본문 바로가기
대메뉴 바로가기
KAIST
연구뉴스
유틸열기
홈페이지 통합검색
-
검색
메뉴 열기
Nano+Photonics+Laboratory
최신순
조회순
신종화,김도경,이용희 교수, 수학적 공간채움 원리 적용한 신소재 개발
우리 대학 신소재공학과 신종화, 김도경 교수와 물리학과 이용희 교수 공동 연구팀이 수학의 공간채움 원리를 이용해 기존 기술보다 2천 배 이상 높은 유전상수를 갖는 전자기파 신소재를 개발했다. 이번 연구 결과는 네이처 자매지인 ‘네이처 커뮤니케이션즈(Nature Communications)’ 8월 30일자 온라인 판에 게재됐다. 유전상수는 소재의 전기적 성질 중 가장 기본이 되는 성질로, 물질 내부의 전하 사이에 전기장이 작용할 때 전하 사이의 매질이 전기장에 미치는 영향을 나타내는 단위이다. 진공 상태의 유전상수는 1이고, 자연에 존재하는 물질과 개발된 메타물질을 포함해 가장 큰 광대역 유전상수는 최대 1천600 수준이다. 유전상수가 수천 이하에 머물렀던 이유는 유전상수 향상에 사용됐던 근본 원리에 한계가 있었기 때문이다. 유전상수를 키우기 위해서는 같은 전기장이 가해졌을 때 더 큰 유전분극이 나타나게 만들어야 한다. 이를 위해 기존에는 피뢰침 끝에 강한 전기장이 모이는 개념의 ‘전기장 국소화 원리’가 사용됐다. 피뢰침이 뾰족할수록 끝에 더 강한 전기장이 모여 유전분극이 강해지지만 그 대신 유전분극이 강해지는 공간적 범위가 좁아지게 된다. 결국 이 원리는 강한 유전분극일수록 미치는 영향의 범위는 좁아지는 근원적 한계를 갖는다. 실제로 기존 유전상수를 증대시킨 메타물질에서는 전기장이 강하게 모이는 부분이 매우 좁은 영역에 국한된다. 연구팀은 문제 해결을 위해 수학적 공간채움 구조를 전자기 소재에 대입했다. 공간채움 구조란 선으로 한 차원 높은 면을 채우는 구조를 뜻한다. 유한한 크기를 갖는 면의 모든 점을 통과하는 연결된 선을 그릴 수 있으며 이 때 선의 길이는 무한대이다. 이를 응용해 기존의 피뢰침처럼 좁은 영역에서만 발생하는 강한 유전분극이 메타물질 공간 내부 전체에 밀집돼 나타나게 만들었다. 또한 공간채움 선의 방향을 조절해 밀집된 유전분극이 서로 상쇄되지 않고 합쳐지도록 조절했다. 연구팀은 이는 마치 여러 개의 시냇물이 만나 큰 강물이 되는 효과와 같다고 설명했다. 즉, 좁은 공간에 증대된 유전분극들이 공간채움 구조를 통해 거대하게 발현되는 효과를 고안했고 실제로 구현함으로써 삼백만 이상의 큰 유전상수를 얻을 수 있었다. 유전상수가 320만이면 이 물질을 활용한 축전기의 전기용량은 진공에 대비해 320만 배 커지고, 전자기파를 흡수하는 비율이나 방출하는 속도 또한 320만 배 커진다. 또한 굴절률이 약 1천 800배(유전상수의 제곱근)가 되기 때문에 이 소재 안에서 빛의 속도는 1천 800배 느리게, 파장은 1천 800배 짧아진다. 이를 통해 렌즈 등의 소자는 1천 800배 가량 작게 만들 수 있고 기존의 이미징 장치보다 1천 800배 세밀하게 물체를 관찰할 수 있다. 특히 아주 얇은 막으로도 원하는 방향으로 전자기파를 반사시키거나 대부분 흡수시킬 수 있기 때문에, 전투기나 함정에 씌워서 레이더에 탐지되지 않도록 하는 스텔스 표면 등 국방 응용이 기대되며, 5G 휴대전화용 안테나 등 무선통신 분야 적용도 가능할 것으로 예상된다. 또한, 가시광선에서도 만약 그 원리가 적용된다면 바이러스를 직접 볼 수 있는 수준의 매우 높은 분해능을 가진 현미경 등 더욱 다양한 응용이 기대된다. 신 교수는 “간단한 수학적, 물리적 원리가 혁신적 성능을 갖는 신소재 개발로 이어질 수 있음을 밝혔다”며 “이는 기초 원리의 중요성을 확인한 값진 경험이었고, 앞으로도 이러한 원리를 기반으로 신소재 개발을 지속하겠다”고 말했다. 신소재공학과 장태용 박사과정 학생이 1저자로 참여한 이번 연구는 삼성미래기술육성재단의 지원을 받아 수행됐다. □ 그림 설명 그림1. 본 연구에서 개발된 메타물질의 모식도와 실제 사진 그림2. 수학분야의 공간채움구조
2016.09.06
조회수 15640
수 나노미터급으로 빛 모으는 3차원 광 장치 개발
우리 대학 물리학과 김명기, 이용희 교수 연구팀이 빛을 수 나노미터급 영역안으로 집속시킬 수 있는 초 고광밀도 삼차원 갭-플라즈몬 안테나(3D gap-plasmon antenna)를 개발했다. 이번 연구는 미국화학회의 나노분야 저널인 ‘나노 레터스(Nano Letters)’ 6월 10일자에 게재됐다. 빛을 한 점으로 집속시키는 연구는 최근까지도 활발하게 이뤄지고 있다. 빛을 고밀도로 집속시킬수록 다양한 분야에서 활용 가능하기 때문이다. 하지만 빛의 파장보다 작은 크기에서 발생하는 회절(回折, diffraction) 현상은 집속을 방해한다. 이를 극복하기 위해 학자들은 금속에서는 회절한계를 뛰어넘어 빛이 가둬지는 플라즈모닉 현상을 이용해 연구를 진행 중이다. 학자들은 2차원 형태의 플라즈모닉 안테나 개발에 집중했고 연구를 통해 5나노미터 이하로 빛을 집속하기도 했다. 하지만 2차원 안테나로는 아무리 작게 모아도 나머지 한 쪽 방향으로 빛이 퍼지는 한계가 있다. 즉, 빛을 3차원 방향으로 집속시킬 수 있어야 빛의 밀도를 최대로 끌어올릴 수 있는 것이다. 연구팀은 집속 이온빔 근접 식각 (Proximal Focused-Ion-Beam Milling) 기술을 도입해 3차원 구조의 4나노미터급 갭-플라즈몬 안테나를 제작했다. 이를 통해 삼차원 나노 공간(~4 x 10 x 10 nm3)안으로 빛을 집속시켜 입사파와 비교해 40만 배 이상의 빛의 세기를 만들었다. 또한 제작된 안테나 내 높은 광밀도를 이용해 금속에서 발생하는 이차조화파 세기의 극대화에 성공했고, 음극선 발광 측정(Cathodoluminescence)장치를 이용해 빛이 나노 갭 안으로 강하게 집속됨을 확인했다. 연구팀은 이 기술이 데이터 통신과 정보 처리 속도를 테라헤르츠(THz, 1초당 1조번) 수준으로 높이고, 하드디스크 면적당 용량을 현재의 100배로 늘릴 수 있을 것이라고 밝혔다. 더불어 전자 현미경 대신 직접 빛을 이용해 분자 이하 크기의 고해상도 이미지를 추출하거나 반도체 공정을 수 나노미터 수준으로 발전시키는 기술이 가능할 것이라고 말했다. 김명기 교수는 “간단하고 새로운 아이디어가 기존 2차원 플라즈모닉 안테나 중심 연구를 3차원 공간으로 확대시켰다”며 “정보통신, 데이터 저장, 영상의학, 반도체 공정 등 다양한 분야에 응용될 수 있을 것이다"고 말했다. 이번 연구는 한국연구재단의 일반연구자지원사업과 중견연구자지원사업, 첨단융합기술개발사업 프로그램 지원을 받아 수행됐다. □ 그림 설명 그림 1. 제작된 3차원 갭-플라즈몬 안테나 그림 2. 3차원 갭-플라즈몬 안테나 구조 및 시뮬레이션 결과 그림 3. 증폭된 이차조화파 발생과 나노갭 안으로 빛이 집속된 모습
2015.06.15
조회수 13322
<<
첫번째페이지
<
이전 페이지
1
>
다음 페이지
>>
마지막 페이지 1