게 답하기 어려운 문항이 포함되어 있어 사용이 까다로웠다”며 “또한, 하버드대 연구팀의 시스템은 예측 정확도도 70% 정도에 그쳤다”고 말했다.
슬립스 사이트(www.sleep-math.com)를 통해 누구나 수면 질환 여부를 예측해볼 수 있다. 현재 본인의 상태를 기준으로 몸무게 변화나 나이가 듦에 따른 수면 질환 위험도 변화도 살펴볼 수 있다.
김재경 교수는 “이번 연구는 수학으로 우리가 직면한 건강 문제를 해결해보고자 하는 시도에서 시작됐고, 중요하지만 쉽게 간과할 수 있는 수면 질환에 기계 학습을 접목했다”며 “수면 질환 진단의 복잡한 과정을 줄인 만큼, 많은 사람이 슬립스를 통해 자신의 수면 건강을 알 수 있는 계기가 되길 바란다”고 말했다.
주은연 삼성서울병원 교수는 “슬립스는 간편한 수면 질환 자가 검진 시스템”이라며 “향후 건강검진 항목에 AI 기반 자가 검진 시스템을 포함한다면 잠재적인 수면 질환 환자들을 스크리닝하여 수면 질환으로 인해 발생하는 수많은 질병을 선제적으로 예방할 수 있을 것”이라고 말했다.
슬립스 개발 성과는 지난 9월 의료 건강 분야 국제학술지 ‘Journal of Medical Internet Research’에 실린 바 있다.
2023.12.14
조회수 4706
-
K-약용식물에서 세 단계만에 분자연금술 뚝딱
K-약용식물 추출물에서 단 세 단계 만에 퇴행성 신경질환 등 난치성 신경질환 치료제로 개발가능한 물질인 ‘수프라니딘 B’를 합성하는 ‘분자 연금술’에 성공하여 화제다.
우리 대학 화학과 한순규 교수 연구팀이 국내 자생 ‘광대싸리’에 극미량 존재하는 고부가가치 천연물을 생체모방 전략을 통해 쉽게 얻을 수 있는 물질로부터 간단하게 합성하는 방법을 개발했다고 1일 밝혔다.
`세큐리네가 알칼로이드'는 국내 자생 약용식물인 ‘광대싸리’에서 발견되는 천연물 군으로, 항암 및 신경돌기 성장 촉진 등 다양한 약리 활성을 보여 수십 년간 합성화학계의 관심을 받아왔다.
이들 물질 군에는 기본 골격으로부터 산화되거나 사슬처럼 연결된 형태를 갖는 100여 종의 초복잡 천연물들이 존재하는데, 상대적으로 간단한 기본 골격체의 합성은 잘 정립되어 있었던 반면, 초복잡 화합물의 합성은 난제로 남아 있었다.
그 중 `수프라니딘(suffranidine) B'도 초복잡 세큐리네가 천연물 중의 하나로, 신경세포의 신경돌기 성장을 촉진해, 퇴행성 신경질환이나 신경 절단 등 현재는 난치성인 신경질환의 치료제로 기대되는 물질이다. 그러나 식물 1 킬로그램(kg)당 추출량이 0.4 밀리그램(mg)에 그칠 정도로 극히 적고 정제 또한 어려워 추가적인 연구에 제한점이 많았다.
한 교수 연구팀은 광대싸리에서 쉽게 대량으로 추출할 수 있는 기본골격을 갖는 세큐리네가 천연물인 알로세큐리닌(allosecurinine)과 시중에서 값싸게 구할 수 있는 누룩산(kojic acid) 유래 물질로부터 단 세 단계 만에 수프라니딘 B를 합성하는 방법을 개발했다.
이번 연구는 수프라니딘 B의 세계 최초 합성으로 쉽게 구할 수 있는 물질로부터 고부가가치 화합물을 간단하게 만들어 낸 일종의 `분자 연금술'이라 볼 수 있다. 수프라니딘 B와 같이 복잡한 천연물을 이렇게 짧은 과정으로 합성해 낸 사례는 몹시 드물다.
생체모방 합성(biomimetic synthesis)은 자연이 천연물을 합성하는 과정(생합성)을 모방해 복잡한 천연물을 합성하는 연구 방식이다. 합성 과정에서 생합성 경로에 존재할 것으로 여겨지는 중간체들의 화학적 반응성을 탐구할 수 있으므로, 해당 물질의 생합성 경로를 더욱 깊게 이해할 기회를 제공한다. 세큐리네가 알칼로이드는 1956년 최초로 발견되었으나 현재까지도 생합성 경로가 밝혀지지 않은 상태다.
한 교수는 "이번 연구로 수프라니딘 B를 간단하게 생산할 수 있게 되었을 뿐 아니라 초복잡 세큐리네가 천연물의 생합성에 대한 이해 또한 높일 수 있었다ˮ며 "고부가가치 국내 자생 약용식물을 합성화학적으로 또는 합성생물학적으로 생산할 수 있는 학문적 토대를 마련했다ˮ고 밝혔다.
KAIST 화학과 강규민 석박사통합과정 학생이 제1 저자로 참여한 이번 연구는 화학 분야 저명 국제 학술지인 `미국화학회지(Journal of the American Chemical Society)' 지난 11월 2일 자에 게재됐다. (논문명 : Synthesis of Suffranidine B)
한편 이번 연구는 KAIST의 도약연구(UP) 및 한국연구재단의 기초연구사업(중견연구)등의 지원을 통해 이뤄졌다.
2023.12.01
조회수 4045
-
한빛원전의 시공 불량 문제를 해결하기 위한 시뮬레이션 개발
후쿠시마 사고 이후 원전 안전 및 관리에 대한 관심이 집중되고 있다. 한국에서는 2017년 6월경 한빛원전의 원자로 격납건물의 콘크리트 벽 속에서 대규모 공극이 발견되었다. 원자로 격납건물은 원전 사고 발생 시 방사능 유출을 막아주는 최후의 보루이기 때문에, 이러한 콘크리트 공극으로 인한 원전의 안전상 우려가 큰 상황이다.
국내 연구진들은 원자로 격납건물 시공시 콘크리트 다짐 및 채움 불량으로 인하여 격납로 내 콘크리트에 공극이 발생한 것으로 추정하고 있다. 원자로 격납건물은 일반 콘크리트 구조물과 달리 매우 높은 밀도의 철근 보강이 필요하기 때문에, 콘크리트 타설 시 진동 다짐기가 진입하지 못하는 구역이 존재할 가능성이 높아서 콘크리트 공동에 대한 위험성이 높다. 하지만 돔 형태의 벽체 내부를 감싼 6 mm 두께의 철판(콘크리트 라이너 플레이트, CLP)이 영구 거푸집으로 활용되기 때문에 내부 공동에 대한 육안 검사가 불가능하다는 점에서 공극 발생 여부의 발견에 대한 어려움이 있다.
우리 대학 건설및환경공학과 김재홍 교수 연구팀은 이러한 문제를 해결하기 위하여 콘크리트의 유동성과 다짐 불량으로 인해 발생하는 공동을 억제할 수 있는 시공 시뮬레이션 기법을 개발했다.
연구팀에서 제안한 콘크리트 유동 시뮬레이션 기법은 콘크리트의 레올로지와 진동다짐의 영향 반경을 고려하여 콘크리트 공동 발생 예상 부위를 예측하는 기술이다. 연구팀은 이번 연구를 통해 콘크리트 진동다짐의 영향 반경(감쇠계수)을 직접 측정하여 굳지 않은 콘크리트 내부의 진동 에너지 밀도 분포를 제시했다. 이어서, 진동 에너지에 따른 콘크리트의 Vibrorheology를 정량적으로 측정하여, 굳지 않은 콘크리트의 항복응력 감소를 정량적으로 모델링하여 시공 시뮬레이션을 가능하게 하였다.
새로 제안된 시공 시뮬레이션 기법은 기존 콘크리트 유동해석으로는 고려할 수 없었던 격납건물 내부 보강재의 형상과 크기, 콘크리트 레올로지, 그리고 진동다짐의 진폭과 진동수까지 고려하여 콘크리트의 채움성을 평가할 수 있게 되었다. 연구팀은 향후 보강 연구를 진행해 3D 프린팅 콘크리트의 레올로지 제어, 프리캐스트 콘크리트의 품질 관리 등에도 해당 기술을 활용할 계획이다.
이번 연구는 한국수력원자력(주)와 한국연구재단의 과학기술분야 기초연구사업의 지원으로 수행되었으며, 건설공학 분야에서 권위 있는 학술지인 ACI Materials Journal, Cement and Concrete Research 등에 출판되었다.
(논문명: (1) Quantitative evaluation of energy transfer of a concrete vibrator. (2) Flow simulation of fresh concrete accounting for vibrating compaction.)
2023.10.24
조회수 4112
-
저용량 고효율 RNA백신 개발 가능해지다
현재 널리 사용되고 있는 코로나바이러스 mRNA 백신은 선형 형태의 mRNA를 가지고 있어 세포내에서 매우 불안정한 특징이 있다. 반면 원형 형태의 RNA(circular RNA)는 선형 RNA에 비해 매우 안정되기 때문에 수많은 국내외 제약회사에서 RNA 안정성을 높이기 위해 원형 RNA를 개발하고 있는 상황이다. 이에 원형 RNA에서 일어나는 단백질 합성 과정에 대한 연구가 필요한 실정이다.
우리 대학 생명과학과 김윤기 교수 연구팀이 진핵세포 내에서 일어나는 원형 RNA(circular RNA)의 단백질 합성 과정에 대한 새로운 메커니즘을 규명했다고 23일 밝혔다.
분자생물학에서 ‘중심원리(central dogma)’라고 알려진 DNA로부터 시작해 RNA, 단백질로 이어지는 유전정보의 흐름은 다양한 생물학적 기능을 나타내는 중요 원리다. 이때 최종 생산 산물인 단백질은 번역 과정에 의해 생성되며 이와 관련한 메커니즘 연구는 예로부터 활발히 진행돼오고 있었다.
특히 최근에는 mRNA 백신과 관련해 RNA의 안정성과 합성 효율을 극대화할 수 있는 기법에 관해 관심이 쏠리고 있다. 선형 mRNA는 세포내에서 매우 불안정하기 때문에, 항체 생성 효율을 높이기 위해서 부득이 고용량의 mRNA를 접종하고 있는 상황이다. 이러한 고용량 접종은 mRNA에 기인하는 많은 부작용을 초래할 수 있다.
연구팀은 원형 RNA에서 일어나는 새로운 형태의 단백질 번역 과정을 규명하였다. 세포내에서 생성되는 대부분의 원형 RNA는 엑손 접합 복합체 (Exon junction complex; EJC)를 가지고 있음을 밝혔다. 엑손 접합 복합체는 단백질 합성을 담당하는 리보솜을 끌어오는 기능을 수행하는 단백질(eIF3g)과 직접 결합함으로써, 최종적으로 리보솜을 끌어와 단백질 합성을 유도함을 규명하였다.
연구를 주도한 김윤기 교수는 “이번 연구는 안정성이 높은 원형 RNA에서 일어나는 합성 과정을 규명한 데에 연구의 의의가 있으며, 이 작용과정을 이용하여 부작용을 최소화하고, 고안정성 및 고효율 단백질 합성이 가능한 mRNA 백신을 개발할 수 있을 것으로 기대하고 있다”며 소감을 밝혔다. 특히 원형 RNA 기술 상용화를 위해 김윤기 교수는 라이보텍(주) 벤처회사의 공동대표를 맡고 있다.
생명과학과 장지윤, 신민경 박사과정생, 박주리 박사가 공동 제1 저자로 참여한 이번 연구는 세계 최고 수준의 국제 학술지 `핵산 연구 저널지(Nucleic Acids Research)'에 10월 9일 자로 소개됐다. (논문명 : An interaction between eIF4A3 and eIF3g drives the internal initiation of translation).
한편 이번 연구는 한국 연구재단의 지원을 받아 수행됐다.
2023.10.24
조회수 3272
-
산업 균주 제작 및 병원균 억제 범용기술 개발
박테리아는 우리 일상에서 김치, 된장, 술 등 식품에 활용되어 왔을 뿐만 아니라 최근에는 대사 공학을 통해 플라스틱, 영양제, 사료, 의약품 등을 생산하는 산업용 세포 공장으로 활약하고 있다. 하지만 유익한 박테리아 외에도 다양한 감염성 질병을 일으키는 폐렴균, 살모넬라균 등 병원균이 있어 대사공학적 기법을 통해 유해한 병원균은 병원성을 억제하거나 사멸을 유도하고, 유익한 산업용 박테리아는 고부가가치 물질을 고효율로 생산할 수 있도록 조작하는 것이 중요하다.
우리 대학 생명화학공학과 이상엽 특훈교수 연구팀이 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다고 10일 밝혔다. 해당 연구 결과는 국제 학술지인 ‘네이처 커뮤니케이션즈(Nature Communications)'에 4월 24일 字 온라인 게재됐다.
※ 논문명 : Targeted and high-throughput gene knockdown in diverse bacteria using synthetic sRNAs
※ 저자 정보 : 이상엽(한국과학기술원, 교신저자), 조재성(한국과학기술원, 현 MIT 박사후연구원, 공동 제1저자), 양동수(한국과학기술원, 현 고려대학교 조교수, 공동 제1저자), Cindy Prabowo (한국과학기술원, 공동저자), Mohammad Ghiffary (한국과학기술원, 공동저자), 한태희 (한국과학기술원, 공동저자), 최경록 (한국과학기술원, 공동저자), 문천우 (한국과학기술원, 공동저자), Hengrui Zhou (한국과학기술원, 공동저자), 류재용 (한국과학기술원, 현 덕성여자대학교 조교수, 공동저자), 김현욱 (한국과학기술원, 공동저자) - 총 11명
sRNA는 대장균에서 표적 유전자를 억제하기 위해 합성 조절하는 효과적인 도구이지만 그동안 대장균과 같은 그람 음성균 외에 산업적으로 유용한 고초균이나 코리네박테리움 같은 그람 양성균에서는 적용이 어려웠다.
이에 생명화학공학과 이상엽 특훈교수 연구팀은 그람 음성균과 양성균 모두를 포함한 다양한 박테리아에서 표적 유전자를 효과적으로 억제할 수 있는 신규 sRNA 도구를 개발했다. 연구팀은 우선 미생물 데이터베이스를 이용해 수천 종의 미생물 유래 sRNA 시스템을 검토했고, 그중 가장 높은 유전자 억제능을 보여준 `고초균(Bacillus subtilis)' 박테리아 유래 sRNA 시스템을 최종 선정했고 이를 ’광범위 미생물 적용 sRNA‘(Broad-Host-Range sRNA, 이하 BHR-sRNA)라고 명명했다.
sRNA와 유사한 시스템으로는 유전자 가위로 잘 알려진 크리스퍼(CRISPR)를 개량한 크리스퍼 간섭(CRISPR interference, CRISPRi) 시스템이 있다. 유전자 가위의 핵심인 Cas9 단백질에 돌연변이를 일으켜 DNA를 자르지 않으면서 유전자 전사 과정만을 억제해 유전자 발현을 억제하는 시스템인데, Cas9 단백질의 분자량이 매우 높아 몇몇 박테리아에서 성장을 저해하는 현상이 보고됐다. 하지만 이번 연구에서 개발한 BHR-sRNA 시스템은 박테리아의 성장에 전혀 영향을 끼치지 않으면서도 CRISPR 간섭과 유사한 유전자 억제능을 보였다.
BHR-sRNA 시스템의 범용성을 검증하기 위해 연구팀은 다양한 그람 음성균 및 그람 양성균 16종을 선정하여 테스트했고, 그중 15종의 박테리아에서 BHR-sRNA 시스템이 성공적으로 작동함을 증명했다. 또한, 10종의 박테리아에서 기존의 대장균 기반 sRNA 시스템보다 유전자 억제능이 뛰어남을 증명했다. 이와 같이 BHR-sRNA 시스템은 다양한 박테리아에서 효과적으로 유전자 발현을 억제할 수 있는 범용 도구임을 입증했다.
최근 점차 심각해져 가는 항생제 내성 병원균 문제를 해결하기 위해, 연구팀은 BHR-sRNA를 이용해 독성인자를 생산하는 유전자를 억제하고, 결과적으로 병원성을 억제하고자 했다. 특히 BHR-sRNA를 활용해 병원 발생 감염균인 표피포도상 구균(Staphylococcus epidermidis)에서 항생제 내성의 원인 중 하나인 바이오필름 형성을 73% 억제할 수 있었고, 폐렴균인 폐렴막대균(Klebsiella pneumoniae)에서 항생제 내성을 58% 약화하는 결과를 보였다. 연구팀은 또한, BHR-sRNA를 산업용 박테리아에 적용해 표적 물질을 고효율로 생산하고자 했다. 특히 폴리아마이드 고분자의 원재료인 발레로락탐(valerolactam), 포도향 첨가제인 메틸안트라닐산(methyl anthranilate), 그리고 청색 천연염료인 인디고이딘(indigoidine)을 최고 농도로 생산할 수 있었다.
이번 연구를 통해 개발한 BHR-sRNA를 활용해 다양한 산업공정으로의 응용이 기대되며, 항생제 내성 병원균 퇴치를 통한 연구에도 활용될 수 있으리라 기대된다. 교신저자인 이상엽 특훈교수는 “기존에는 각각의 박테리아마다 유전자 억제 도구를 새로 개발해야 했는데, 이번 연구를 통해 다양한 박테리아에서 범용으로 작동하는 도구를 개발했다”며 “앞으로 합성생물학과 대사공학, 그리고 병원균 대응연구 발전에 큰 도움이 될 것”이라고 밝혔다.
한편, 이번 연구는 과기정통부가 지원하는 석유대체 친환경 화학기술개발사업의 바이오화학산업 선도를 위한 차세대 바이오리파이너리 원천기술 개발 과제의 지원을 받아 수행됐다.
2023.05.10
조회수 5587
-
다결정 및 단결정 재료 극한 변형 메커니즘 규명
우리 대학 항공우주공학과 연구팀 (익스트림역학 및 멀티피직스 연구실; https://continuum.kaist.ac.kr)이 미국 로스앨러모스국립연구소, 오크리지국립연구소 및 위스콘신대학과의 공동연구를 통해 초고온 및 초고압용 체심입방 결정재료의 극한 변형 메커니즘을 실험 및 이론적으로 규명했다.
주기율표의 Group V 및 Group VI에 속한 체심입방 금속재료 (그림 1-a)는 높은 용융점, 우수한 기계 및 내화학적 성능 및 가공성으로 인해 항공우주, 원자력 및 초전도체 등 다양한 극한 환경에서 주로 사용돼왔으며 최근엔 의료기기용 재료로도 큰 주목을 받고 있다.
체심입방 금속재료의 극한 환경 하의 변형 및 흐름에 관한 예측은 원자미끄러짐 기반 비탄성 변형 메커니즘 특유의 물리 및 수학적 복잡성으로 인해, 대부분 경험적 방법론에 의존해왔다. 또한 기존에 제시된 대부분의 이론 모델들은 단결정 또는 다결정 상태의 극한 거동을 부분적으로만 예측할 수 있었지만, 본 연구에서는 체심입방 단결정 및 다결정 재료의 극한 거동을 다양한 온도 및 속도 조건에서 동시에 설명할 수 있는 연속체역학 기반 이론 모델을 제시하였다. 연구팀은 새롭게 제시된 이론 모델을 통해 대표적 체심입방금속재료인 단결정 및 다결정 탄탈럼의 극한의 기계적 변형, 전위 결함 및 미세 구조 발달을 정확하게 예측하고 (그림 1-b 및 1-c) 이를 로스앨러모스국립연구소가 보유한 Los Alamos Neutron Science Center (LANSCE)의 중성자 디프랙션 장비를 통해 실험적으로 검증했다 (그림 1-d). 또한 기존의 경험론적 이론 모델에서는 설명할 수 없었던 체심입방 단결정 구조체에서 주로 발견되는 원자 미끄러짐의 불안정성을 수리적으로 규명하였으며, 이는 향후 극한 환경용 재료 및 구조체 설계에 적극 활용될 수 있을 것으로 기대되고 있다.
본 연구 결과는 이론 및 실험에 관한 국제협력을 통해 얻어졌으며, 우리학교 항공우주공학과의 조한솔 교수 연구실과 위스콘신-매디슨 대학 기계공학과의 커트 브롱크홀스트(Curt Bronkhorst) 교수 연구실 및 오크리지국립연구소에서 이론 정립 및 단결정 및 다결정 거동 경계값 문제에 관한 수치 계산을 수행하고, 로스앨러모스 국립연구소에서 검증 실험을 수행했다.
우리 대학 항공우주공학과의 이승현 박사과정 학생이 제1 저자로 참여한 이번 연구는 고체 및 응용역학 분야 최상위 학술지인 인터내셔널 저널 오브 플라스티시티 (Int. Journal of Plasticity) 에 연속 출간됐다.
https://doi.org/10.1016/j.ijplas.2023.103529
https://doi.org/10.1016/j.ijplas.2020.102903
https://arxiv.org/abs/2303.06743
한편 본 연구에 참여한 박사과정 이승현 학생은 로스앨러모스국립연구소의 여름 프로그램에 지원 및 선정돼 이번 6월 로스앨러모스국립연구소의 이론부에 방문하여 후속 연구를 진행할 예정이다.
본 연구는 한국연구재단 신진과제 (2020R1C1C101324813), 기초연구실 (2021R1A4A103278312) 그리고 미국립과학재단 (CMMI 2118399)의 지원을 통해 수행됐다.
2023.05.02
조회수 4869